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Susceptibility Inference and Response on Transmission 

Dynamics of Ebola Virus in Fuzzy Environment

Saravanan Subraja, Murugappan Mullai*, Grienggrai Rajchakit, Govindan Vetrivel and R. Surya

Abstract – This article uses fuzzy parameters to 
develop a susceptibility inference and response (SIR) 
model for the Ebola virus. The construction of the SIR 
model involves considering several aspects, including 
immunization, therapy, compliance with medical 
protocols, and Ebola virus load. The parameters 
representing the infection, mortality, and recovery rates 
caused by the Ebola virus are expressed as fuzzy 
numbers. These parameters are then employed as fuzzy 
parameters in the model. The study of the model uses 
the generation matrix approach to get the fundamental 
reproduction number and assess the stability of the 
equilibrium point inside the model. The findings from 
the simulation indicate that the variation in the Ebola 
virus load is associated with disparities in the 
transmission patterns of the Ebola virus. Also, we 
compare the impact of the variables of vaccination and 
following the medical guidelines in reducing the spread 
of the Ebola virus. Using Matlab software, the numerical 
simulation for this model is carried out, and the analysis 
of Ebola virus transmission is investigated in the fuzzy 
environment.  

Keywords— Ebola Virus, Fuzzy Parameter, Immunization, 

Basic Reproduction Number, Death Rate. 

I. INTRODUCTION 

The Ebola virus dwells in bats. It infects humans by 
directly handling or eating bats. The Ebola virus can 
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infect people by touching contaminated objects or 
body f luids of infected bats or non-human primates. It 
is hazardous to humans because it may cause a 

variety of  illnesses and sometimes lead to death.  The 
deaths caused by Ebola are nearly 50%. Compared 
with past outbreaks, the death rate caused by the 

Ebola virus has varied f rom 25% to 90% according to 
the WHO report, 2023. This virus is spread f rom wild 
animals that are already sick to humans. Due to the 

contact of  people who are very close to each other,  it 
spreads f rom one person to another. Supportive care 
for rehydration and treatment in the early stages helps 

to improve the survival of  infected people. 
Five species of  Ebola virus have been found. This 

disease was f irst identif ied in South Sudan and Congo 

in 1976. Following that, there were 25 instances of  
Ebola virus epidemics, primarily concentrated in 
Central Africa. Af ter that, many people in West Africa 

were af fected by this disease f rom 2014 to 2016,  
which can be viewed f rom the systematic work on the 
Ebola virus disease [1]. This disease's 

epidemiological diagnosis and clinical manifestation 
can be learned clearly f rom [2]. The initial indications 
of  Ebola sickness are fever, fatigue, myalgia, 

cephalalgia, and throat infections. In addition, 
symptoms such as vomiting, rashes, diarrhoea, 
impaired kidney and liver function, and f requent 
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internal and external bleeding may occur. We cannot 
say the symptoms of  Ebola disease specif ically, and 

medical diagnosis may be a dif f icult one. The 
incubation period of  this disease is 2 to 21 days. Let's 
analyze the history of  patients af fected by Ebola 

disease. The disease spreads f rom contact with dead 
or sick animals and with a suspected or conf irmed 
Ebola disease patient. The list of  the local ef fects 

caused by Ebola and its impact on lower child 
vaccinations is studied [3]. WHO publishes the 
guidelines and recommendations for the Ebola virus 

disease and its spread. An overview of  the Ebola virus 
disease and its treatment measures [4] can be 
observed. Many researchers developed models and 

analyzed the results of  the spread of  the Ebola virus. 
An activity to resist Ebola with three standard 
disinfectants [5] is experimented with. An analytical 

verif ication with a model on the replication and vertical 
transmission of  Ebola f rom Angolan bats [6] is done. 
When someone is identif ied with the Ebola disease, 

the proper treatment should be given. Intensive care 
support, oxygenation, antibiotic drugs, and 
Psychosocial support are critical. Also, renal function, 

level of  electrolyte balance, blood pressure, and 
rehydration should be checked of ten. WHO suggested 
various preventive measures to reduce the spread of  

the Ebola virus. Some of  them are as follows: 
1. Reduce contact with infected f ruit bats, 

monkeys, or apes. 2. Gloves and appropriate clothing 

should be used when handling the animals. 3. Cook 
the animal products before consumption. 4. Reduce 
the contact of  people with Ebola symptoms and 

handle those people with safety measures. 5. The 
burial of  the people dead f rom Ebola disease should 
be organized carefully.6. Safe sexual intercourse.7. 

Take extra care of  the people af fected by the Ebola 
disease. The SIR model is one of  the best models for 
analyzing the spread of  viral diseases. This model 

includes the f ixed population of  N individuals into three 
compartments, which may vary as a function of  S(t), 
I(t), and R(t) due to time where S(t), I(t), and R(t) 

represent the susceptible, infected and recovered 
f rom the disease. The epidemic will end if  the infection 
rate is lower than the recovery. The epidemic will 

spread if  the recovery rate is lower than the infection 
rate. A design that illustrates the deterministic 
epidemic model [7] for Ebola virus infection using 

time-dependent controls is portrayed. W. Chen 
modeled the Ebola virus based on SIR [8]. The 
Kenmack-Mckendrick is used for the number of  

people in a closed community who get a contagious 
illness over time. Precise numerical values are used 
as the parameters in current SIR epidemic models, 

whereas parameter uncertainty and population 
variability are very probable. Utilizing fuzzy 
parameters is crucial for enhancing the realism of  the 

model. The paper [9] presents a SIR model for the 
propagation of  COVID-19 that incorporates fuzzy 
parameters. The fuzzy parametrical approach [10] is 

featured to analyze the transmission dynamical 
behavior of  an epidemic model. The basic 
reproduction number [11] is used to analyze the 

infection by considering the expected number of  cases 

in a population. Some related math models [12], [13] 
can be viewed to construct this current model. From 

the model, we construct a SIR mathematical for the 
Ebola virus using the fuzzy parameters. We construct 
the susceptible, infected, and death rate parameters  

using a SIR model. Depending on the Ebola virus 
load, the death rate, infected rate, and recovery rate 
due to the Ebola virus are considered in membership 

functions. Using the next generation matrix, f ind the 
basic reproduction number and then analyze the 
stability analysis of  the SIR model for the Ebola virus 

by disease-f ree equilibrium  ℜ0(𝜁) < 1 and the 

endemic equilibrium ℜ0
(𝜁) >  1.This replication 

makes assumptions about the parameters of  
immunization, therapy, adherence to medical 

guidelines, and Ebola virus load. 

II.  SIR MODEL FOR EBOLA VIRUS 

 

Examine a SIR model for the Ebola virus () () 

and ()  that explains the dynamics of  direct 

transmission, including an interaction between 
suspected and infected individuals, the transition f rom 
infection to recovery, rates of  pure births or deaths, the 

ef f iciency of  vaccinations and treatments, adherence 
to treatment regimens and fatalities as a result of  
Ebola infection.  

 

 
 

FIGURE 1.  The schematic representation of the transmission 

pathway of the Ebola virus for model SIR. 
. 

 
𝑑𝑆𝑝

𝑑𝑡
= 𝜃 − 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝       () 

 
𝑑𝐼𝑝

𝑑𝑡
= 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝜃𝑐 + 𝜓 + 𝛼)𝐼𝑝     () 

 
𝑑𝑅𝑝

𝑑𝑡
= (𝜓 + 𝛼)𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝                               () 

 

Here, the rate of  a susceptible individual in a total 

population is represented as 𝑆𝑝. In contrast, 𝐼𝑝 is the 

rate of  Infected individuals in a total population, and 
the rate of  Recovered individuals in a total population 

is represented as 𝑅𝑝 . 𝜔 is the parameter that 

represents the Infection rate, and 𝛼 is the parameter 
that represents the Recovery rate. The Natural birth or 

death rate is represented as 𝜃. The parameters  
representing immunization, treatment ef fectiveness, 

and adherence to medical guidelines are 𝛿, 𝜓 and 𝜆 
respectively. The death rate due to the Ebola virus is 

represented in the parameter 𝜃𝑐 . 
The SIR Model can now be expanded to consider 

the heterogeneity of  the Ebola virus load in each 
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individual, where people with varying levels of  the 
virus load contribute in dif ferent ways to the spread of  

the Ebola virus.  

III.  FUZZY SIR MODEL ON EBOLA VIRUS SPREAD  

By considering the SIR model for the ebola virus in 

equations () through (), let 𝜁 represent a person’s 
Ebola virus load. We now consider the heterogeneity 

in the model by evaluating each person’s ability to 
infect as a function of  their Ebola virus load. As a 
result, the potential of  the ebola virus spreading during 

a contact encounter rises with the Ebola viral load of  
an individual. 

The parameters 𝜔, 𝜃𝑐 and 𝛼 can be understood as 
functions of  the Ebola virus load by considering the 
Ebola virus load in each individual. This model, which 

we will refer to as the fuzzy SIR model () () and () 
f rom here on, can be expanded to represented below: 

 
𝑑𝑆𝑝

𝑑𝑡
= 𝜃 − 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝  () 

 
𝑑𝐼𝑝

𝑑𝑡
= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝜃𝑐 (𝜁) + 𝜓 +

𝛼(𝜁))𝐼𝑝                                                                                     () 

 
𝑑𝑅𝑝

𝑑𝑡
= (𝜓 + 𝛼(𝜁))𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝                   () 

 

Let 𝜔 = 𝜔(𝜁) denote the probability of  transfer of  
the Ebola virus load between a suspected and 

infected person. When 𝜔 is set to a value that is more 
reasonable than others, it becomes a membership 
function of  fuzzy numbers. The membership function 

is constructed under the assumption that a minimum 

Ebola virus load 𝜁𝑚𝑖𝑛   is required to be transmitted to 
other individuals, and the possibility of transmission is 
minimal if  an individual has a relatively low number of  
Ebola viruses. Furthermore, the maximal transmission 

rate of  the Ebola virus equals one at a specif ic Ebola 

virus load𝜁0 . It is assumed, however, that a person’s 
total Ebola virus load 𝜁 is constrained by 𝜁𝑚𝑎𝑥 . We also 
take into account that immunization and compliance 

with medical protocols will have an impact on the 

Ebola virus’s transmission rate. Let 𝛿 and 𝜆 be the 
metrics that respectively indicate immunization and 
compliance with medical protocols. The rate of  

infectious contact () in the fuzzy membership function 

can be found here. 
 

𝜔(𝜁) = {

0,  𝑖𝑓   𝜁 ≤ 𝜁𝑚𝑖𝑛
(𝜁−𝜁𝑚𝑖𝑛)(1−𝛿)(1−𝜆)

𝜁0−𝜁𝑚𝑖𝑛
,  𝑖𝑓   𝜁𝑚𝑖𝑛 < 𝜁 < 𝜁0

(1 − 𝛿)(1 − 𝜆),  𝑖𝑓   𝜁0 < 𝜁 < 𝜁𝑚𝑎𝑥

 () 

The graphical representation of  the virus load of  

the infected parameter 𝜔(𝜁) is given in Fig. 2. Another 
possibility is to consider the death rate f rom Ebola 

virus infection as a fuzzy membership function. The 
function involves the Ebola virus load rising over time. 
Hence, we take this function as an increasing function. 

However, the function might not reach its maximal 
value of  one due to several factors, including the 
availability of  medication, the Ebola-infected person’s 

illness, immunity, etc. Similarly, the rate of  death f rom 

Ebola virus infection will change in response to 
treatment. Hence, it is postulated that the function θc 

(ζ) has a maximum value of  (1 − 𝜂)(1 − 𝜓) +𝜃0
𝑐 , with 

(0 ≤ 𝜂 ≤ 1) and (0 ≤ 𝜓 ≤ 1), respectively. Thus, the 

following is how we def ine a function 𝜃𝑐 (𝜁) () [Fig.3 
shows the fuzzy membership function of  a death rate 

parameter]. 
 

𝜃𝑐 (𝜁) = 

 

{
((1 − 𝜂) − 𝜃0

𝑐 )(1 − 𝜓) 𝜁

𝜁0
+ 𝜃0

𝑐 , 𝑖𝑓   0 ≤ 𝜁 < 𝜁0   

(1 − 𝜂)(1 − 𝜓) + 𝜓𝜃0
𝑐 ,                𝑖𝑓   𝜁0 ≤ 𝜁

         () 

 

The graphical representation of  the virus-loaded 

recovery rate parameter 𝜃𝑐 (𝜁) is given in Fig. 4. Here, 
𝜓 is the ef f iciency of treatment, and 𝜃0

𝑐 (0 < 𝜃0
𝑐 < 1) is 

the lowest death rate f rom an Ebola infection. The 

Ebolavirus load 𝜁 also af fects the recovery rate of  the 

ebola virus infection group 𝛼 = 𝛼(𝜁).The duration of  
the recovery process is according to the Ebola virus 

load 𝜁. Then, the function 𝛼(𝜁) is a decreasing one. 
Furthermore, the pace of  recuperation is considered 
as a result of  the medicine. 

As a result, the fuzzy membership function has the 

following def inition and 𝛼0 is the lowest recovery rate. 
 

 
FIGURE  2.  Membership function of the rate of Infection. 

 

 
FIGURE  3.  Membership function of rate of death. 

 

 
 

FIGURE  4.  Membership fn. of rate of recovery. 
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Consequently, the def inition of  the fuzzy 

membership function of  a recovery rate () is as 
follows (Fig.4).  
 

𝛼(𝜁) = {
(𝛼0 − 1)(1 − 𝜓)

𝜁

𝜁0
+ 1,  𝑖𝑓   0 ≤ 𝜁 < 𝜁0

𝛼0(1 − 𝜓) + 𝜓,  𝑖𝑓   𝜁 ≥ 𝜁0 .
 () 

 

The infection rate 𝜔(𝜁), recovery rate 𝛼(𝜁) and the 

death rate 𝜃𝑐 (𝜁)  due to Ebola virus infection are taken 

as fuzzy parameters in this model. The equation () 

through () have the endemic equilibrium point and 
disease-f ree equilibrium point. All two equilibrium 

points must be found by ensuring that 
𝑑𝑆𝑝

𝑑𝑡
= 0,

𝑑𝐼𝑝

𝑑𝑡
=

0,
𝑑 𝑅𝑝

𝑑𝑡
= 0, the respective equations are equal to zero. 

From this, the equations () through () becomes () 

through (): 

 

𝜃 − 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝 = 0 () 

 

𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝 − (𝜃 + 𝜃𝑐 (𝜁) + 𝜓 + 𝛼(𝜁))𝐼𝑝 =

0 () 

 

(𝜓 + 𝛼(𝜁))𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝 = 0 () 

 

Now, we def ine an equilibrium point for the 

susceptible rate (𝑆𝑝 ), Infected rate (𝐼𝑝 ) and Recovery 

rate (𝑅𝑝 ). Here the graphical representations of  

membership functions of  infection, recovery, and 
death rates in Fig.2, Fig.3, and Fig.4 have been 

carried out by using Matlab sof tware for the random 

values of  parameters𝜁, 𝜁0, 𝜁𝑚𝑖𝑛  and 𝜁𝑚𝑎𝑥 . 

IV. MODEL COMPOSED OF FUZZY SIR WITH 

DISEASE-FREE EQUILIBRIUM 

The regions in which Ebola does not propagate are 
the state of  equilibrium for disease-f ree settings 

() () are (𝐼𝑝 ) = (𝐼𝑝
0)= 0. 

 

Thus, the equation () becomes, 

 

𝑆𝑝 = 𝑆𝑝
0 =

𝜃

𝜆+𝛿+𝜃
                                          () 

The equation () and equation () becomes,  
 

𝑅𝑝 = 𝑅𝑝
0 =

𝜆+𝛿

𝜆+𝛿+𝜃
                                         () 

 

Thus, equations () () and () according to the 

disease-f ree equilibrium points become as () 

 

𝐷0 = (𝑆𝑝
0 , 𝐼𝑝

0,𝑅𝑝
0) = (

𝜃

𝜆+𝛿+𝜃
, 0,

𝜆+𝛿

𝜆+𝛿+𝜃
)   () 

V. MODEL OF THE ENDEMIC EQUILIBRIUM 

USING FUZZY SIR 

When a disease may spread under specific 

conditions, the equilibrium points are commonly 
referred to as endemic equilibrium points. 

These locations are regarded as  𝑆𝑝 = 𝑆𝑝
∗ ≠ 0,𝐼𝑝 = 𝐼𝑝

∗ ≠

0,𝑅𝑝 = 𝑅𝑝
∗ ≠ 0. Therefore we can get the following 

endemic equilibrium points () () and () for the 

SIR fundamental model f rom equations () through 

() and obtain D' in the form () 

 

𝑆𝑝
∗ =

𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃

𝜔(𝜁)(1−𝜆)(1−𝛿)
                                                   () 

 

𝐼𝑝
∗ =

𝜃

𝜓+𝜃𝑐(𝜁 )+𝛼(𝜁)+𝜃
−

𝜆+𝛿+𝜃

𝜔(𝜁) (1−𝛿)(1−𝜆)
                      () 

 

𝑅𝑝
∗ =

(𝜓+𝛼(𝜁))𝐼𝑝
∗ +(𝜆+𝛿)𝑆𝑝

∗

𝜃
                                             () 

 

Thus, 

𝐷 ′ = (𝑆𝑝
∗ , 𝐼𝑝

∗ ,𝑅𝑝
∗ ) = (

𝜓+𝜃𝑐(𝜁) +𝛼(𝜁)+𝜃

𝜔(𝜁)(1−𝜆)(1−𝛿)
,

𝜃

𝜓+𝜃𝑐(𝜁)+𝛼 (𝜁)+𝜃
−

𝜆+𝛿+𝜃

𝜔(𝜁)(1−𝛿) (1−𝜆)
,

(𝜓+𝛼(𝜁) )𝐼𝑝
∗ +(𝜆+𝛿) 𝑆𝑝

∗

𝜃
)                           () 

 
The next-generation matrix approach is used to 

determine the fundamental reproductive number ℜ for 

equations () through () [11]. Using Equations (() 

through ()) as a guide, ascertain ℜ0. 

Let 𝑋 = 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝 𝐼𝑝, 𝑌 = (𝜃 + 𝜃𝑐 + 𝜓 +

𝛼)𝐼𝑝, then we obtain𝑋′  = 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝, 𝑌
′ = 𝜃 +

𝜃𝑐 + 𝜓 + 𝛼 and (𝑌 ′)−1 = 
1

𝜃+𝜃𝑐+𝜓+𝛼
. The dominant  

eigenvalue of  𝑋′ (𝑌 ′)−1 def ines ℜ0 = 𝜎(𝑋′ (𝑌 ′)−1) 

() which is stated as: 
 

ℜ0 =
𝜔𝜃 (1−𝛿)(1−𝜆)

(𝛿+𝜆+𝜃)(𝜓+𝜃𝑐+𝛼+𝜃)
                                                   () 

Thus, f rom this: 𝜔 = 𝜔(𝜁) ,𝜃𝑐  = 𝜃𝑐 (𝜁), 𝛼 = 𝛼(𝜁), 
then ℜ0

(𝜁) () is given as: 

 

ℜ0
(𝜁) =

𝜔(𝜁)𝜃(1−𝛿)(1−𝜆)

(𝛿+𝜆+𝜃)(𝜓+𝜃𝑐(𝜁) +𝛼(𝜁)+𝜃)
                                    () 

Here, ℜ0(𝜁) refers to the virus-loaded(𝜁) basic 

reproduction number and 𝜔(𝜁), 𝜃𝑐 (𝜁), 𝛼(𝜁) are 
def ined as virus-loaded(𝜁) fuzzy parameters.  

VI. STABILITY ANALYSIS 

 

Theorem 6.1  

If  ℜ0(ζ) < 1, be the basic reproduction number smaller 

than 1, then for equations () through () the disease-

f ree equilibrium point exhibits local asymptotic stability 

and it becomes unstable when the value of  ℜ0 (ζ) > 1.  
 

Proof . For the equation () through (), the Jacobian 

matrix 𝔍 () is provided as follows: 

 

𝔍 =  

 

(

−𝜔(𝜁)(1− 𝛿)(1− 𝜆)𝐼𝑝 − (𝛿 + 𝜆 + 𝜃) −𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 0

𝜔(𝜁)(1− 𝛿)(1− 𝜆)𝐼𝑝 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 − (𝜓 + 𝜃𝑐(𝜁) + 𝛼 (𝜁) + 𝜃) 0

0 0 −𝜃

)         () 

 

By substituting the value of  𝐼𝑝= 0, 𝑆𝑝= 
𝜃

𝛿+𝜆+𝜃
, we get 

the Jacobian matrix 𝔍0  () 

  

𝔍0 = 
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(
−(𝜆 + 𝛿 + 𝜃) −𝜔(𝜁)(1 − 𝛿 )(1 − 𝜆)

𝜃

𝛿+𝜆+𝜃
0

0 𝜔(𝜁)(1 − 𝛿 )(1 − 𝜆)𝑆𝑝 − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) 0

0 0 −𝜃

) () 

 

The calculation of  the eigenvalue for 𝔍0  is given by 

equation () 

 

Eigen (𝔍0 ) 
 

= ((𝜖 + 𝜆 + 𝛿 + 𝜃)(𝜖 + 𝜃)(𝜖 + 𝜓 + 𝜃𝑐 (𝜁) + 𝜆(𝜁) + 𝜃) − 
𝜔(𝜁)𝜃(1−𝛿)(1−𝜆)

𝛿 +𝜆+𝜃
),                                                      () 

 

We get the eigenvalues as () () and () 

 

𝜖1 = −(𝛿 + 𝜆 + 𝜃)                                                      () 

𝜖2 = −𝜃                                                                       () 

𝜖3

= (−
𝜔(𝜁)𝜃(1 − 𝛿)(1 − 𝜆)

(𝛿 + 𝜆 + 𝜃)
+ (𝜓 +  𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)) 

= −(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁)

+ 𝜃)(−
𝜔(𝜁)𝜃(1 − 𝛿)(1 − 𝜆)

(𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)
+ 1) 

 

= −(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃) − (−ℜ0(𝜁) + 1)         () 

 

From the theorem, we obtain the following:  
 

If  ℜ0(𝜁) <1, then 𝜖3 <0, and if  ℜ0(𝜁) >1, then 𝜖3 >0.  
 
Theorem 6.2  

When the basic reproduction number exceeds 1 i.e 
ℜ0(ζ) > 1, the endemic equilibrium point for equations 

() through () exhibits local asymptotic stability. 

Proof . The Jacobian matrix 𝔍1 () for the equations 

() to () and the endemic equilibrium point is given by  

 

𝔍1 = 
 

(

−𝜔(𝜁)(1− 𝛿)(1− 𝜆)𝐼𝑝
∗− (𝛿 + 𝜆 + 𝜃) −𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ 0

𝜔(𝜁)(1− 𝛿)(1− 𝜆)𝐼𝑝
∗ 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ − (𝜓 + 𝜃𝑐(𝜁) + 𝛼 (𝜁) + 𝜃) 0
0 0 −𝜃

)    () 

      

By our assumption 𝑗1= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ +

(𝛿 + 𝜆 + 𝜃), 𝑗2= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝
∗, 𝑗3= 𝜔(𝜁)(1 −

𝛿)(1 − 𝜆)𝐼𝑝
∗, 𝑗4= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ − (𝜓 + 𝜃𝑐 (𝜁) +
𝛼(𝜁) + 𝜃).  
 

Thus, () is reduced to () 
 

𝔍1 = (
−𝑗1 −𝑗2 0

𝑗3 𝑗4 0
0 0 −𝜃

)                                         () 

 

The roots of  𝐺1 (𝜖) () are the eigenvalues of  𝔍1:  

 

𝐺1 (𝜖) = (𝜖 + 𝜃)[(𝜖 + 𝑗1)(𝜖 − 𝑗4) + 𝑗2𝑗3] 

= (𝜖 + 𝜃)[𝜖2 + (𝑗1 − 𝑗4)𝜖 − 𝑗1𝑗4 + 𝑗2𝑗3 ] 
= (𝜖 + 𝜃)𝐺2 (𝜖)                                                           () 

 

From here, we observe that 𝜖1 = −𝜃 is one of  the 
eigenvalues 𝐺1 (𝜖). Through the solution of  𝐺2 (𝜖)=0 we 

get the other eigenvalues. By Routh-Hurwitz 

condition, if  equations () > 0 and () >0 then 𝐺2 (𝜖) 

with negative real part has two roots.  
 

𝑗1 − 𝑗4

= [𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ + (𝛿 + 𝜆 + 𝜃)] − [𝜔(𝜁)(1

− 𝛿)(1 − 𝜆)𝑆𝑝
∗ − (𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)] 

 

= [(ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃) + (𝛿 + 𝜆 + 𝜃)] 
−[𝜔(𝜁)(1 − 𝛿)(1 

−𝜆)(

𝜃 − (𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃) (
(ℜ0

(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)

𝜔(𝜁)(1 − 𝛿)(1 − 𝜆) )

(𝛿 + 𝜆 + 𝜃)
 

−(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)] 

  
 

= ℜ0(𝜁)(𝛿 + 𝜆 + 𝜃) + (1 − ℜ0(𝜁))(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) 

    +𝜃) + (𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)(ℜ0(𝜁) − 1) 

  

= ℜ0(𝜁)(𝛿 + 𝜆 + 𝜃)                                                () 

 
As of  the above discussion, when (ℜ0(𝜁) > 0) then 

𝑗1 − 𝑗4 >0.  
 

𝑗2𝑗3 − 𝑗1𝑗4

= [(𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝
∗ )(𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝

∗ )] 

−[𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ + (𝛿 + 𝜆 + 𝜃)(𝜔(𝜁)(1 − 𝛿)(1

− 𝜆)𝑆𝑝
∗ − (𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃))] 

 

= [(
𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝜃

(𝛿 + 𝜆 + 𝜃)
− (𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) 

    +𝜃)(ℜ0(𝜁) − 1))(ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)] 

  

= (ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃)   () 

     

From here, we observe that 𝑗2𝑗3 − 𝑗1𝑗4 >0 if  

ℜ0(𝜁) >1. Consequently, we note the equations () 

through (6) are at a bifurcation point when ℜ0(𝜁) =1, 
and when ℜ0(𝜁)>1, the disease-f ree equilibrium is 

stable. Let 𝜁∗ represents the system bifurcation value 

() then 𝜁∗ denotes the equation’s solution (),  
 

   𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝜃    
   = (𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐 (𝜁) + 𝛼(𝜁) + 𝜃),    () 

 

 

 

(i.e.) 𝜁∗ = 
 

𝜃((1 − 𝛿)(1 − 𝜆))2 𝜁0𝜁𝑚𝑖𝑛 + 𝜁0(𝜁0 − 𝜁𝑚𝑖𝑛 )(𝛿 + 𝜆 + 𝜃)(𝜃0
𝑐 + 1)

𝜃𝜁0((1 − 𝛿)(1 − 𝜆 ))2 − ((𝛿 + 𝜆 + 𝜃)(𝜁0 − 𝜁𝑚𝑖𝑛 ))((1 − 𝜅) − 𝜃0
𝑐)(1 − 𝜓) + (𝛼0 − 1)(1 − 𝜓)

 

 

where 𝜁∗ ≤ 𝜁0 .                                                        () 

This allows us to conceptualize 𝜁∗ as an Ebola 
virus control parameter in the sense that it should be 

noted that 𝜁 is not greater than 𝜁∗, if  the Ebola virus 
spreads to people of  a particular count.  

 

Corollary 6.3  

The equilibrium state without illness and the 
equilibrium state with disease included in equations 
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() through (6) exhibit local asymptotic stability for ζ <
ζ∗ and ζ > ζ∗ respectively.  

VII.  NUMERICAL SIMULATION FOR THE 

TRANSMISSION OF THE EBOLA VIRUS 

The infection, recovery, and death rate parameters  

i.e. 𝜔, 𝛼, 𝜃𝑐 are calculated f rom the equations () 

through (). The initial values for 𝑁𝑃 , 𝑆𝑃 , 𝐼𝑃 and 𝑅𝑃  
which are the key components needed for the 
numerical simulation, is given below: 
 

TABLE 1.  Initial SIR model estimate for the Ebola virus. 
Variable Value 

𝑁𝑝(0) 35,842 

𝑆𝑝(0) 30,564 

𝐼𝑝 (0) 6782 

𝑅𝑝(0) 5234 

 
TABLE 2. Values of the fuzzy parameters of the fuzzy SIR 

model for the Ebola virus. 

Variable Value 

𝜃0
𝑐  2.285 × 10−2  

𝛼0 7.667 × 10−2  

𝜃 6.25 

 

By our assumption the values of  each parameter 
and the basic reproduction number of  the fuzzy SIR 

model for the Ebola virus is given below: 
 

TABLE 3.  Parameter values of Fuzzy SIR for Ebola Virus. 
 

Replic-
ation 

𝜼 𝜻𝒎𝒊𝒏 𝜻𝟎 𝜻 𝝍 𝜹 𝝀 𝕽𝟎 

1 0.85 20 100 58 0 0 0 6.072× 10−1  

2 0.85 20 100 42 0 0 0 2.918× 10−1  

3 0.85 20 100 72 0 0 0 4.327× 10−1  

4 0.85 20 100 68 50% 0 0 3.549× 10−1  

5 0.85 20 100 83 60% 0 0 6.228× 10−1  

6 0.85 20 100 63 40% 0 0 6.222× 10−1  

7 0.85 20 100 42 0 4% 0 1.851× 10−2  

8 0.85 20 100 100 0 10% 0 3.851× 10−2  

9 0.85 20 100 100 0 12% 0 7.341× 10−1  

10 0.85 20 100 21 0 0 3% 2.713× 10−4  

11 0.85 20 100 94 0 0 10.5% 1.324× 10−1  

12 0.85 20 100 76 0 0 12% 6.0932× 10−2  

FIGURE  5.  The graphical representation of the suspected rate. 

 

 
FIGURE  6.  The graphical representation of the infected rate. 

 

 
FIGURE  7.  The graphical representation of the recovery rate. 

 

FIGURE  8.  The graphical representation of a SIR with time. 
 

                                   
Figure 5 shows the f luctuation in the estimated 

population proportion of a suspected rate for a certain 

value for 𝜁. Figure 6, shows the f luctuation in the 
estimated population proportion infected rate for a 

certain value for 𝜁. Figure. 7 shows the f luctuation in 
the estimated population proportion of a recovery rate 

for a certain value for 𝜁. Figure. 8 shows the combined 
f luctuation in the estimated population proportion of  an 

SIR for a certain value for 𝜁.  
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VIII.  CONCLUSION 

A mathematical model of  the transmission of  the 
Ebola virus has been developed with the help of  a SIR 
model. This investigation considered the 

characteristics of  immunization, therapy, compliance 
with the medical protocols, and the load of  the Ebola 

virus (𝜁). For the sake of  this study, the parameters 

𝜔, 𝛼, 𝜃 are considered fuzzy membership functions 
and denoted as fuzzy parameters. From this model, 
we observed that the system will be stable when the 

value of  ℜ0< 1, and it becomes unstable when the 

value of  ℜ0> 1. The simulation results indicate that 
immunization and adherence to health protocols have 
a signif icant inf luence on preventing or not halting the 
Ebola virus’s development. This is the conclusion that 

can be drawn f rom the examination f indings. 
Furthermore, treatment does impact slowing or halting 
the infection rate caused by the Ebola virus; however, 

this impact is not nearly as signif icant as the impact of  
immunization and adherence to health protocols.  

ACKNOWLEDGMENT 

The article has been written with the joint f inancial 
support of  RUSA-Phase 2.0 grant sanctioned vide 

letter No.F 24-51/2014-U, Policy (TN Multi-Gen),  
Dept. of  Edn. Govt. of  India, Dt.09.10.2018, UGC-SAP 
(DRS-I) vide letter No.F.510/8/DRS-I/2016(SAP-I) Dt. 
23.08.2016 and DST (FST - level I) 657876570 vide 

letter No.SR/FIST/MS-I/2018/17 Dt. 20.12.2018. 

AUTHOR CONTRIBUTIONS 

Saravanan Subraja: Conceptualization, Data 
Curation, Methodology, Validation, Writing – Original 
Draf t Preparation. 

Murugappan Mullai: Project Administration, 
Supervision, Writing – Review & Editing  

Grienggrai Rajchakit: Project Administration, 
Writing – Review & Editing  

Govindan Vetrivel: Project Administration, Writing 
– Review & Editing  

R. Surya: Project Administration, Writing – Review 
& Editing  

CONFLICT OF INTERESTS 

No conf lict of  interests were disclosed. 

ETHICS STATEMENTS 

Our publication ethics follow The Committee of  
Publication Ethics (COPE) guideline.  
https://publicationethics.org/ 

 
 

REFERENCES 

[1] S.T. Jacob, I. Crozoior, W.A. Fischer et. al, “Ebola virus 
disease,” Nature Reviews Disease Primers, vol. 6, no. 13, pp. 
1-31, 2020. 

DOI: https://doi.org/10.1038/s41572-020-0147-3  
[2] M.M. Rooney and M.K. Hinders, “Machine learning for 

medium access control protocol recognition in 

communications networks,” IEEE Access, vol. 9, pp. 110762–
110771, 2021. 

DOI: http://dx.doi.org/10.1109/ACCESS.2021.3102859 
[3] U. Das and D. Fielding, “Higher local Ebola incidence causes 

lower child vaccination rates,”Scientific Reports, vol. 14, no. 
1382, pp. 1-7, 2024. 

DOI: https://doi.org/10.1038/s41598-024-51633-3 
[4] K. Al-Tameemi and R. Kabakli, “Ebola virus: An overview 

disease and treatment,” Asian Journal Pharmaceutical and 
Clinical Research, vol. 12, no. 10, pp. 57-62, 2019. 

DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i10.35005 
[5] H.R. Jonsdottir, D. Zysset, N. Lenz et.al, “Virucidal activity of 

three standard chemical disinfectants against Ebola virus 
suspended in tripartite soil and whole blood,” Scientific 

Reports, vol. 13, pp. 1-8, 2023.  
DOI: https://doi.org/10.1038/s41598-023-42376-8  

[6] S.A. Riesle-Sbarbaro, G. Wibbelt, A. Dux et. al, “Selective 

replication and vertical transmission of Ebola virus in 
experimentally infected Angolan free-tailed bats,” Nature 
Communications, vol. 15, no. 925, pp. 1-15, 2024.  
DOI: https://doi.org/10.1038/s41467-024-45231-0 

[7] E. Okyere, J.D. Ankamah, A.K. Hunkpe and D. Mensah, 
“Deterministic epidemic models for Ebola infection with time-
dependent controls,” Discrete Dynamics in Nature and 
Society, vol. 2020, no. 1, pp. 1-12, 2020.  

DOI: https://doi.org/10.1155/2020/2823816 
[8] W. Chen , “A mathematical model of Ebola virus based on sir 

model,” 2015 International Conference on Industrial 
Informatics - Computing Technology, Intelligent Technology, 

Industrial Information Integration, pp. 213-216, 2015.  
DOI: https://doi.org/10.1109/ICIICII.2015.135 

 [9] M. Abdy, S. Side, S. Annas, W. Nur and W. Sanusi, “An SIR 

epidemic model for COVID-19 spread with fuzzy parameters: 
the case of Indonesia,” Advances in Difference Equations, vol. 
2021, no. 105, pp. 1-17, 2021.  
DOI: https://doi.org/10.1186/s13662-021-03263-6 

[10] R. Verma, S.P. Tiwari and R.K. Upadhyay, “Dynamical 
behaviors of fuzzy SIR epidemic model,” Advances in 
Intelligent Systems and Computing, vol. 643, Springer, Cham, 
pp. 482-492, 2018.  

DOI: http://dx.doi.org/10.1007/978-3-319-66827-7_45  
[11] P.V.D. Driessche and J. Watmough, “Further notes on the 

basic reproduction number,” Mathematical Epidemiology: 
Lecture Notes in Mathematics, vol. 1945, pp. 159–178, 2008.  

DOI: https://doi.org/10.1007/978-3-540-78911-6_6 
[12] M. Mullai, G. Madhan Kumar, G. Rajchakit and G. Vetrivel, 

“Mathematical modelling on the transmission dynamics of zika 
virus: transmission dynamics of zika virus,” International 

Journal on Robotics, Automation and Sciences, vol. 5, no. 2, 
pp. 79–84, 2023.  
DOI: https://doi.org/10.33093/ijoras.2023.5.2.9  

[13] M. Mullai, G. Madhan Kumar, G. Rajchakit and G. Vetrivel, 
“Transmission dynamics of smoking - a mathematical model: 
transmission dynamics of smoking,” International Journal on 
Robotics, Automation and Sciences, vol. 5, no. 2, pp. 89–93, 

2023.  
DOI: https://doi.org/10.33093/ijoras.2023.5.2.11 

 
  

https://publicationethics.org/
https://doi.org/10.1038/s41572-020-0147-3
http://dx.doi.org/10.1109/ACCESS.2021.3102859
https://doi.org/10.1038/s41598-024-51633-3
http://dx.doi.org/10.22159/ajpcr.2019.v12i10.35005
https://doi.org/10.1038/s41598-023-42376-8
https://doi.org/10.1038/s41467-024-45231-0
https://doi.org/10.1155/2020/2823816
https://ieeexplore.ieee.org/author/37085705593
https://doi.org/10.1109/ICIICII.2015.135
https://doi.org/10.1186/s13662-021-03263-6
http://dx.doi.org/10.1007/978-3-319-66827-7_45
https://doi.org/10.1007/978-3-540-78911-6_6
https://doi.org/10.33093/ijoras.2023.5.2.9
https://doi.org/10.33093/ijoras.2023.5.2.11

