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Susceptibility Inference and Response on Transmission 
Dynamics of Ebola Virus in Fuzzy Environment

Saravanan Subraja, Murugappan Mullai*, Grienggrai Rajchakit*, Govindan Vetrivel and R. Surya

Abstract – This article uses fuzzy parameters to 
develop a susceptibility inference and response (SIR) 
model for the Ebola virus. The construction of the SIR 
model involves considering several aspects, including 
immunization, therapy, compliance with medical 
protocols, and Ebola virus load. The parameters 
representing the infection, mortality, and recovery rates 
caused by the Ebola virus are expressed as fuzzy 
numbers. These parameters are then employed as fuzzy 
parameters in the model. The study of the model uses 
the generation matrix approach to get the fundamental 
reproduction number and assess the stability of the 
equilibrium point inside the model. The findings from 
the simulation indicate that the variation in the Ebola 
virus load is associated with disparities in the 
transmission patterns of the Ebola virus. Also, we 
compare the impact of the variables of vaccination and 
following the medical guidelines in reducing the spread 
of the Ebola virus. Using Matlab software, the numerical 
simulation for this model is carried out, and the analysis 
of Ebola virus transmission is investigated in the fuzzy 

environment.  

Keywords— Ebola Virus, Fuzzy Parameter, Immunization, 

Basic Reproduction Number, Death Rate. 

I. INTRODUCTION 

The Ebola virus dwells in bats. It infects humans by 
directly handling or eating bats. The Ebola virus can 
infect people by touching contaminated objects or 
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body fluids of infected bats or non-human primates. It 
is hazardous to humans because it may cause a 
variety of illnesses and sometimes lead to death.  The 
deaths caused by Ebola are nearly 50%. Compared 
with past outbreaks, the death rate caused by the 
Ebola virus has varied from 25% to 90% according to 
the WHO report, 2023. This virus is spread from wild 
animals that are already sick to humans. Due to the 
contact of people who are very close to each other, it 
spreads from one person to another. Supportive care 
for rehydration and treatment in the early stages helps 
to improve the survival of infected people. 

Five species of Ebola virus have been found. This 
disease was first identified in South Sudan and Congo 
in 1976. Following that, there were 25 instances of 
Ebola virus epidemics, primarily concentrated in 
Central Africa. After that, many people in West Africa 
were affected by this disease from 2014 to 2016, 
which can be viewed from the systematic work on the 
Ebola virus disease [1]. This disease's 
epidemiological diagnosis and clinical manifestation 
can be learned clearly from [2]. The initial indications 
of Ebola sickness are fever, fatigue, myalgia, 
cephalalgia, and throat infections. In addition, 
symptoms such as vomiting, rashes, diarrhoea, 
impaired kidney and liver function, and frequent 
internal and external bleeding may occur. We cannot 
say the symptoms of Ebola disease specifically, and 
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medical diagnosis may be a difficult one. The 
incubation period of this disease is 2 to 21 days. Let's 
analyze the history of patients affected by Ebola 
disease. The disease spreads from contact with dead 
or sick animals and with a suspected or confirmed 
Ebola disease patient. The list of the local effects 
caused by Ebola and its impact on lower child 
vaccinations is studied [3]. WHO publishes the 
guidelines and recommendations for the Ebola virus 
disease and its spread. An overview of the Ebola virus 
disease and its treatment measures [4] can be 
observed. Many researchers developed models and 
analyzed the results of the spread of the Ebola virus. 
An activity to resist Ebola with three standard 
disinfectants [5] is experimented with. An analytical 
verification with a model on the replication and vertical 
transmission of Ebola from Angolan bats [6] is done. 
When someone is identified with the Ebola disease, 
the proper treatment should be given. Intensive care 
support, oxygenation, antibiotic drugs, and 
Psychosocial support are critical. Also, renal function, 
level of electrolyte balance, blood pressure, and 
rehydration should be checked often. WHO suggested 
various preventive measures to reduce the spread of 
the Ebola virus. Some of them are as follows: 

1. Reduce contact with infected fruit bats, 
monkeys, or apes. 2. Gloves and appropriate clothing 
should be used when handling the animals. 3. Cook 
the animal products before consumption. 4. Reduce 
the contact of people with Ebola symptoms and 
handle those people with safety measures. 5. The 
burial of the people dead from Ebola disease should 
be organized carefully.6. Safe sexual intercourse.7. 
Take extra care of the people affected by the Ebola 
disease. The SIR model is one of the best models for 
analyzing the spread of viral diseases. This model 
includes the fixed population of N individuals into three 
compartments, which may vary as a function of S(t), 
I(t), and R(t) due to time where S(t), I(t), and R(t) 
represent the susceptible, infected and recovered 
from the disease. The epidemic will end if the infection 
rate is lower than the recovery. The epidemic will 
spread if the recovery rate is lower than the infection 
rate. A design that illustrates the deterministic 
epidemic model [7] for Ebola virus infection using 
time-dependent controls is portrayed. W. Chen 
modeled the Ebola virus based on SIR [8]. The 
Kenmack-Mckendrick is used for the number of 
people in a closed community who get a contagious 
illness over time. Precise numerical values are used 
as the parameters in current SIR epidemic models, 
whereas parameter uncertainty and population 
variability are very probable. Utilizing fuzzy 
parameters is crucial for enhancing the realism of the 
model. The paper [9] presents a SIR model for the 
propagation of COVID-19 that incorporates fuzzy 
parameters. The fuzzy parametrical approach [10] is 
featured to analyze the transmission dynamical 
behavior of an epidemic model. The basic 
reproduction number [11] is used to analyze the 
infection by considering the expected number of cases 
in a population. Some related math models [12], [13] 
can be viewed to construct this current model. From 

the model, we construct a SIR mathematical for the 
Ebola virus using the fuzzy parameters. We construct 
the susceptible, infected, and death rate parameters 
using a SIR model. Depending on the Ebola virus 
load, the death rate, infected rate, and recovery rate 
due to the Ebola virus are considered in membership 
functions. Using the next generation matrix, find the 
basic reproduction number and then analyze the 
stability analysis of the SIR model for the Ebola virus 
by disease-free equilibrium  ℜ0(𝜁) < 1 and the 

endemic equilibrium ℜ0(𝜁) >  1.This replication 
makes assumptions about the parameters of 
immunization, therapy, adherence to medical 
guidelines, and Ebola virus load. 

II. SIR MODEL FOR EBOLA VIRUS 

 

Examine a SIR model for the Ebola virus () () 

and ()  that explains the dynamics of direct 
transmission, including an interaction between 
suspected and infected individuals, the transition from 
infection to recovery, rates of pure births or deaths, the 
efficiency of vaccinations and treatments, adherence 
to treatment regimens and fatalities as a result of 
Ebola infection.  
 

 
 

FIGURE 1.  The schematic representation of the transmission 
pathway of the Ebola virus for model SIR. 

. 

 
𝑑𝑆𝑝

𝑑𝑡
= 𝜃 − 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝      () 

 
𝑑𝐼𝑝

𝑑𝑡
= 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝜃𝑐 + 𝜓 + 𝛼)𝐼𝑝    () 

 
𝑑𝑅𝑝

𝑑𝑡
= (𝜓 + 𝛼)𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝                              () 

 

Here, the rate of a susceptible individual in a total 
population is represented as 𝑆𝑝. In contrast, 𝐼𝑝 is the 

rate of Infected individuals in a total population, and 
the rate of Recovered individuals in a total population 
is represented as 𝑅𝑝. 𝜔 is the parameter that 

represents the Infection rate, and 𝛼 is the parameter 
that represents the Recovery rate. The Natural birth or 
death rate is represented as 𝜃. The parameters 
representing immunization, treatment effectiveness, 
and adherence to medical guidelines are 𝛿, 𝜓 and 𝜆 
respectively. The death rate due to the Ebola virus is 
represented in the parameter 𝜃𝑐. 

The SIR Model can now be expanded to consider 
the heterogeneity of the Ebola virus load in each 
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individual, where people with varying levels of the 
virus load contribute in different ways to the spread of 
the Ebola virus.  

III. FUZZY SIR MODEL ON EBOLA VIRUS SPREAD  

By considering the SIR model for the ebola virus in 

equations () through (), let 𝜁 represent a person’s 
Ebola virus load. We now consider the heterogeneity 
in the model by evaluating each person’s ability to 
infect as a function of their Ebola virus load. As a 
result, the potential of the ebola virus spreading during 
a contact encounter rises with the Ebola viral load of 
an individual. 

The parameters 𝜔, 𝜃𝑐and 𝛼 can be understood as 
functions of the Ebola virus load by considering the 
Ebola virus load in each individual. This model, which 

we will refer to as the fuzzy SIR model () () and () 
from here on, can be expanded to represented below: 

 
𝑑𝑆𝑝

𝑑𝑡
= 𝜃 − 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝 () 

 
𝑑𝐼𝑝

𝑑𝑡
= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝜃𝑐(𝜁) + 𝜓 +

𝛼(𝜁))𝐼𝑝                                                                                     () 

 
𝑑𝑅𝑝

𝑑𝑡
= (𝜓 + 𝛼(𝜁))𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝                   () 

 

Let 𝜔 = 𝜔(𝜁) denote the probability of transfer of 
the Ebola virus load between a suspected and 
infected person. When 𝜔 is set to a value that is more 
reasonable than others, it becomes a membership 
function of fuzzy numbers. The membership function 
is constructed under the assumption that a minimum 
Ebola virus load 𝜁𝑚𝑖𝑛  is required to be transmitted to 
other individuals, and the possibility of transmission is 
minimal if an individual has a relatively low number of 
Ebola viruses. Furthermore, the maximal transmission 
rate of the Ebola virus equals one at a specific Ebola 
virus load𝜁0. It is assumed, however, that a person’s 
total Ebola virus load 𝜁 is constrained by 𝜁𝑚𝑎𝑥. We also 
take into account that immunization and compliance 
with medical protocols will have an impact on the 
Ebola virus’s transmission rate. Let 𝛿 and 𝜆 be the 
metrics that respectively indicate immunization and 
compliance with medical protocols. The rate of 

infectious contact () in the fuzzy membership function 
can be found here. 

 

𝜔(𝜁) = {

0,  𝑖𝑓   𝜁 ≤ 𝜁𝑚𝑖𝑛
(𝜁−𝜁𝑚𝑖𝑛)(1−𝛿)(1−𝜆)

𝜁0−𝜁𝑚𝑖𝑛
,  𝑖𝑓   𝜁𝑚𝑖𝑛 < 𝜁 < 𝜁0

(1 − 𝛿)(1 − 𝜆),  𝑖𝑓   𝜁0 < 𝜁 < 𝜁𝑚𝑎𝑥

 () 

The graphical representation of the virus load of 
the infected parameter 𝜔(𝜁) is given in Fig. 2. Another 
possibility is to consider the death rate from Ebola 
virus infection as a fuzzy membership function. The 
function involves the Ebola virus load rising over time. 
Hence, we take this function as an increasing function. 
However, the function might not reach its maximal 
value of one due to several factors, including the 
availability of medication, the Ebola-infected person’s 
illness, immunity, etc. Similarly, the rate of death from 

Ebola virus infection will change in response to 
treatment. Hence, it is postulated that the function θc 
(ζ) has a maximum value of (1 − 𝜂)(1 − 𝜓) +𝜃0

𝑐, with 
(0 ≤ 𝜂 ≤ 1) and (0 ≤ 𝜓 ≤ 1), respectively. Thus, the 

following is how we define a function 𝜃𝑐(𝜁) () [Fig.3 
shows the fuzzy membership function of a death rate 
parameter]. 
 

𝜃𝑐(𝜁) = 

 

{
((1 − 𝜂) − 𝜃0

𝑐)(1 − 𝜓)
𝜁

𝜁0
+ 𝜃0

𝑐 , 𝑖𝑓   0 ≤ 𝜁 < 𝜁0  

(1 − 𝜂)(1 − 𝜓) + 𝜓𝜃0
𝑐,                𝑖𝑓   𝜁0 ≤ 𝜁

         () 

 

The graphical representation of the virus-loaded 
recovery rate parameter 𝜃𝑐(𝜁) is given in Fig. 4. Here, 

𝜓 is the efficiency of treatment, and 𝜃0
𝑐(0 < 𝜃0

𝑐 < 1) is 
the lowest death rate from an Ebola infection. The 
Ebolavirus load 𝜁 also affects the recovery rate of the 

ebola virus infection group 𝛼 = 𝛼(𝜁).The duration of 
the recovery process is according to the Ebola virus 
load 𝜁. Then, the function 𝛼(𝜁) is a decreasing one. 
Furthermore, the pace of recuperation is considered 
as a result of the medicine. 

As a result, the fuzzy membership function has the 
following definition and 𝛼0 is the lowest recovery rate. 
 

 
FIGURE  2.  Membership function of the rate of Infection. 

 

 
FIGURE  3.  Membership function of rate of death. 
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FIGURE  4.  Membership fn. of rate of recovery. 

 
Consequently, the definition of the fuzzy 

membership function of a recovery rate () is as 
follows (Fig.4).  
 

𝛼(𝜁) = {
(𝛼0 − 1)(1 − 𝜓)

𝜁

𝜁0
+ 1,  𝑖𝑓   0 ≤ 𝜁 < 𝜁0

𝛼0(1 − 𝜓) + 𝜓,  𝑖𝑓   𝜁 ≥ 𝜁0.
 () 

 
The infection rate 𝜔(𝜁), recovery rate 𝛼(𝜁) and the 

death rate 𝜃𝑐(𝜁)  due to Ebola virus infection are taken 

as fuzzy parameters in this model. The equation () 

through () have the endemic equilibrium point and 
disease-free equilibrium point. All two equilibrium 

points must be found by ensuring that 
𝑑𝑆𝑝

𝑑𝑡
= 0,

𝑑𝐼𝑝

𝑑𝑡
=

0,
𝑑𝑅𝑝

𝑑𝑡
= 0, the respective equations are equal to zero. 

From this, the equations () through () becomes () 

through (): 
 

𝜃 − 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝛿 + 𝜆)𝑆𝑝 = 0 () 

 

𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝 − (𝜃 + 𝜃𝑐(𝜁) + 𝜓 + 𝛼(𝜁))𝐼𝑝 =

0 () 

 

(𝜓 + 𝛼(𝜁))𝐼𝑝 + (𝜆 + 𝛿)𝑆𝑝 − 𝜃𝑅𝑝 = 0 () 

 

Now, we define an equilibrium point for the 
susceptible rate (𝑆𝑝), Infected rate (𝐼𝑝) and Recovery 

rate (𝑅𝑝). Here the graphical representations of 

membership functions of infection, recovery, and 
death rates in Fig.2, Fig.3, and Fig.4 have been 
carried out by using Matlab software for the random 
values of parameters𝜁, 𝜁0, 𝜁𝑚𝑖𝑛 and 𝜁𝑚𝑎𝑥 . 

IV. MODEL COMPOSED OF FUZZY SIR WITH 

DISEASE-FREE EQUILIBRIUM 

The regions in which Ebola does not propagate are 
the state of equilibrium for disease-free settings 

() () are (𝐼𝑝) = (𝐼𝑝
0)= 0. 

 

Thus, the equation () becomes, 
 

𝑆𝑝 = 𝑆𝑝
0 =

𝜃

𝜆+𝛿+𝜃
                                          () 

The equation () and equation () becomes,  
 

𝑅𝑝 = 𝑅𝑝
0 =

𝜆+𝛿

𝜆+𝛿+𝜃
                                         () 

 

Thus, equations () () and () according to the 

disease-free equilibrium points become as () 

 

𝐷0 = (𝑆𝑝
0, 𝐼𝑝

0, 𝑅𝑝
0) = (

𝜃

𝜆+𝛿+𝜃
, 0,

𝜆+𝛿

𝜆+𝛿+𝜃
)   () 

V. MODEL OF THE ENDEMIC EQUILIBRIUM 

USING FUZZY SIR 

When a disease may spread under specific 
conditions, the equilibrium points are commonly 
referred to as endemic equilibrium points. 
These locations are regarded as 𝑆𝑝 = 𝑆𝑝

∗ ≠ 0,𝐼𝑝 = 𝐼𝑝
∗ ≠

0,𝑅𝑝 = 𝑅𝑝
∗ ≠ 0. Therefore we can get the following 

endemic equilibrium points () () and () for the 

SIR fundamental model from equations () through 

() and obtain D' in the form () 

 

𝑆𝑝
∗ =

𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃

𝜔(𝜁)(1−𝜆)(1−𝛿)
                                                   () 

 

𝐼𝑝
∗ =

𝜃

𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃
−

𝜆+𝛿+𝜃

𝜔(𝜁)(1−𝛿)(1−𝜆)
                      () 

 

𝑅𝑝
∗ =

(𝜓+𝛼(𝜁))𝐼𝑝
∗ +(𝜆+𝛿)𝑆𝑝

∗

𝜃
                                             () 

 
Thus, 

𝐷′ = (𝑆𝑝
∗, 𝐼𝑝

∗, 𝑅𝑝
∗ ) = (

𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃

𝜔(𝜁)(1−𝜆)(1−𝛿)
,

𝜃

𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃
−

𝜆+𝛿+𝜃

𝜔(𝜁)(1−𝛿)(1−𝜆)
,

(𝜓+𝛼(𝜁))𝐼𝑝
∗ +(𝜆+𝛿)𝑆𝑝

∗

𝜃
)                           () 

 
The next-generation matrix approach is used to 

determine the fundamental reproductive number ℜ for 

equations () through () [11]. Using Equations (() 

through ()) as a guide, ascertain ℜ0. 
Let 𝑋 = 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝𝐼𝑝, 𝑌 = (𝜃 + 𝜃𝑐 + 𝜓 +

𝛼)𝐼𝑝, then we obtain𝑋′ = 𝜔(1 − 𝛿)(1 − 𝜆)𝑆𝑝, 𝑌′ = 𝜃 +

𝜃𝑐 + 𝜓 + 𝛼 and (𝑌′)−1 = 
1

𝜃+𝜃𝑐+𝜓+𝛼
. The dominant 

eigenvalue of 𝑋′(𝑌′)−1 defines ℜ0 = 𝜎(𝑋′(𝑌′)−1) 

() which is stated as: 
 

ℜ0 =
𝜔𝜃(1−𝛿)(1−𝜆)

(𝛿+𝜆+𝜃)(𝜓+𝜃𝑐+𝛼+𝜃)
                                                   () 

Thus, from this: 𝜔 = 𝜔(𝜁) ,𝜃𝑐 = 𝜃𝑐(𝜁), 𝛼 = 𝛼(𝜁), 

then ℜ0(𝜁) () is given as: 
 

ℜ0(𝜁) =
𝜔(𝜁)𝜃(1−𝛿)(1−𝜆)

(𝛿+𝜆+𝜃)(𝜓+𝜃𝑐(𝜁)+𝛼(𝜁)+𝜃)
                                    () 

Here, ℜ0(𝜁) refers to the virus-loaded(𝜁) basic 

reproduction number and 𝜔(𝜁), 𝜃𝑐(𝜁), 𝛼(𝜁) are 
defined as virus-loaded(𝜁) fuzzy parameters.  

VI. STABILITY ANALYSIS 

 

Theorem 6.1  
If ℜ0(ζ) < 1, be the basic reproduction number smaller 

than 1, then for equations () through () the disease-
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free equilibrium point exhibits local asymptotic stability 
and it becomes unstable when the value of ℜ0(ζ) > 1.  

 

Proof. For the equation () through (), the Jacobian 

matrix 𝔍 () is provided as follows: 
 
𝔍 =  

 

(

−𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝 − (𝛿 + 𝜆 + 𝜃) −𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 0

𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) 0

0 0 −𝜃

)         () 

 

By substituting the value of 𝐼𝑝= 0, 𝑆𝑝= 
𝜃

𝛿+𝜆+𝜃
, we get 

the Jacobian matrix 𝔍0 () 

  
𝔍0 = 

   

(
−(𝜆 + 𝛿 + 𝜃) −𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)

𝜃

𝛿+𝜆+𝜃
0

0 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝 − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) 0

0 0 −𝜃

) () 

 

The calculation of the eigenvalue for 𝔍0 is given by 

equation () 
 
Eigen (𝔍0) 
 
= ((𝜖 + 𝜆 + 𝛿 + 𝜃)(𝜖 + 𝜃)(𝜖 + 𝜓 + 𝜃𝑐(𝜁) + 𝜆(𝜁) + 𝜃) − 
𝜔(𝜁)𝜃(1−𝛿)(1−𝜆)

𝛿+𝜆+𝜃
),                                                      () 

 

We get the eigenvalues as () () and () 

 

𝜖1 = −(𝛿 + 𝜆 + 𝜃)                                                      () 

𝜖2 = −𝜃                                                                       () 

𝜖3

= (−
𝜔(𝜁)𝜃(1 − 𝛿)(1 − 𝜆)

(𝛿 + 𝜆 + 𝜃)
+ (𝜓 +  𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)) 

= −(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁)

+ 𝜃)(−
𝜔(𝜁)𝜃(1 − 𝛿)(1 − 𝜆)

(𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)
+ 1) 

 

= −(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) − (−ℜ0(𝜁) + 1)         () 

 
From the theorem, we obtain the following: 
 
If ℜ0(𝜁) <1, then 𝜖3 <0, and if ℜ0(𝜁) >1, then 𝜖3 >0.  
 
Theorem 6.2  
When the basic reproduction number exceeds 1 i.e 
ℜ0(ζ) > 1, the endemic equilibrium point for equations 

() through () exhibits local asymptotic stability. 

Proof. The Jacobian matrix 𝔍1 () for the equations 

() to () and the endemic equilibrium point is given by  
 

𝔍1 = 
 

(

−𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ − (𝛿 + 𝜆 + 𝜃) −𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ 0

𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) 0

0 0 −𝜃

)    () 

      
By our assumption 𝑗1= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝

∗ +

(𝛿 + 𝜆 + 𝜃), 𝑗2= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝
∗, 𝑗3= 𝜔(𝜁)(1 −

𝛿)(1 − 𝜆)𝐼𝑝
∗, 𝑗4= 𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝

∗ − (𝜓 + 𝜃𝑐(𝜁) +

𝛼(𝜁) + 𝜃).  

 

Thus, () is reduced to () 
 

𝔍1 = (
−𝑗1 −𝑗2 0
𝑗3 𝑗4 0
0 0 −𝜃

)                                         () 

 

The roots of 𝐺1(𝜖) () are the eigenvalues of 𝔍1:  
 
𝐺1(𝜖) = (𝜖 + 𝜃)[(𝜖 + 𝑗1)(𝜖 − 𝑗4) + 𝑗2𝑗3] 
= (𝜖 + 𝜃)[𝜖2 + (𝑗1 − 𝑗4)𝜖 − 𝑗1𝑗4 + 𝑗2𝑗3] 

= (𝜖 + 𝜃)𝐺2(𝜖)                                                           () 
 

From here, we observe that 𝜖1 = −𝜃 is one of the 

eigenvalues 𝐺1(𝜖). Through the solution of 𝐺2(𝜖)=0 we 
get the other eigenvalues. By Routh-Hurwitz 

condition, if equations () > 0 and () >0 then 𝐺2(𝜖) 
with negative real part has two roots.  
 

𝑗1 − 𝑗4

= [𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ + (𝛿 + 𝜆 + 𝜃)] − [𝜔(𝜁)(1

− 𝛿)(1 − 𝜆)𝑆𝑝
∗ − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)] 

 
= [(ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃) + (𝛿 + 𝜆 + 𝜃)] 
−[𝜔(𝜁)(1 − 𝛿)(1 

−𝜆)(
𝜃 − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃) (

(ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)
𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)

)

(𝛿 + 𝜆 + 𝜃)
 

−(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)] 
  
 

= ℜ0(𝜁)(𝛿 + 𝜆 + 𝜃) + (1 − ℜ0(𝜁))(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) 

    +𝜃) + (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)(ℜ0(𝜁) − 1) 

  

= ℜ0(𝜁)(𝛿 + 𝜆 + 𝜃)                                                () 
 

As of the above discussion, when (ℜ0(𝜁) > 0) then 
𝑗1 − 𝑗4 >0.  
 

𝑗2𝑗3 − 𝑗1𝑗4

= [(𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝑆𝑝
∗)(𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝

∗)] 

−[𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝐼𝑝
∗ + (𝛿 + 𝜆 + 𝜃)(𝜔(𝜁)(1 − 𝛿)(1

− 𝜆)𝑆𝑝
∗ − (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃))] 

 

= [(
𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝜃

(𝛿 + 𝜆 + 𝜃)
− (𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) 

    +𝜃)(ℜ0(𝜁) − 1))(ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)] 
  

= (ℜ0(𝜁) − 1)(𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃)   () 
     

From here, we observe that 𝑗2𝑗3 − 𝑗1𝑗4 >0 if 

ℜ0(𝜁) >1. Consequently, we note the equations () 
through (6) are at a bifurcation point when ℜ0(𝜁) =1, 

and when ℜ0(𝜁)>1, the disease-free equilibrium is 
stable. Let 𝜁∗ represents the system bifurcation value 

() then 𝜁∗ denotes the equation’s solution (),  
 

   𝜔(𝜁)(1 − 𝛿)(1 − 𝜆)𝜃    
   = (𝛿 + 𝜆 + 𝜃)(𝜓 + 𝜃𝑐(𝜁) + 𝛼(𝜁) + 𝜃),    () 
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(i.e.) 𝜁∗ = 
 

𝜃((1 − 𝛿)(1 − 𝜆))2𝜁0𝜁𝑚𝑖𝑛 + 𝜁0(𝜁0 − 𝜁𝑚𝑖𝑛)(𝛿 + 𝜆 + 𝜃)(𝜃0
𝑐 + 1)

𝜃𝜁0((1 − 𝛿)(1 − 𝜆))2 − ((𝛿 + 𝜆 + 𝜃)(𝜁0 − 𝜁𝑚𝑖𝑛))((1 − 𝜅) − 𝜃0
𝑐)(1 − 𝜓) + (𝛼0 − 1)(1 − 𝜓)

 

 

where 𝜁∗ ≤ 𝜁0.                                                        () 

This allows us to conceptualize 𝜁∗ as an Ebola 
virus control parameter in the sense that it should be 
noted that 𝜁 is not greater than 𝜁∗, if the Ebola virus 
spreads to people of a particular count.  

 

Corollary 6.3  
The equilibrium state without illness and the 
equilibrium state with disease included in equations 

() through (6) exhibit local asymptotic stability for ζ <
ζ∗ and ζ > ζ∗ respectively.  

VII. NUMERICAL SIMULATION FOR THE 

TRANSMISSION OF THE EBOLA VIRUS 

The infection, recovery, and death rate parameters 

i.e. 𝜔, 𝛼, 𝜃𝑐 are calculated from the equations () 

through (). The initial values for 𝑁𝑃, 𝑆𝑃 , 𝐼𝑃 and 𝑅𝑃 
which are the key components needed for the 
numerical simulation, is given below: 
 

TABLE 1.  Initial SIR model estimate for the Ebola virus. 

Variable Value 

𝑁𝑝(0) 35,842 

𝑆𝑝(0) 30,564 

𝐼𝑝(0) 6782 

𝑅𝑝(0) 5234 

 
TABLE 2. Values of the fuzzy parameters of the fuzzy SIR 

model for the Ebola virus. 

Variable Value 

𝜃0
𝑐 2.285 × 10−2 

𝛼0 7.667 × 10−2 

𝜃 6.25 

 

By our assumption the values of each parameter 
and the basic reproduction number of the fuzzy SIR 
model for the Ebola virus is given below: 
 

TABLE 3.  Parameter values of Fuzzy SIR for Ebola Virus. 
 

Replic-
ation 

𝜼 𝜻𝒎𝒊𝒏 𝜻𝟎 𝜻 𝝍 𝜹 𝝀 𝕽𝟎 

1 0.85 20 100 58 0 0 0 6.072× 10−1 

2 0.85 20 100 42 0 0 0 2.918× 10−1 

3 0.85 20 100 72 0 0 0 4.327× 10−1 

4 0.85 20 100 68 50% 0 0 3.549× 10−1 

5 0.85 20 100 83 60% 0 0 6.228× 10−1 

6 0.85 20 100 63 40% 0 0 6.222× 10−1 

7 0.85 20 100 42 0 4% 0 1.851× 10−2 

8 0.85 20 100 100 0 10% 0 3.851× 10−2 

9 0.85 20 100 100 0 12% 0 7.341× 10−1 

10 0.85 20 100 21 0 0 3% 2.713× 10−4 

11 0.85 20 100 94 0 0 10.5% 1.324× 10−1 

12 0.85 20 100 76 0 0 12% 6.0932× 10−2 

FIGURE  5.  The graphical representation of the suspected rate. 

 

 
FIGURE  6.  The graphical representation of the infected rate. 

 

 
FIGURE  7.  The graphical representation of the recovery rate. 
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FIGURE  8.  The graphical representation of a SIR with time. 
 

                                   
Figure 5 shows the fluctuation in the estimated 

population proportion of a suspected rate for a certain 
value for 𝜁. Figure 6, shows the fluctuation in the 
estimated population proportion infected rate for a 
certain value for 𝜁. Figure. 7 shows the fluctuation in 
the estimated population proportion of a recovery rate 
for a certain value for 𝜁. Figure. 8 shows the combined 
fluctuation in the estimated population proportion of an 
SIR for a certain value for 𝜁.  

VIII. CONCLUSION 

A mathematical model of the transmission of the 
Ebola virus has been developed with the help of a SIR 
model. This investigation considered the 
characteristics of immunization, therapy, compliance 
with the medical protocols, and the load of the Ebola 
virus (𝜁). For the sake of this study, the parameters 

𝜔, 𝛼, 𝜃 are considered fuzzy membership functions 
and denoted as fuzzy parameters. From this model, 
we observed that the system will be stable when the 
value of ℜ0< 1, and it becomes unstable when the 

value of ℜ0> 1. The simulation results indicate that 
immunization and adherence to health protocols have 
a significant influence on preventing or not halting the 
Ebola virus’s development. This is the conclusion that 
can be drawn from the examination findings. 
Furthermore, treatment does impact slowing or halting 
the infection rate caused by the Ebola virus; however, 
this impact is not nearly as significant as the impact of 
immunization and adherence to health protocols.  
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