
Vol 6 No 2 (2025) E-ISSN: 2716-6333

International Journal of Creative Multimedia (2025) 6, 2, 287-308

doi: https://doi.org/10.33093/ijcm.2025.6.2.16
This journal is licensed under Creative Commons BY-NC-ND 4.0 International License.

Published by MMU PRESS. URL: https://journals.mmupress.com/index.php/ijcm

Abstract

Procedural content generation (PCG) is widely used in game development to enhance replayability and

reduce manual design effort. This paper presents a practice-oriented case study of a procedural dungeon

generator implemented in Unity, using Binary Space Partitioning (BSP) as the core algorithm. The

generator exposes adjustable parameters through the Unity Inspector, enabling designers to control

dungeon dimensions, room density, offsets, corridor width, and decorative elements without altering

code. To ensure reliable connectivity, a depth-first search (DFS)-inspired method is applied to corridor

generation, overcoming instability found in standard BSP approaches. Additional features, such as

decorations, torches, shrines, and enemy placement, illustrate how the generator can be extended to

enrich atmosphere and gameplay. Importantly, the system separates generation logic from gameplay

logic by working with prefabs rather than embedded scripts, providing developers with flexibility to

adapt the tool to their own mechanics and project requirements. Demonstrations show how small

parameter adjustments, particularly in corner modifiers and offsets, produce distinct dungeon layouts,

ranging from dense and compact to spacious and exploration-oriented. The generator has also been

applied in tutorial-level and regular gameplay scenarios, highlighting its adaptability. Overall, the

From Algorithm to Playable Space: A Technical Note on BSP-

Based Dungeon Design

Jing Ming Yap

yapjm-wm22@student.tarc.edu.my

Tunku Abdul Rahman University of Management & Technology, Malaysia

Nian Chein Woo

yapjm-wm22@student.tarc.edu.my

Tunku Abdul Rahman University of Management & Technology, Malaysia

Bee Sian Tan

tanbs@tarc.edu.my

Tunku Abdul Rahman University of Management & Technology, Malaysia

ORCID iD:0000-0001-7088-7864

(Corresponding Author)

Kim Soon Chong

chongks@ucsiuniversity.edu.my

UCSI University

ORCID iD:0000-0002-0584-3010

International Journal of
Creative Multimedia

https://journals.mmupress.com/index.php/ijcm

Vol 6 No 2 (2025) E-ISSN: 2716-6333

system contributes as a practical prototyping tool for developers and an instructional resource for

educators and students. By combining algorithmic clarity with implementation detail, it offers an

accessible foundation for applying PCG in both development practice and teaching contexts.

Keywords Procedural Content Generation (PCG), Binary Space Partitioning (BSP), Unity Game

Development, Dungeon Generation, Game Prototyping

Received: 4 May 2025, Accepted: 26 September 2025, Published: 30 September 2025

Vol 6 No 2 (2025) E-ISSN: 2716-6333

289

Introduction

Procedural generation is widely used in game development to reduce the workload of manual level

design while enhancing replayability and variety. In particular, roguelike games have popularised the

approach by creating new dungeons, enemies, and items each time a player begins a session. Early titles

such as Beneath Apple Manor (1978) and Rogue (1980) demonstrated the value of algorithmically

generated levels, and today the practice remains integral in both independent and large-scale game

production. For educators and students, procedural content generation (PCG) offers a way to understand

algorithmic design while developing flexible and reusable tools.

Among the many techniques available, the Binary Space Partitioning (BSP) algorithm has

become a common method for dungeon generation. It works by recursively splitting a space into smaller

subspaces, which can then be shaped into rooms and corridors. While the algorithm itself is well

established, there is a practical need for accessible documentation that explains how BSP can be applied

within modern development environments such as Unity, and how additional techniques such as depth-

first search (DFS) and breadth-first search (BFS) can extend the results.

This paper presents a practice-oriented case study of BSP-based dungeon generation in Unity.

Rather than proposing new algorithms, it focuses on clear pseudocode, implementation steps, and

example outcomes. The contribution is intended for developers, educators, and students who seek to

adapt procedural generation techniques for their own design projects, classroom exercises, or

prototyping tasks.

Literature Review

Binary Space Partitioning (BSP) is a well-established approach to level and dungeon generation in

games. Foundational studies, such as Clairbois (2006) on optimal partitioning, and Shaker et al. (2016)

in Procedural Content Generation in Games, describe how BSP recursively divides spaces into

subregions that can be adapted into rooms. More recent implementations, including Putra et al. (2023),

demonstrate BSP in two-dimensional dungeon layouts and highlight its compatibility with other

generative methods such as L-systems. These references provide the basis for applying BSP in

contemporary development environments.

Beyond BSP, other approaches to procedural generation have been widely examined. Baron

(2017) compared multiple dungeon generation techniques, noting the strengths and limitations of

different corridor-connection methods. Silva et al. (2023) and Oyhenard (2023) explored more recent

machine-learning and design pattern applications, showing how PCG techniques can vary in complexity

and creative scope. While these works broaden the theoretical landscape, they also underscore the

290

continuing relevance of straightforward partitioning methods when clarity and reproducibility are

prioritised.

Supporting algorithms play an important role in enhancing BSP-based generation. Elkari et al.

(2024) and Jain (2023) provided comparative discussions of depth-first search (DFS) and breadth-first

search (BFS), which are integrated here to manage corridor generation and boss-room identification.

Complementary perspectives, such as Baldwin et al. (2017) on design patterns, also suggest how

generative tools can be aligned with gameplay logic.

Taken together, these studies demonstrate both the maturity and flexibility of procedural

generation research. This paper builds on these foundations by offering a practice-oriented case study

of BSP in Unity, focusing on implementation clarity and reproducibility for developers, educators, and

students.

Implementation

Binary Space Partitioning

The first stage in generating a dungeon layout is dividing the entire map area into smaller, manageable

spaces. The Binary Space Partitioning (BSP) algorithm provides a straightforward way to achieve this.

Starting from a single rectangular space, the algorithm recursively splits the area along randomly

selected horizontal or vertical lines. Each split creates two subspaces, which may themselves be further

divided until user-defined limits are reached.

In this implementation, the splitting process is controlled by parameters such as maximum

iterations, minimum space width, and minimum space length. These values allow designers to influence

the number of partitions and the eventual size of the rooms. For example, increasing the maximum

iterations leads to a denser dungeon with more potential rooms, while larger minimum sizes prevent

overly small spaces that cannot hold meaningful content.

The algorithm terminates when no further splits are possible, either because the iteration count

is exhausted or the remaining space is below the defined threshold. Each final partition is stored in a

list of potential room spaces. Figure 1 illustrates the conditions under which a space can be split, while

Figure 2 presents pseudocode for the procedure.

node. RoomWidth >= minRoomWidth ∗ 2 || node. RoomLength >= minRoomLength ∗ 2

Figure 1. Conditions for Space Partition Eligibility

291

The partitioning algorithm will stop splitting the space when it runs out of iteration that is

defined by the user or the space for splitting is too small to be split. When a space can no longer be

split, it will be given a partitioned space number, and this space will be stored in a list of partitioned

spaces for future references. Below is the pseudocode for reference.

START
Initialize the space width, length, max iterations and minimum space width and length
Pass the space to a loop/recursive function
IF space eligible to split AND iteration is larger than 0
Check the length and width to determine orientation, get a random coordinate for line
Split the space based on the line, save to a list, pick one space to repeat
ELSE
Add the space node to a list, pick another space to split
RETURN when no iteration is left/no space left in list, add any remaining space to return list

END

Figure 2. Pseudocode for Binary Space Partitioning

By exposing these parameters to Unity’s inspector, developers and educators can experiment

with values in real time, observing how the partitioning directly affects dungeon structure. This makes

BSP not only a practical generation method, but also an effective teaching tool for understanding

recursive algorithms in game design.

Spawn Room

Before generating the remaining dungeon rooms, a dedicated spawn room is created to serve as the

player’s starting point. Randomisation is used to vary its location and size, ensuring that each run of the

generator provides a different opening scenario. In Unity, this is achieved by applying the built-in

Random.Range function, which selects values for both size and placement within predefined limits.

In the example implementation, the spawn room size is constrained between 8 and 12 units.

Once these values are set, the system determines the exact position by selecting one of four possible

quadrants around the dungeon area (top, bottom, left, or right). Figure 3 shows how this placement is

determined, while Figure 4 provides sample Unity code for the calculation.

Figure 3. Visual of Spawn Room Position Relative to Dungeon Area

292

spawnRoomPosition = new Vector2(
Random. Range(𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥 + 8, dungeonAreaLength − 8),

 Random. Range(dungeonAreaWidth + 10, dungeonAreaWidth + 20));

Figure 4. Code for Spawn Room Position Calculation

By enforcing a controlled randomisation process, the generator guarantees that the spawn room

always has sufficient space to connect to corridors, even in the smallest case. The logic is summarised

in Figure 5 as pseudocode.

START

Initialize the size, location and position of the spawn room

Randomize the size and location
Calculate the actual position

END

Figure 5. Pseudocode for Spawn Room Creation

This approach highlights a practical balance between variety and reliability: developers can

achieve a different spawn layout with each execution while avoiding disconnected or unplayable

starting points. For educators, the spawn room logic also illustrates how parameter ranges and

conditional placement can be combined to achieve predictable yet flexible outcomes in procedural

generation.

Generate Rooms

Once the dungeon area has been partitioned, the next step is to define playable rooms within those

spaces. The partitioned regions created by BSP are often tightly packed and need adjustment before

they can function as distinct rooms. The room generation algorithm addresses this by applying two key

parameters: the corner modifier and the room offset.

The corner modifier introduces controlled randomness into the room’s size and placement. By

adjusting this value, designers can influence whether rooms appear larger, smaller, or shifted within

their allocated partition. The room offset, on the other hand, determines the gap between the room and

the edge of its partition, ensuring that adjacent rooms do not overlap and that corridors can be added

later. Together, these parameters allow the overall dungeon layout to range from compact and clustered

to more open and widely spaced.

The algorithm begins by inserting the spawn room into a list of room nodes. It then iterates

through each partitioned space, calculating the coordinates of the bottom-left and top-right corners.

Using these boundaries, the offset and modifier are applied to define the final dimensions of the room.

293

Figure 6 provides an example of the calculation in Unity, where Random.Range is used to vary room

size within the permitted bounds.

var minX = boundaryLeftPoint. x + roomOffset;
var maxX = boundaryRightPoint. x − roomOffset;

Random. Range(minX, (int) (minX + (maxX − minX) ∗ roomBottomCornerModifier))

Figure 6. Code to Generate Room Space

After processing all partitions, the list of room nodes is returned, with the spawn room always

preserved as the first entry for consistency. Figure 7 presents the pseudocode summarising this process.

START
Get the room spaces from Binary Space Partitioning.
Calculate coordinates for bottom left and top right with modifier and offset
Repeat for all the room spaces.
Return the list of room.

END

Figure 7. Pseudocode for Room Generator

From a practice perspective, this approach gives developers and students a clear way to balance

structure and variation in dungeon design. By adjusting just two parameters, it becomes possible to

generate layouts that range from highly compact to widely spaced, offering a flexible tool for both

experimentation and teaching demonstrations.

Generate Corridor

Corridors provide the primary means of navigating between rooms, and their generation is essential to

making a dungeon playable. In BSP-based layouts, a common approach is to connect sibling nodes

from the partition tree. However, this often produces unstable results, such as corridors that pass through

existing rooms or leave parts of the dungeon disconnected.

To improve reliability, this implementation applies a depth-first search (DFS)-inspired method

for corridor generation. Instead of directly linking child nodes, the algorithm progressively searches for

valid connections from one room to the next. Each room is connected in turn, and when a dead end is

encountered, the algorithm backtracks to a previous room to continue the search. This ensures that all

rooms are connected, avoiding isolated spaces and creating a more consistent dungeon structure.

Practically, this is managed with two lists:

• nodesToGenerateCorridor - tracks the current room attempting to connect.

• nodesToCheckCorridorConnection - holds rooms still available for linking.

294

The algorithm selects a random room from the first list, chooses a direction, and searches for

the nearest eligible neighbour. If found, a corridor is generated, and the new room becomes the current

node. If no valid connections are identified in all four directions, the process backtracks until another

viable link can be created.

Figure 8 shows pseudocode for this approach. By adapting the standard BSP process with DFS-

style traversal, designers gain greater control over dungeon connectivity. For educators, this also

illustrates how classic search algorithms can be repurposed for practical level design challenges.

START
Select a random room from the room list
Select a random direction to search for nearest room
If a room is found, corridor is generated, and the connected room is used to repeat
If no room is found, it will repeat the process, the direction into a list to avoid
If no room is found in four directions, it will backtrack to the last room and repeat step 2
If all room is connected, it ends the recursion

END

Figure 8. Pseudocode for Corridor Generator

Generate Floor

After all the rooms and corridors is generated, but they only exist as data within their respective

structures. The first element to bring to life is the floor, as it forms the foundation of the dungeon and

gives a clear outline of its structure. While instantiating prefabs for each floor tile is common, this

approach can be inefficient due to varying room and corridor sizes. A better method is to generate the

dungeon floor as a single mesh directly through a C# script. By generating a mesh, it can handle floors

of varying sizes more easily and improve performance by reducing the number of instantiated objects.

Before diving into the script, it's important to understand how meshes are defined in Unity. Refer to the

figure below:

Figure 9. Three Key Element of Meshes

A mesh in Unity is composed of three key elements: vertices, triangles, and UVs. To break it

down simply, vertices are vectors representing the positions of points in 3D space, triangles are integers

295

that define how these vertices are connected to form surfaces, and UVs are vectors that dictate how

textures are applied to the mesh. In Unity's mesh system, the vertices, triangles, and UVs are stored in

arrays. It's crucial to remember that the order of these elements is important, incorrect sequencing can

result in the mesh being misaligned or not displayed properly. To ensure the mesh is correctly oriented

towards the camera and properly textured, start by initializing the vertices array by reading the

Vector2Int values of each corner from the node data and mapping the y-coordinate of the Vector2Int to

the z-component of the Vector3. In this setup, index 0 of the array corresponds to the top-left corner,

index 1 to the top-right, index 2 to the bottom-left, and index 3 to the bottom-right. This setup is depicted

in the diagram below:

Figure 10. Index of Vertices

Next, define the array of triangles, which is an integer array. The order of the elements in this

array is critical, as they must follow a clockwise sequence to ensure the mesh faces the camera. In this

case, the array values should be 0, 1, 2, 2, 1, 3, which represents two triangles that form the quad. This

arrangement ensures the mesh is correctly oriented towards the camera. Lastly, define the UVs, which

are stored in an array of Vector2 values. This array must have the same number of elements as the

vertices array. The UV coordinates map the texture onto the mesh, so the order of the UVs should match

the corresponding indices in the vertices array. In a UV mapping system, the bottom-left corner is

represented by (0,0), and the top-right corner is represented by (1,1). For this specific scenario, the UVs

should be assigned as follows: index 0 is (1,0), index 1 is (1,1), index 2 is (0,0), and index 3 is (0,1).

Now that the mesh is defined, it still doesn't exist in the game world as a visible object. To bring

it into the scene, create a new GameObject with three components, MeshFilter, MeshRendere and

MeshCollider. The mesh created earlier will be assigned to MeshFilter.mesh and

MeshCollider.sharedMesh, while the floor material will be assigned to MeshRenderer.material. Figure

11 shows pseudocode for this approach.

296

START
Create three array vertices (Vector3), triangles (Int) and uv (Vector2)
Assign value to the arrays (refer to section above)
Create a new Mesh and assign the arrays to component vertices, triangles and uv respectively
Create a new GameObject with MeshFilter, MeshRenderer and MeshCollider
Assign the new Mesh to MeshFilter.mesh and MeshCollider.sharedMesh,
Floor material to MeshRenderer.material

END

Figure 11. Pseudocode for Floor Generator

Placing Walls and Doors

Walls are a crucial structure in a dungeon, providing boundaries for rooms and corridors, so creating a

basic empty dungeon layout must include placing walls accurately. Implementing walls is

straightforward since there is list of RoomNode and CorridorNode structures that provide the

coordinates of their corners, using a loop to iterate through it to get the positions, and save them to two

list representing different orientation is an option. For example, the top is handled with a loop that

iterates from the top-left corner’s x component to the top-right corner’s x component, effectively

covering the top boundary of the room. This process is repeated for other sides with respective corners

and components.

However, this approach did not consider future door placement. To determine the location of a

door, cross check the list of wall edge and corridor edge. As it loops through a room's walls, if a point

on the wall already exists in the list, that indicates a door should be placed there. In such cases, the point

is removed from wall list and added to door list.

Figure 12. Connection of Room and Corridor

With the four lists of vertical and horizontal positions for walls and doors ready, simply use a

loop to iterate through these lists and instantiate the corresponding wall and door prefabs in the dungeon.

This basic implementation works well, but it’s important to keep in mind that adjustments may be

needed depending on the specific prefabs used for walls and doors, as their size and pivot points can

affect placement. The code will need to be adjusted based on specific scenario. Below is the pseudocode.

297

START
Create four lists of Vector3 to store wall position and door position for both orientation
Go through the top, bottom, left and right of the room, and add them to the respective list.
If there is no same Vector stored in the list, it was added to list
If there is a same Vector stored, it is removed from the wall list and stored in the door list
Go through the four lists and Instantiate respective prefab in different rotations.

END

Figure 13. Pseudocode for Walls and Doors Generator

Placing Decorations

Decorations may be optional from a gameplay perspective, but they play a crucial role in making the

dungeon feel more dynamic and immersive. To implement decoration placement during procedural

generation, it could randomly select a position to place it. It does create two issues, how to ensure that

no overlap happen, and what is the appropriate number to place? To address the first issue, the room is

mapped to a 2D Boolean array, which resets for each new room. As for the quantity to place, there is a

function that identifies the smallest room in the dungeon, which serves as a reference for calculating

how many decorations each room should receive.

If the current room is smaller than the reference size, it's likely a corridor, so it will only place

0 or 1 decoration at most. For larger rooms, calculate a size modifier based on the square root of the

total dungeon area divided by the smallest room’s area. If the room’s size exceeds this modified

threshold, place the maximum number of decorations allowed. Otherwise, select a random number

between the minimum and maximum values for the room. Once the number is set, the actual placement

begins. The room or corridor is represented by a 2D boolean array, initially set to all false. This array

is two units smaller in both dimensions to ensure decorations aren’t placed on walls or doors. Then,

select a random position in the array for each decoration, mapping these positions back to their

respective spots in the room. If a selected position is already true (occupied by another decoration),

continue looping until a valid position is found. Below is the pseudocode:

START
Get the smallestRoomSize
Get the room to place decorations
Initialize a 2D boolean array to false with the room dimension
Calculate room size
Calculate a modifier to determine which room is big or small
Determine decoration quantity based on result
Use a loop to place decoration
Select a random position in the array that is false
Calculate the actual position based on the array, instantiate the decoration
Set the position to true
Repeat

END

Figure 14. Pseudocode for Decorations Generator

298

Special Decorations

When a special type of decoration serves a specific gameplay purpose, it should be handled separately

from regular decorations. For example, if you want to place a shrine or statue exactly in the centre of

each room, the placement function for such decorations should be independent, directly calculating the

centre point of the room for instantiation. If exactly one of them in the middle of each room:

START
 Get the prefab
 Calculate the middle point of current room
 Instantiate the prefab
 Proceed to next room and repeat
END

Figure 15. Pseudocode Example for A Special Decoration in the Center

Placing Torches

Even if real-time lighting isn't applied, present of torch can make the dungeon feel more atmospheric.

Unlike other decorations, torches are placed directly on walls and have four possible orientations—left,

right, top, or bottom—depending on the wall's position. To implement this, a function is built upon

previous method for checking wall positions by adding a function that determines the orientation of the

wall relative to the room node (left, right, top, or bottom). This can be easily achieved by creating four

new lists that represent each side of the room and use a function to write the position in when checking

the respective side of the room. Additionally, cross-check these lists with the existing door lists to avoid

placing torches where doors exist.

Once the position is confirmed, the placement algorithm could be implemented, which basically

just iterates through all four lists and instantiates the torch prefabs. When instantiating the torch prefab,

adjust its rotation based on the wall it's placed on. For example, a torch placed on the top wall should

face opposite direction. To add further variety and make the dungeon feel more dynamic, variants of

torch could be added, such as unlit torches. Additionally, when iterating through the list of positions,

varying the spacing between torch might result in more natural appearance.

START
For each node, go through all the position of top, bottom, left and right and save to list
Go through each position list and place the torch.
Select a random prefab in the torch list
If the position is occupied in door list, it will skip this iteration
Based on which side of wall is placed, set the rotation accordingly
Instantiate the torch with the prefab, position, rotation

END

Figure 16. Pseudocode for Torch Placement

299

Determine Boss Room

Usually, there will be a boss fight in most of the dungeon games and the boss room usually will be in

the deepest of the dungeon. To achieve this, a path finding algorithm is implemented to find out the cost

of each room by using breadth-first search. The room with the largest cost will be the boss room.

First, the algorithm will loop through the corridor list to calculate the cost of each corridor

which is the same as the length of each corridor. Next, build a graph which contains all the dungeon

rooms that are connected by corridors. The corridor will be the edge of the graph as each of them will

connect with 2 rooms. After creating the graph, a breadth-first search will be carried out to search for

the room with greatest cost as the example in figure below.

Figure 17. Searching of Boss Room

After the boss room is found out, it will be stored in a boss room variable for the usage in

spawning enemies. Below is the pseudocode:

START
Calculate the length of corridor and assign it to corridor nodeValue
Build the graph and add path node and edge
Calculate the total path cost for each room node
Get the BossRoom which is the room with the highest path cost.

END

Figure 18. Pseudocode for Finding Boss Room

Spawning Enemies

Enemies are the primary challenges in a dungeon, they can be roughly categorized into three types:

weak but common normal enemies, fewer but stronger elite enemies, and powerful, unique bosses. It

shares similarities with the placement of decorations, particularly in ensuring that enemies do not

overlap with one another and that a specified number of enemies are spawned in each room. Thus,

mapping the room to a 2D Boolean array and use it as a reference will prevent overlaps. The number of

300

enemies can also be determined based on the room’s size. From the Enemy class, an enum is used to

classify enemies into three types: Normal, Elite, and Boss. Before spawning begins, the room's size is

used to calculate a "room value." When an enemy is spawned, its respective integer value is subtracted

from this room value, except in the case of bosses, which follow a different spawning logic. Once the

room value reaches 0 or below, enemy spawning for that room is complete, and the next room can be

processed.

Just like the decoration placement, first, map the room to a 2D boolean array, initializing all

positions to false. The room value is calculated, and a while loop is used to spawn enemies while the

room value is greater than 0. In each iteration, a random enemy is selected from a predefined list, and a

random location is chosen for placement. If the location is already occupied, as indicated by a true value

in the boolean array, a new location is selected. Once an enemy is successfully placed, the room value

is reduced by the enemy’s associated value. Boss rooms, however, are handled separately by simply

placing a single boss in the center of the room. Refer to the pseudocode in Figure 19.

START
Loop through list of room to place enemy
If it is the boss room, spawn only the boss and skip this iteration
Initialize a 2D boolean array based on the room dimension to false
Calculate the room value
While room value greater than 0
Select a random position in the array that is false
Calculate the actual position based on the array, instantiate the enemy
Set the position to true
Subtract the room value based on enemy type

END

Figure 19. Pseudocode for Spawning Enemies

Result

The procedural dungeon generator was implemented in Unity, with all key parameters exposed in the

Inspector interface to make the system flexible and transparent for use in different projects. As shown

in Figure 20, designers can directly adjust values such as dungeon dimensions, minimum room size,

maximum BSP iterations, corner modifiers, room offset, and corridor width.

In addition, the interface provides slots for assigning materials, wall and door prefabs, and

optional features such as shrines, torches, decorations, and enemies. This arrangement not only

facilitates experimentation but also makes the system suitable for teaching purposes, as students can

adjust parameters and immediately observe their effects (Figure 21).

In practice, the most influential parameters for shaping dungeon layouts were found to be the

corner modifiers and offset values. While parameters such as dungeon size, corridor width, and prefab

301

selection have predictable outcomes, corner and offset values introduce meaningful variation to the

spatial structure. To illustrate this, several demonstrations were carried out using different parameter

sets. These are not controlled experiments, but practice-oriented examples intended to show how the

generator behaves under different conditions.

Figure 20. Unity Inspector Interface for Dungeon Generator

Figure 21. Flow of Testing

Table 1. Test data for generator

Parameter Name Data

Bottom Corner Modifier 0.2

Top Corner Modifier 0.8

Offset 2

Corridor Width 4

In the first demonstration, values were set at 0.2 for the bottom corner modifier, 0.8 for the top

corner modifier, an offset of 2, and a corridor width of 4 (Table 1). With these inputs, the generator

produced a dungeon containing 12 rooms in addition to the spawn room, distributed across the layout

302

with moderate spacing. Figure 22 illustrates this configuration. The outcome shows a balanced layout

where rooms have clear separation yet remain easily connected by corridors.

Figure 22. Result of First Test

A second demonstration used more extreme corner modifier values, set to 0.1 and 0.9,

combined with a smaller offset value of 1 (Table 2). This resulted in a compact dungeon where rooms

were tightly grouped, leaving minimal gaps between them (Figure 23).

Table 2. Test data for generator: More extreme corner modifiers, smaller offset

Parameter Name Data

Bottom Corner Modifier 0.1

Top Corner Modifier 0.9

Offset 1

Corridor Width 4

From a design perspective, this produces a denser navigational experience, with players moving

quickly between adjacent rooms. Such a layout may be useful for fast-paced gameplay or scenarios

where frequent encounters are intended.

In a third case, the corner modifiers were adjusted to 0.3 and 0.7, with a larger offset value of

3 (Table 3). This produced a more open dungeon in which some rooms appeared smaller and separated

by wider gaps (Figure 24).

Figure 23. Result: More Extreme Corner Modifiers, Smaller Offset

303

To further understand how those parameters affect the generation, another extreme of data is

prepared, refer to Table 3:

Table 3. Test Data for Generator: Less Extreme Corner Modifiers, Larger Offset

Parameter Name Data

Bottom Corner Modifier 0.3

Top Corner Modifier 0.7

Offset 3

Corridor Width 4

Figure 24. Result: Less Extreme Corner Modifiers, Larger Offset

This variation demonstrates how offset values directly affect spacing: increasing the offset

enlarges the buffer between rooms, thereby reducing density and giving corridors more prominence.

From a practical standpoint, this configuration could support exploration-focused gameplay, where

travel between rooms contributes to pacing and atmosphere.

These three demonstrations highlight how small adjustments to a handful of parameters can

lead to noticeably different dungeon layouts. For developers, this provides a simple but powerful

mechanism to tailor level structure without rewriting code. For educators, it offers a way to show

students how algorithmic parameters function as design levers, linking computational rules to visual

and spatial outcomes.

Beyond these parameter-focused examples, the generator was also tested in different gameplay

scenarios to illustrate its adaptability. By limiting BSP iterations, the generator can create very small

layouts suitable for tutorial levels. For instance, constraining the system to only two rooms with a fixed

random seed produces a repeatable configuration where explanatory text or scripted events can be

placed in known positions (Figures 25–27). This demonstrates that procedural generation can support

not only replayable dungeons but also controlled learning environments.

304

Figure 25. The Spawn Room in the Tutorial Level

Figure 26. A Regular Room in the Tutorial Level

Figure 27. The Boss Room in the Tutorial Level

In a regular gameplay scene, the generator produced a standard dungeon crawl, beginning from

the spawn room and progressing through a sequence of connected rooms. Corridors generated with the

DFS-based method ensured that no rooms were isolated, and BFS logic successfully identified the boss

room at the farthest point from the starting location. Figures 28 and 29 show typical examples of this

progression. From a practice standpoint, the outcome demonstrates how the generator can be

incorporated into conventional game loops without requiring additional manual level design.

305

Figure 28. The Spawn Room in Regular Gameplay

Figure 29. A Regular Room in Regular Gameplay

It is important to note that these results are presented as demonstrations of capability rather than

formal evaluations. The intention is not to measure performance or novelty against other algorithms but

to show how the system can be configured, adapted, and applied in practice. For developers, this means

the generator can serve as a flexible prototyping tool, accelerating early-stage design work. For

educators, it can function as a teaching resource that illustrates how algorithmic design decisions

translate into playable spaces.

Overall, the generator demonstrates three key points of value. First, the exposed parameters

make it easy to adjust dungeon density, spacing, and structure, allowing different gameplay experiences

to be created from the same core algorithm. Second, the separation of generation logic from gameplay

logic ensures that the tool can be integrated into a variety of projects without enforcing specific

mechanics. Finally, the visual clarity of the results, supported by Unity’s real-time interface, makes the

generator especially suitable for instructional use in courses on game development, algorithms, or

procedural design.

Conclusions

This paper has presented a practice-oriented case study of a procedural dungeon generator implemented

in Unity, using the Binary Space Partitioning (BSP) algorithm in combination with supporting search

306

methods. By extending BSP with a depth-first search approach for corridor creation, the generator

ensures reliable room connectivity and avoids isolated spaces. Additional features, such as decoration

placement, torch lighting, and enemy spawning, illustrate how the generator can be expanded to support

richer and more engaging dungeon environments. Importantly, the system separates generation logic

from gameplay logic, relying on prefabs rather than embedded scripts, which makes it adaptable to

different projects and development contexts. From a practical perspective, the generator demonstrates

how algorithmic design can be exposed through adjustable parameters, giving developers the ability to

tailor dungeon density, room spacing, and structural variety without altering the underlying code. This

same flexibility makes the tool suitable for educational use: instructors can demonstrate how small

parameter changes produce significant differences in layout, while students can experiment with

algorithm-driven design in a visual, interactive environment. There are some caveats to consider in

applying the generator. For example, the use of pivot points in walls and doors can occasionally produce

alignment issues, and large-scale prefabs may overlap if not properly calibrated. These are not

limitations of the concept but practical details that can be addressed by refining prefabs or adjusting

loop logic.

Practical Considerations and Refinements

While the current generator already provides a flexible and reproducible workflow, there remain

opportunities for further enhancement. Possible refinements include supporting irregular room shapes,

improving prefab alignment to reduce overlap, and integrating additional procedural techniques such as

cellular automata or noise functions. These extensions would broaden the system’s applicability,

offering developers and educators even more options when adapting procedural generation to their

projects. Overall, the generator offers a clear, accessible foundation for procedural dungeon creation. It

contributes as both a prototyping tool for developers and a teaching resource for classrooms, showing

how procedural content generation can be meaningfully applied in practice.

References

[1] Baldwin. et al. (2017). Mixed-initiative procedural generation of dungeons using game design

patterns. 2017 IEEE Conference on Computational Intelligence and Games (CIG), 25-32.

https://doi.org/10.1109/CIG.2017.8080411

[2] Baron, J. R. (2017). Procedural Dungeon Generation Analysis and Adaptation. ACMSE '17:

Proceedings of the 2017 ACM Southeast Conference, 168–171.

https://doi.org/10.1145/3077286.3077566

[3] Elkari. et al. (2024). Exploring Maze Navigation: A comparative study of DFS, BFS, and A*

search algorithms. Statistics Optimization & Information Computing, 12(3), 761–781.

https://doi.org/10.19139/soic-2310-5070-1939

307

[4] Galaxykate. (2016, February 22). So you want to build a generator. Tumblr.

https://www.tumblr.com/galaxykate0/139774965871/so-you-want-to-build-a-generator

[5] Jain, R. (2023). A comparative study of breadth first search and depth first search algorithms in

solving the water jug problem on Google Colab. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.4402567

[6] Oyhenard Vazquez, M., & Lincke, O. (2023). How the level design of the game Lost in Random

uses staging, shape language, and scale to signify combat areas.

https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-504904

[7] P. A. Putra. et al. (2023, October 4). Procedural 2D dungeon generation using binary space

partition algorithm and L-Systems. IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/document/10285811

[8] Shaker, N. et al. (2016). Procedural content generation in games. https://doi.org/10.1007/978-3-

319-42716-4

[9] Silva. Et al. (2023). Dungeon level generation using generative adversarial network: an

experimental study for top-down view games. Seminário Integrado De Software E Hardware, 95–

106. https://doi.org/10.5753/semish.2023.229905

[10] X.J.L. Clairbois. (2006, August 31). Optimal Binary Space Partitions Eindhoven University of

Technology https://research.tue.nl/en/studentTheses/optimal-binary-space-partitions

Acknowledgment

The authors express gratitude to Dr. Tan Bee Sian for providing help and guidance in writing this article.

The authors also want to thank Tunku Abdul Rahman University of Management and Technology

(TARUMT) for the facilities provided to complete the project.

Funding Information

The author received no funding from any party for the research and publication of this article.

Authors’ Bio

Jing Ming Yap is a graduate student of Tunku Abdul Rahman University of Management and

Technology (TARUMT), pursuing a Bachelor of Computer Science (Honours) in Interactive Software

Technology. His research interests focus on game design, algorithmic generation, and interactive

system development. He has worked on Unity-based implementation of generative systems, aiming to

make algorithmic design more accessible for game developers and educators.

308

Nian Chein Woo is a graduate student of Tunku Abdul Rahman University of Management and

Technology (TARUMT), currently undertaking a Bachelor of Computer Science (Honours) in

Interactive Software Technology. His academic interests include procedural content generation, game

development, and software prototyping. He has contributed to the development of Unity-based dungeon

generators that demonstrate how parameter-driven approaches can influence gameplay structure and

pacing.

Dr. Tan Bee Sian is an Assistant Professor at Tunku Abdul Rahman University of Management and

Technology, where she teaches game-based learning and game technology. She is a Unity Certified VR

Developer and Unity Certified Programmer, with expertise in immersive technologies, game design,

serious games, and game artificial intelligence (AI). Her work focuses on virtual and augmented reality

for education and training, game algorithms and technologies, software development. She actively

publishes in related fields and promotes interdisciplinary approaches in game-based and technology-

enhanced learning

Ir. Ts. Dr. Chong Kim Soonis an Assistant Professor, Head of Department from the Faculty of

Engineering, Technology and Built Environment, University College Sedaya International (UCSI).He

has a Bachelor's degree in Electrical and Electronic Engineering, a Master degree of Science majoring

in Electrical, Electronic and System Engineering and a PhD in Electrical, Electronic and System

Engineering from Universiti Kebangsaan Malaysia. He leads numerous industry grants and serves as a

principal investigator for industry consultation projects. His research area focuses on IoT, electronic

engineering, games for health and biomedical devices. He is also a registered Professional Engineer

from the Board of Engineers Malaysia (BEM), Professional Technologist from the Malaysia Board of

Technologists (MBOT) and Certified HRDF Trainer.

