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Complement Properties of Pythagorean Co-Neutrosophic 
Graphs

Govindan Vetrivel, Murugappan Mullai*, Grienggrai Rajchakit*, R Surya and Saravanan Subraja

Abstract – The origination of graphs with 
neutrosophic type where membership of indeterminacy 
expels the vague results, by increasing the accuracy is 
used to extend application through the graphical 
environment. Since it is an extension of the 
intuitionistic type, there comes an immediate need to 
extend its findings and application to the neutrosophic 
type. Reversing the conditions of neutrosophic graphs 
by introducing the anti-behavior properties will produce 
an adequate number of new results and data, breaking 
the backlog in approaching decision-making problems 
and other real-world applications. This research aims to 
recognize the complementation concept in the 
Pythagorean co-neutrosophic graph, which has not 
been dealt with yet. The co-neutrosophic graph is the 
reversal concept of neutrosophic graphs, where the 
vertex and edge membership conditions are reversed, 
but the total sum of these memberships remains the 
same. Here, the discussion about complementation, co-
complementation, and its properties are carried out on 
a Pythagorean co-neutrosophic Graph. As a result, an 
application with improved accuracy result will be 
obtained as an outcome. 
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I. INTRODUCTION 

The uncertainty and ambiguous results in crisp 
graph theory concepts have been rectified after the 
innovative fuzzy work [1] done on graph theory. The 
fuzzy subset theory [2] emerges, which is useful for 
creating fuzzy graphs. The demonstration of the 
models on fuzzy graphs [3] came into existence. The 
work on fuzzy hypergraphs [4] gives a clear vision of 
a fuzzy environment. A strong base was laid for fuzzy 
graphs by extending the crisp theories and concept 
extension to the fuzzy field. An illustration with the 
initial work on the anti-fuzzy graph structure [5], and 
its characteristics were learnt.  Later, a foundation was 
deeply laid with a new and improvised set theory in the 
name of an “intuitionistic fuzzy set” [6], where non-
existence membership is inserted first and then 
extended to a graphical outline. An outline of a new 
sketch was generated on an intuitionistic fuzzy graph 
(IFG) idea [7] and some operations were carried out 
[8]. New results and techniques based on the 
intuitionistic type of vertices and edges were 
formulated. A proposal regarding some structural 
components and complementary features of IFG [9], 
[10] was developed. Numerous characteristics of Co-
IFG [11] were discussed in detail. When applied to 
real-life problems, this theory has some inaccurate 
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results. To enhance the accuracy during application to 
real life, an expansion of the IFS to a neutrosophic set 
[12-13] is done and its application can be seen in [14]. 
Here, is a discovery of a membership entitled 
“indeterminacy”, which concerns uncertain situations 
and environments in real-life applications is 
considered. A joint work to develop a neutrosophic 
graph [15] was completed successfully and its type 
representation was given. The labeling concept on 
neutrosophic graphs [16] was newly started. Inclusion 
of the anti-behavior feature in neutrosophic graphs 
[17] is done and its properties are utilized. An 
improvised membership grade arose by introducing 
Pythagorean membership grade in decision making 
[18-19], and also, an extension to Pythagorean fuzzy 
set theory [20] happened. With the definition of the 
Pythagorean fuzzy set (PFS) [21-24], the introduction 
of the Pythagorean fuzzy graph [25], and its properties 
such as notions, energy, etc. came into existence. 
Later, the Pythagorean neutrosophic set arose and 
paved the path to construct Pythagorean neutrosophic 
fuzzy graphs (PNG) [26]. Also, a discussion regarding 
the labeling conditions of PNG [27] is carried out. 
Some product operations and regularity in PNG [28], 
[29] are illustrated and the planar graph is considered 
in the PNG environment [30]. As an extension, we 
newly demonstrate the Co-behavior property in PNG 
i.e., Pythagorean Co-Neutrosophic Graphs.                

In this paper, Pythagorean Co-Neutrosophic 
Graphs (PCNG) are considered, and the complement 
& anti-complement properties of PCNG have been 
executed with some basic graph definitions and 
theorems. This is a novel approach since complement 
and anti-complement properties were not applied to 
PCNG before. A graphical representation with 
additional memberships and reversing properties 
yields a greater significance in the area of PCNG 
application. The sectional components of this paper 
discuss the following: A detailed origin and 
development from fuzzy to neutrosophic graphs have 
been illustrated in Section I. Section II comprises 
definitions and examples, which are useful to 
elaborate on the proposed topic. Section III covers the 
implementation of complement properties in strong 
PCNG. A co-complement behavior on PCNG was 
briefly dealt with in Section IV. An application that 
relates the concept to real life has been given in 
Section V. Section VI encloses the final results and 
future ideas to extend the work. 

II. PRELIMINARIES 

 
Definition 2.1 
A Pythagorean Co-Neutrosophic graph (PCNG) is 
described of the form Gr = ⟨A, B⟩, where  
 
(i) A = {𝑎1, 𝑎2,…, 𝑎𝑛} such that 𝐸𝑥1 : A → [0, 1], 𝑈𝑛1 : 
A → [0, 1] and 𝑁𝐸𝑥1 : A → [0, 1] denotes the existence 
degree, uncertain, and non-existence of the element 
𝑎𝑖 ∈ A respectively and 

0 ≤ 𝐸𝑥1
2(𝑎𝑖) + 𝑈𝑛1

2(𝑎𝑖) + 𝑁𝐸𝑥1
2(𝑎𝑖) ≤ 2 

 for every 𝑎𝑖 ∈ 𝐴, (𝑖 = 1,2,⋯ , 𝑛), 
 

(ii)𝐸 ⊆ 𝐴 × 𝐴  𝑤ℎ𝑒𝑟𝑒  𝐸𝑥2: 𝐴 × 𝐴 → [0,1], 𝑈𝑛2: 𝐴 × 𝐴 →
[0,1]  𝑎𝑛𝑑  𝑁𝐸𝑥2: 𝐴 × 𝐴 → [0,1] are such that  

 

𝐸𝑥2(𝑎𝑖 , 𝑎𝑗) ≥ max{𝐸𝑥1(𝑎𝑖), 𝐸𝑥1(𝑎𝑗)}, 

  

𝑈𝑛2(𝑎𝑖 , 𝑎𝑗) ≥ max{𝑈𝑛1(𝑎𝑖), 𝑈𝑛1(𝑎𝑗)}, 

  

𝑁𝐸𝑥2(𝑎𝑖 , 𝑎𝑗) ≥ min{𝑁𝐸𝑥1(𝑎𝑖), 𝑁𝐸𝑥1(𝑎𝑗)} 

 

0 ≤ 𝐸𝑥2
2(𝑎𝑖 , 𝑎𝑗) + 𝑈𝑛2

2(𝑎𝑖 , 𝑎𝑗) + 𝑁𝐸𝑥2
2(𝑎𝑖 , 𝑎𝑗) ≤ 2 

for every (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵, (𝑖, 𝑗 = 1,2,⋯ , 𝑛).  

 

 
FIGURE 1.  PCNG 𝐆𝐫⋆〈𝐀,𝐁〉. 

 
Definition 2.2  
A PCNG H⋆(A

′, B′) is a Pythagorean Co-Neutrosophic 

subgraph (PCNSG) of Gr⋆〈A, B〉  if  A
′ ⊆ A, B′ ⊆ B such 

that Ex1i
′ ≤ Ex1i, Un1i

′ ≤ Un1i, NEx1i
′ ≥ NEx1i and Ex2ij

′ ≤

Ex2ij, Un2ij
′ ≤ Un2ij, NEx2ij

′ ≥ NEx2ij.  

 

 
FIGURE 2.  PCNSG of 𝑮𝒓⋆〈𝑨,𝑩〉. 

 

 
Definition 2.3  
A PCNSG H⋆(A

′, B′) is called a spanning PCNSG of 

Gr⋆〈A, B〉 if 
 (i) 𝐴′ = 𝐴, 𝐵′ = 𝐵 

 (ii) 𝐸𝑥1𝑖
′ = 𝐸𝑥1𝑖 , 𝑈𝑛1𝑖

′ = 𝑈𝑛1𝑖 , 𝑁𝐸𝑥1𝑖
′ = 𝑁𝐸𝑥1𝑖, 

for all i, j. 
 
Definition 2.4  
Let Gr⋆ = 〈A, B〉 be a PCNG. Then vertex set 

cardinality of A is defined by the equation (),  
 

|A| = ∑ai∈A (
1+Ex1(ai)+Un1(ai)−NEx1(ai)

2
)  (1)       

 
  



Vol 6 No 2 (2024)  E-ISSN: 2682-860X 

44 
 

Definition 2.5 

Let Gr⋆ = 〈A, B〉 be a PCNG. Then edge set 

cardinality of B is defined by the equation (),  
 

|B| = ∑(𝑎𝑖,𝑎𝑗)∈𝐵 (
1+𝐸𝑥2(𝑎𝑖,𝑎𝑗)+𝑈𝑛2(𝑎𝑖,𝑎𝑗)−𝑁𝐸𝑥2(𝑎𝑖,𝑎𝑗)

2
)      () 

 
Definition 2.6  
Let G⋆ = 〈A, B〉 be a PCNG. Then cardinality of G⋆ is 

defined by equation (),  
 

|G⋆| =∥ A| + |B ∥  

=|∑ai∈A (
1+Ex1(ai)+Un 1(ai)−NEx1(ai)

2
) +

∑(ai,aj)∈B (
1+Ex2(ai,aj)+Un2(ai,aj)−NEx2(ai,aj)

2
)|  ()  

 
Definition 2.7  
Let Gr⋆ = ⟨A, B⟩ be a PCNG. The degree (Ex, Un, NEx) 
of a vertex a is nothing but the summation of values 
of each membership edge that are joining to a, which 

is denoted as dGr⋆(a) and given by equation (), 

 

𝑑𝐺𝑟⋆(𝑎) = (𝑑𝐸𝑥(𝑎), 𝑑𝑈𝑛(𝑎), 𝑑𝑁𝐸𝑥(𝑎)) ,                () 

 
where 𝑑𝐸𝑥(𝑎) = ∑𝑏≠𝑎 𝐸𝑥2(𝑎, 𝑏), 
 𝑑𝑈𝑛(𝑎) = ∑𝑏≠𝑎 𝑈𝑛2(𝑎, 𝑏) 𝑎𝑛𝑑 

  𝑑𝑁𝐸𝑥(𝑎) = ∑𝑏≠𝑎 𝑁𝐸𝑥2(𝑎, 𝑏).  
  

 
Definition 2.8  
The minimum degree (Ex, Un, Nex) of a PCNG Gr⋆ =
⟨A, B⟩  is denoted by (), 
 

 δ(Gr⋆) = (δEx(Gr⋆), δUn(Gr⋆), δNEx(Gr⋆)),        () 
 
where δEx(Gr⋆) = min{dEx(b)/b ∈ B}, δUn(Gr⋆) =
min{dUn(b)/b ∈ B and  

δNEx(Gr⋆) = min{dNEx(b)/b ∈ B}.  
  

 
Definition 2.9  
The maximum degree (Ex, Un, NEx) of a PCNGGr⋆ =
〈A, B〉 is denoted by (),  
 

 

 Δ(𝐺𝑟⋆) = (Δ𝐸𝑥(𝐺𝑟⋆), Δ𝑈𝑛(𝐺𝑟⋆), Δ𝑁𝐸𝑥(𝐺𝑟⋆)),       () 

 
where, Δ𝐸𝑥(𝐺𝑟⋆) = max{𝑑𝐸𝑥(𝑏)/𝑏 ∈ 𝐵},  Δ𝑈𝑛(𝐺𝑟⋆) =
max{𝑑𝑈𝑛(𝑏)/𝑏 ∈ 𝐵}  𝑎𝑛𝑑 Δ𝑁𝐸𝑥(𝐺𝑟⋆) = max{𝑑𝑁𝐸𝑥(𝑏)/
𝑏 ∈ 𝐵}.  
 

 
 

FIGURE 3.  PCNG 𝑮𝒓⋆〈𝑨,𝑩〉. 
 

 
Example 2.10 
Consider the PCNG of Fig.3 

 

Vertex set cardinality of A is denoted by () 
 

|𝐴| = ∑𝑎𝑖∈𝐴 (
1+𝐸𝑥1(𝑎𝑖)+𝑈𝑛1(𝑎𝑖)−𝑁𝐸𝑥1(𝑎𝑖)

2
)            () 

 

By Fig. 3, we get, 
 

= (

(1 + (0.5 + 0.2 − 0.9)) + (1 + (0.1 + 0.8 − 0.6)) +

(1 + (0.4 + 0.6 − 0.4)) + (1 + (0.5 + 0.3 − 0.1))

+(1 + (0.2 + 0.6 − 0.8))

2
) 

 

 

=

(

 
 

(1 + (0.7 − 0.9)) + (1 + (0.9 − 0.6)) +

(1 + (1.0 − 0.4)) + (1 + (0.8 − 0.1)) + (1 + (0.8 − 0.8))

2

)

 
 

 

 

 

= (
(1 − 0.2) + (1 + 0.3) + (1 + 0.6) + (1 + 0.7) + (1 + 0)

2
) 

 

= (
(0.8 + 1.3 + 1.6 + 1.7 + 1)

2
) 

 

= (
6.4

2
) 

 

|𝐴| = 3.2 

 

 
The edge set cardinality of B is given by the following 

equation (), 
 

|𝐵| = ∑(𝑎𝑖,𝑎𝑗)∈𝐵 (
1+𝐸𝑥2(𝑎𝑖,𝑎𝑗)+𝑈𝑛2(𝑎𝑖,𝑎𝑗)−𝑁𝐸𝑥2(𝑎𝑖,𝑎𝑗)

2
)    () 

 
By Fig. 3, we get, 
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=

(1 + (0.5 + 0.8 − 0.6)) + (1 + (0.5 + 0.8 − 0.1)) +

(1 + (0.5 + 0.6 − 0.4)) + (1 + (0.5 + 0.6 − 0.1)) +

(1 + (0.4 + 0.7 − 0.4)) + (1 + (0.6 + 0.3 − 0.1))

2
 

 

=

(1 + (1.3 − 0.6)) + (1 + (1.3 − 0.1)) +

(1 + (1.1 − 0.4)) + (1 + (1.1 − 0.1)) +

(1 + (1.1 − 0.4)) + (1 + (0.9 − 0.1))

2
 

 

=

(1 + 0.7) + (1 + 1.2) + (1 + 0.7) +
(1 + 1.0) + (1 + 0.7) + (1 + 0.8)

2
 

 

=
1.7 + 2.2 + 1.7 + 2.0 + 1.7 + 1.8

2
 

 

=
11.1

2
 

 
|𝐵| = 5.55 
 
Cardinality set of 𝐺𝑟⋆  𝑖𝑠  |𝐺𝑟⋆| =∥ 𝐴| + |𝐵 ∥= 8.75. 
Now, degree (𝐸𝑥, 𝑈𝑛, 𝑁𝐸𝑥) of vertices 𝑎𝑖 are 𝑑𝐺⋆(𝑎1) =

(1.6,2.2,1.1), 𝑑𝐺⋆(𝑎2) = (1.0,1.6,0.7), 𝑑𝐺⋆(𝑎3) =

(1.6,2.2,0.3), 𝑑𝐺⋆(𝑎4) = (1.4,1.9,0.9), 𝑑𝐺⋆(𝑎5) =

(0.4,0.7,0.4). 
 
Thus, the minimum degree (𝐸𝑥, 𝑈𝑛, 𝑁𝐸𝑥)  of  𝐺𝑟⋆ is  

denoted by () 

 𝛿(𝐺𝑟⋆) = (𝛿𝐸𝑥(𝐺𝑟⋆), 𝛿𝑈𝑛(𝐺𝑟⋆), 𝛿𝑁𝐸𝑥(𝐺𝑟⋆))         () 

            = (0.4,0.7,0.4)  
 
Maximum (𝐸𝑥, 𝑈𝑛, 𝑁𝐸𝑥) − degree  of  𝐺𝑟⋆ is denoted 

by () 

 Δ(𝐺𝑟⋆) = (Δ𝐸𝑥(𝐺𝑟⋆), Δ𝑈𝑛(𝐺𝑟⋆), Δ𝑁𝐸𝑥(𝐺𝑟⋆))       () 

= (1.6,2.2,1.1)  
  

Definition 2.11  
An edge e = (a, b) of PCNG Gr⋆ = 〈A, B〉 is said to be 

an effective edge if ()() and () are true. 
 

𝐸𝑥2(𝑎, 𝑏) = 𝑚𝑎𝑥{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)},                  () 

𝑈𝑛2(𝑎, 𝑏) = 𝑚𝑎𝑥{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)}                  () 

𝑁𝐸𝑥2(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)}.           () 
  

Definition 2.12 

A PCNG Gr⋆ = 〈A, B〉 is known as complete if ()() 

and () are true. 

Ex2ij = max{Ex1i, Ex1j},                                   () 

Un2ij = max{Un1i, Un1j}                                   () 

NEx2ij = min{NEx1i, NEx1j}, for all ai, aj ∈ A.   () 

 
Example 2.13 
The graphical figure 4 is a complete PCNG. 
 

 
FIGURE 4. Complete PCNG of 𝑮𝒓⋆〈𝑨,𝑩〉. 

   
 
Definition 2.14 

A PCNG Gr⋆〈A, B〉 is called strong if ()() and () 
are true. 

 
Ex2ij = max{Ex1i, Ex1j},                               () 

Un2ij = max{Un1i, Un1j},                             () 

NEx2ij = min{NEx1i, NEx1j},                        () 

 
for every (ai, aj) ∈ B.  

 

 
FIGURE 5. Strong PCNG 𝑮𝒓⋆〈𝑨,𝑩〉. 

 
 
Definition 2.15 
A PCNG Gr⋆〈A, B〉 is known to be regular (K1, K2, K3) if 
dGr⋆(ai) = (K1, K2, K3), ∀ai ∈ A and also Gr⋆ is said to 

be a regular PCNG of (Ex, Un, NEx)-degree 

(K1, K2, K3), where K1 , K2&K3 are real constants.  
 

Example 2.16 
The figure 6 is an example for (1.3,0.9,0.6)-regular 
PCNG.  
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FIGURE 6. Regular PCNG 𝑮𝒓⋆〈𝑨,𝑩〉. 

   
 
 

III. COMPLEMENT OF STRONG PYTHAGOREAN 

CO-NEUTROSOPHIC GRAPH 

Definition 3.1  
The complement of a strong Pythagorean Co-
Neutrosophic subgraph (PCNSG) Gr⋆ = 〈A, B〉 is also 

strong PCNG. Gr⋆ = 〈A, B〉, where 
 

(i) 𝐴 = 𝐴 
 

(ii) 𝐸𝑥11 = 𝐸𝑥1𝑖 ,  𝑈𝑛11 = 𝑈𝑛1𝑖  𝑎𝑛𝑑  

      𝑁𝐸𝑥11 = 𝑁𝐸𝑥1𝑖 , ∀  𝑖 = 1,2,3,⋯ , 𝑛 
 

(iii) 𝐸𝑥21   = {
0,  𝑖𝑓   𝐸𝑥2𝑖𝑗 > 0

max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} ,  𝑖𝑓   𝐸𝑥2𝑖𝑗 = 0
 

 

                    = max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} − 𝐸𝑥2𝑖𝑗 ,   

 
𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗 = 1,2,⋯ , 𝑛 
 

        𝑈𝑛21  = {
0,  𝑖𝑓   𝑈𝑛2𝑖𝑗 > 0

max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗},  𝑖𝑓   𝑈𝑛2𝑖𝑗 = 0
 

 

                    = max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗} − 𝑈𝑛2𝑖𝑗 , 

 
𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗 = 1,2,⋯ , 𝑛 
 

      𝑁𝐸𝑥21 = {
0,  𝑖𝑓   𝑁𝐸𝑥2𝑖𝑗 > 0

min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗},  𝑖𝑓   𝑁𝐸𝑥2𝑖𝑗 = 0
 

       

                      = min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} − 𝑁𝐸𝑥2𝑖𝑗 , 
 

  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗 = 1,2,⋯ , 𝑛 
 
 
 
 
 
 
 
 
 
 

Example 3.2 

 
FIGURE 7. Strong PCNG 𝐆𝐫⋆〈𝐀,𝐁〉. 

 

 
FIGURE 8. Complement of Strong PCNG 𝑮𝒓⋆ 

 
Theorem 3.3  
Let Gr⋆ = 〈A, B〉 be a complete PCNG and its 

complement Gr⋆ = 〈A, B〉 then, B = φ.  
 
Proof.  
 
Let 𝐺𝑟⋆ = 〈𝐴, 𝐵〉 be a complete PCNG. Thus,  
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)}

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)}

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} ,
  

 

𝑓𝑜𝑟  𝑎𝑙𝑙  𝑎, 𝑏 ∈ 𝐴. 
 

Assume the complement 𝐺𝑟⋆ = ⟨𝐴, 𝐵⟩ of 𝐺𝑟⋆. So,  

 

𝐸𝑥1(𝑎) = 𝐸𝑥1(𝑎); 
 

𝑈𝑛1(𝑎) = 𝑈𝑛1(𝑎); 
 

𝑁𝐸𝑥1(𝑎) = 𝑁𝐸𝑥1(𝑎), for all 𝑎 ∈ 𝐴.  
 
Therefore, for every 𝑎 ∈ 𝐴,  
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − 𝐸𝑥2(𝑎, 𝑏)      
               = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} 
            = 0 
 

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − 𝑈𝑛2(𝑎, 𝑏) 
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              = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} 
           = 0 
 

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} − 𝑁𝐸𝑥2(𝑎, 𝑏) 
   = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} − min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} 
  = 0 
 

So, (𝐸𝑥2(𝑎, 𝑏), 𝑈𝑛2(𝑎, 𝑏), 𝑁𝐸𝑥2(𝑎, 𝑏)) = (0,0,0),

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎, 𝑏 ∈ 𝐴. 
  

Thus, there don’t exist arcs between any distinct 

vertices a and b of 𝐺𝑟⋆. Therefore, 𝐸 = 𝜑. 
 

Remark 3.4  
The complement of strong PCNG is again a strong 
PCNG. 

 
Example 3.5  

 
 

FIGURE 9.  Strong PCNG 𝐆𝐫⋆ 

 

 
 

FIGURE 10.  Complement of Strong PCNG 𝑮𝒓⋆ 

 
 
Theorem 3.6  
The complement of a strong PCNG Gr⋆ = 〈A, B〉 

yields the identical PCNG Gr⋆ itself. (Gr⋆ = Gr⋆)  
 
Proof. Assume a strong PCNG 𝐺𝑟⋆ = 〈𝐴, 𝐵〉. So,  
𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)}
𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)}

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)},
 

  
𝑓𝑜𝑟  𝑎𝑙𝑙  (𝑎, 𝑏) ∈ 𝐵. 
 

Consider the complement 𝐺𝑟⋆ = 〈𝐴,𝐵〉 of 𝐺𝑟⋆. So,  
 

𝐸𝑥1(𝑎) = 𝐸𝑥1(𝑎);   

𝑈𝑛1(𝑎) = 𝑈𝑛1(𝑎);     

𝑁𝐸𝑥1(𝑎) = 𝑁𝐸𝑥1(𝑢) , ∀𝑎 ∈ 𝐴 
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑣)} − 𝐸𝑥2(𝑎, 𝑏) 

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑣)} − 𝑈𝑛2(𝑎, 𝑏) 

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑣)} − 𝑁𝐸𝑥2(𝑎, 𝑏), 
 

𝑓𝑜𝑟  𝑎𝑙𝑙  (𝑎, 𝑏) ∈   𝐵. 

 

But in complement 𝐺𝑟⋆ = 〈𝐴,𝐵〉, 

𝐸𝑥1(𝑎) = 𝐸𝑥1(𝑎) = 𝐸𝑥1(𝑎);  

𝑈𝑛1(𝑎) = 𝑈𝑛1(𝑎) = 𝑈𝑛1(𝑎);  

𝑁𝐸𝑥1(𝑎) = 𝑁𝐸𝑥1(𝑎) = 𝑁𝐸𝑥1(𝑎), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎 ∈ 𝐴  

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − 𝐸𝑥2(𝑎, 𝑏) 

  = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} −

                        [max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − 𝐸𝑥2(𝑎, 𝑏)] 
  = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} −

                        max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} + 𝐸𝑥2(𝑎, 𝑏) 
                   = 𝐸𝑥2(𝑎, 𝑏) 
 

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − 𝑈𝑛2(𝑎, 𝑏) 

  = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} −

                        [max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − 𝑈𝑛2(𝑎, 𝑏)] 
  = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} −

                        max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} + 𝑈𝑛2(𝑎, 𝑏) 
                   = 𝑈𝑛2(𝑎, 𝑏) 
 

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − 𝑁𝐸𝑥2(𝑎, 𝑏) 

  = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} −

                        [min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} − 𝑁𝐸𝑥2(𝑎, 𝑏)] 
               = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} −
                        min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} + 𝑁𝐸𝑥2(𝑎, 𝑏) 
                   = 𝑁𝐸𝑥2(𝑎, 𝑏) 
 

Hence we conclude, 𝐺𝑟⋆ = 𝐺𝑟⋆. 
 

Theorem 3.7  

Consider Gr⋆ = 〈A, B〉 to be a strong PCNG and Gr⋆ =
〈A̅, B̅〉 be its complement strong PCNG. Then, the co-

union Gr⋆ ∪ Gr⋆ is always a complete PCNG.  
 
 Proof. Let 𝐺𝑟⋆ = 〈𝐴, 𝐵〉 be a strong PCNG. Then,  

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)}

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)}

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)},
  

 
𝑓𝑜𝑟  𝑎𝑙𝑙  (𝑎, 𝑏) ∈ 𝐵. 
 

Assume the complement strong PCNG 𝐺𝑟⋆ = 〈𝐴, 𝐵〉. 
So, 

𝐸𝑥11 = 𝐸𝑥1𝑖  ;  

𝑈𝑛11 = 𝑈𝑛1𝑖 ;  

𝑁𝐸𝑥11 = 𝑁𝐸𝑥1𝑖 ,    
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2,3,⋯ , 𝑛 
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𝐸𝑥21 = max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} − 𝐸𝑥2𝑖𝑗 ,

𝑈𝑛21 = max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗} − 𝑈𝑛2𝑖𝑗 ,

𝑁𝐸𝑥21 = min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} − 𝑁𝐸𝑥2𝑖𝑗 ,

  

 
𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗 = 1,2,⋯ , 𝑛 
 
If (𝑎, 𝑏) ∈ 𝐵,then  
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑢), 𝐸𝑥1(𝑣)} − 𝐸𝑥2(𝑎, 𝑏) 
= max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} 
=   0 (Since, 𝐺𝑟⋆ is a strong co-neutrosophic graph) 
 

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑢), 𝑈𝑛1(𝑣)} − 𝑈𝑛2(𝑎, 𝑏) 
= max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} 
=   0 (Since, 𝐺𝑟⋆ is a strong co-neutrosophic graph) 
 
𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑢), 𝑁𝐸𝑥1(𝑣)} − 𝑁𝐸𝑥2(𝑎, 𝑏) 
= min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} − min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} 
=   0 (Since, 𝐺𝑟⋆ is a strong co-neutrosophic graph) 
 

As a result, for all (𝑎, 𝑏) ∈ 𝐵 of 𝐺𝑟⋆ = 〈𝐴, 𝐵〉  

(𝐸𝑥2(𝑎, 𝑏), 𝑈𝑛2(𝑎, 𝑏), 𝑁𝐸𝑥2(𝑎, 𝑏)) = (0,0,0)  𝑖𝑛  𝐺𝑟⋆.  
 
i.e., there won’t exist an arc between vertices a and b 

in complement PCNG 𝐺𝑟⋆. If (𝑎, 𝑏) ∉ 𝐵, then  
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} − 𝐸𝑥2(𝑎, 𝑏) 
                   = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)} 
 

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} − 𝑈𝑛2(𝑎, 𝑏) 
                   = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)} 
 

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} − 𝑁𝐸𝑥2(𝑎, 𝑏) 
                       = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)} 
 
Thus, for all (𝑎, 𝑏) ∉ 𝐵 of 𝐺𝑟⋆ = 〈𝐴, 𝐵〉,  
 

𝐸𝑥2(𝑎, 𝑏) = max{𝐸𝑥1(𝑎), 𝐸𝑥1(𝑏)}

𝑈𝑛2(𝑎, 𝑏) = max{𝑈𝑛1(𝑎), 𝑈𝑛1(𝑏)}

𝑁𝐸𝑥2(𝑎, 𝑏) = min{𝑁𝐸𝑥1(𝑎), 𝑁𝐸𝑥1(𝑏)},

 

𝑓𝑜𝑟  𝑎𝑙𝑙  (𝑎, 𝑏) ∈ 𝐵  𝑖𝑛  𝐺𝑟⋆  . 
 

Thus, no incident vertices in 𝐺𝑟⋆ are incident 

vertices in 𝐺𝑟⋆ and the arcs are effective arcs 
correspondingly. 

If we find the co-union of 𝐺𝑟⋆ and 𝐺𝑟⋆, the vertex set 

of 𝐺𝑟⋆ ∪ 𝐺𝑟⋆, is the same as A itself with the same 
existence membership, uncertain and non-existence 

values as they are in 𝐺𝑟⋆(  𝑜𝑟    𝑖𝑛    𝐺𝑟⋆  ). The edge 
existence membership, uncertain and non-existence 

values of an arbitrary edge (a,b) in co-union 𝐺𝑟⋆ ∪ 𝐺𝑟⋆ 
because 
 

(𝐸𝑥2 ∪ 𝐸𝑥2)(𝑎, 𝑏) = {
𝐸𝑥2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ 𝐵\�̅�

𝐸𝑥2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ �̅�\𝐵.
 

 

(𝑈𝑛2 ∪ 𝑈𝑛2)(𝑎, 𝑏) = {
𝑈𝑛2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ 𝐵\�̅�

𝑈𝑛2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ �̅�\𝐵.
 

 

(𝑁𝐸𝑥2 ∪ 𝑁𝐸𝑥2)(𝑎, 𝑏)   

                                     = {
𝑁𝐸𝑥2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ 𝐵\�̅�

𝑁𝐸𝑥2(𝑎, 𝑏),  𝑖𝑓 (𝑎, 𝑏) ∈ �̅�\𝐵.
 

 

Therefore, 𝐺𝑟⋆ ∪ 𝐺𝑟⋆ produces its basal graph as a 

complete graph, where 𝐺𝑟⋆ and 𝐺𝑟⋆ are strong PCNG. 
Since the co-union of strong PCNGs is again a 

strong PCNG, 𝐺𝑟⋆ ∪ 𝐺𝑟⋆ transforms to a strong PCNG. 

Therefore, 𝐺𝑟⋆ ∪ 𝐺𝑟⋆ is a complete PCNG. 
 

IV. CO-COMPLEMENT OF PYTHAGOREAN CO-
NEUTROSOPHIC GRAPHS 

Definition 4.1  
The Co-complement of a Pythagorean Co-
Neutrosophic graph(PCNG) Gr⋆ = 〈A, B〉 is a graph 

Gr⋆̃ = (Ã, B̃) where 
 

(i) �̃� = 𝐴   
 

(ii) 𝐸𝑥11̃ = 𝐸𝑥1𝑖 , 
     𝑈𝑛11̃ = 𝑈𝑛1𝑖  𝑎𝑛𝑑  
      𝑁𝐸𝑥11̃ =𝑁𝐸𝑥1𝑖 , ∀  𝑖 = 1,2,3, … , 𝑛   
 

(iii) 𝐸𝑥21�̃� = 1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}, 

       𝑈𝑛21𝑗̃ = 1− 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗}  𝑎𝑛𝑑 

       𝑁𝐸𝑥21𝑗̃ = 1−𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗}, 

∀(𝑎𝑖 , 𝑎𝑗) ∈ 𝐵.  

  
Example 4.2 

 
 

FIGURE 11.  PCNG 𝐆𝐫⋆ 

 
Proposition 4.3  
The co-complement of a PCNG need not be again a 
PCNG. 
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FIGURE 12.  Co-complement PCNG (𝑮𝒓⋆). 

  
Theorem 4.4  
Consider a complete PCNG Gr⋆. Therefore, co-

complement Gr⋆̃ is (n − 1, n − 1, n − 1)-regular.  
   

Proof. Let 𝐺𝑟⋆ = 〈𝐴, 𝐵〉 be a complete PCNG.    

∴ 𝐸𝑥2𝑖𝑗 = max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}, 

𝑈𝑛2𝑖𝑗 = max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗}  𝑎𝑛𝑑   

𝑁𝐸𝑥2𝑖𝑗 = min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗},  

for all 𝑖 = 1,2, … , 𝑛.   
 

But for the co-complement 𝐺𝑟⋆̃ , 

𝐸𝑥21̃ = 1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} = 1 − 𝐸𝑥2𝑖𝑗 +

𝐸𝑥2𝑖𝑗 = 1,  

for all 𝑖, 𝑗 = 1,2,3,⋯ , 𝑛.  
 
Now,   

𝑈𝑛21̃ = 1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗} = 1 − 𝑈𝑛2𝑖𝑗 +

𝑈𝑛2𝑖𝑗 = 1,  

for all 𝑖, 𝑗 = 1,2,3,⋯ , 𝑛. 
 

𝑁𝐸𝑥21̃ = 1−𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} = 1 −

𝑁𝐸𝑥2𝑖𝑗 + 𝑁𝐸𝑥2𝑖𝑗 = 1, for all  𝑖, 𝑗 = 1,2,3,⋯ , 𝑛.  

 
As the basal graph of 𝐺𝑟⋆ is complete,  
 

𝑑𝐺𝑟⋆(𝑎𝑖) = (∑
𝑛=1

𝑘=1
1,∑

𝑛=1

𝑘=1
1,∑

𝑛=1

𝑘=1
1) 

 
             = (𝑛 − 1, 𝑛 − 1, 𝑛 − 1)  

 

Thus,  𝐺𝑟⋆̃  𝑖𝑠  (𝑛 − 1, 𝑛 − 1, 𝑛 − 1)-regular. 
 

Theorem 4.5  
Let Gr⋆ = 〈A, B〉 be a PCNG. Thus, the basal graph of 

Gr⋆̃ is complete.  
 
Proof.  
Let Gr⋆〈A, B〉 be  a  PCNG  co  neutrosophic  graph  

𝑎𝑛𝑑  𝐺𝑟⋆̃ = (�̃�, �̃�) be the complement of 𝐺𝑟⋆.  
 
We have, 
 

(i) �̃� = 𝐴   
 

(ii) 𝐸𝑥11̃ = 𝐸𝑥1𝑖 ,  

      𝑈𝑛11̃ = 𝑈𝑛1𝑖  𝑎𝑛𝑑   

      𝑁𝐸𝑥11̃ =𝑁𝐸𝑥1𝑖 , ∀𝑖 = 1,2,3,⋯ , 𝑛   
 

(iii) 𝐸𝑥21̃ = 1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}, 

       𝑈𝑛21̃ = 1− 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗}  𝑎𝑛𝑑 

       𝑁𝐸𝑥21̃ = 1−𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗},

𝑓𝑜𝑟𝑎𝑙𝑙  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵. 

 

If 𝐸𝑥2𝑖𝑗 ≠ 0, 𝐸𝑥2𝑖𝑗 > 0, 𝑓𝑜𝑟𝑎𝑙𝑙  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵 ⇒ 𝐸𝑥21̃ > 0 

 

If 𝐸𝑥2𝑖𝑗 = 0, 𝐸𝑥21̃ = 1 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} > 0 

 

Therefore 𝐸𝑥21̃ > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,3,⋯ , 𝑛 
 

If 𝑈𝑛2𝑖𝑗 ≠ 0, 𝑈𝑛2𝑖𝑗 > 0, 𝑓𝑜𝑟𝑎𝑙𝑙  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐸 ⇒ 𝑈𝑛21̃ > 0 

 

If 𝑈𝑛2𝑖𝑗 = 0, 𝑈𝑛21̃ = 1 +max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗} > 0 

 

Therefore 𝑈𝑛21̃ > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 = 1,2,3,⋯ , 𝑛 
 

If 𝑁𝐸𝑥2𝑖𝑗 ≠ 0,𝑁𝐸𝑥2𝑖𝑗 > 0, ∀  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐸 ⇒ 𝑁𝐸𝑥21̃ > 0 

 

If 𝑁𝐸𝑥2𝑖𝑗 = 0,𝑁𝐸𝑥2𝑖𝑗̃ = 1+min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} > 0 

 

Therefore, 𝑁𝐸𝑥21̃ > 0, 𝑓𝑜𝑟𝑎𝑙𝑙  𝑖 = 1,2,3,⋯ , 𝑛 
 

This implies that the basal graph of 𝐺𝑟⋆̃ is complete. 
 

Theorem 4.6  

Consider a PCNG 𝐺𝑟⋆ = 〈𝐴, 𝐵〉. Thus, 𝐺𝑟⋆̃ = 𝐺𝑟⋆.  
   

Proof. Consider the co-complement 𝐺𝑟⋆̃ = (�̃�, �̃�) of 

PCNG 𝐺𝑟⋆ = 〈𝐴, 𝐵〉. We have, 

(i) �̃� = 𝐴   
 

(ii)   𝐸𝑥11̃ =𝐸𝑥1𝑖 , 
       𝑈𝑛11̃ = 𝑈𝑛1𝑖   𝑎𝑛𝑑   
       𝑁𝐸𝑥11̃ =𝑁𝐸𝑥1𝑖 , ∀𝑖 = 1,2,3,⋯ , 𝑛 
 

(iii) 𝐸𝑥21̃ = 1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}, 

        𝑈𝑛21̃ = 1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗}  𝑎𝑛𝑑 

        𝑁𝐸𝑥21̃ = 1−𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗},

∀  (𝑎1, 𝑎𝑗) ∈ 𝐵. 

 

Take the co-complement 𝐺𝑟⋆̃ = 〈�̃�, �̃�〉  of  𝐺𝑟⋆̃ = (�̃�, �̃�). 
As a result, 

(i) �̃̃� = �̃� = 𝐴 
 

(ii) 𝐸�̃�11
̃=𝐸𝑥11̃ = 𝐸𝑥1𝑖, 

     𝑈�̃�11
̃ =𝑈𝑛11̃ = 𝑈𝑛1𝑖 and  

      𝑁𝐸�̃�11
̃ =𝑁𝐸𝑥11̃ =𝑁𝐸𝑥1𝑖 , ∀  𝑖 = 1,2,3,⋯ , 𝑛 

 
 (iii) 
 

𝐸𝑥21̃ = 1 − 𝐸𝑥21̃ +max{𝐸𝑥11̃, 𝐸𝑥1�̃�} 

= 1 − [1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}] + max{𝐸𝑥11̃, 𝐸𝑥1�̃�} 

= 1 − [1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}] + 𝑚𝑎𝑥{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} 

= 𝐸𝑥2𝑖𝑗 , ∀  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵 
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𝑈𝑛21̃ = 1 − 𝑈𝑛21̃ +max{𝑈𝑛11̃, 𝑈𝑛1�̃�} 

= 1 − [1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗}] 

    +max{𝑈𝑛11̃, 𝑈𝑛1�̃�} 

= 1 − [1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗}] 

     +𝑚𝑎𝑥{𝑈𝑛1𝑖 , 𝑈𝑛1𝑗} 

= 𝑈𝑛𝑥2𝑖𝑗 , ∀  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵 

 

𝑁𝐸𝑥21̃ = 1−𝑁𝐸𝑥21̃ +min{𝑁𝐸𝑥11̃ ,𝑁𝐸𝑥1𝑗̃ } 

= 1 − [1 − 𝑁𝐸𝑥2𝑖𝑗 +min{N𝐸𝑥1𝑖 , N𝐸𝑥1𝑗}] 

    +min{𝑁𝐸𝑥11̃ ,𝑁𝐸𝑥1𝑗̃ } 

= 1 − [1 − 𝑁𝐸𝑥2𝑖𝑗 +min{N𝐸𝑥1𝑖 , N𝐸𝑥1𝑗}] 

    +𝑚𝑖𝑛{N𝐸𝑥1𝑖 , N𝐸𝑥1𝑗} 

= N𝐸𝑥2𝑖𝑗 , ∀  (𝑎𝑖 , 𝑎𝑗) ∈ 𝐵 

 
Definition 4.7  
A PCNG Gr⋆ is self-co-complementary when Gr⋆ =

Gr⋆̃.  
  

Example 4.8  

 
FIGURE 13.  PCNG 𝐆𝐫⋆ . 

 
Theorem 4.9  
Consider a PCNG Gr⋆ = 〈A, B〉. Assume Gr⋆ is self-co-
complementary then,  
 

𝐸𝑥2𝑖𝑗 =
1

2
[1 + max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}] 

𝑈𝑛2𝑖𝑗 =
1

2
[1 + max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗}] 

𝑁𝐸𝑥2𝑖𝑗 =
1

2
[1 + min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗}]. 

 
Proof.  
Let us take a self-co-complementary PCNG 𝐺𝑟⋆ =

〈𝐴, 𝐵〉, which results 𝐺𝑟⋆ = 𝐺𝑟⋆̃. Therefore, 

(𝐸𝑥1, 𝑈𝑛1, 𝑁𝐸𝑥1) = (𝐸𝑥1̃, 𝑈𝑛1̃, 𝑁𝐸𝑥1̃)  
and  (𝐸𝑥2, 𝑈𝑛2, 𝑁𝐸𝑥2) = (𝐸𝑥2̃, 𝑈𝑛2̃ ,𝑁𝐸𝑥2̃).  
Thus 
 

 
FIGURE 14.  Co-complement PCNG 𝑮𝒓⋆̃ . 

 

𝐸𝑥21̃ = 1 − 𝐸𝑥2𝑖𝑗 + {𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} 

𝐸𝑥2𝑖𝑗 = 1 − 𝐸𝑥2𝑖𝑗 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} 

2𝐸𝑥2𝑖𝑗 = 1 +max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗} 

𝐸𝑥2𝑖𝑗 =
1

2
[1 + max{𝐸𝑥1𝑖 , 𝐸𝑥1𝑗}]                       

 

𝑈𝑛21̃ = 1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗} 

𝑈𝑛2𝑖𝑗 = 1 − 𝑈𝑛2𝑖𝑗 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗} 

2𝑈𝑛2𝑖𝑗 = 1 +max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗} 

𝑈𝑛2𝑖𝑗 =
1

2
[1 + max{𝑈𝑛1𝑖, 𝑈𝑛1𝑗}] 

 
and  
 

𝑁𝐸𝑥21̃ = 1−𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} 

𝑁𝐸𝑥2𝑖𝑗 = 1 − 𝑁𝐸𝑥2𝑖𝑗 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} 

2𝑁𝐸𝑥2𝑖𝑗 = 1 +min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗} 

𝑁𝐸𝑥2𝑖𝑗 =
1

2
[1 + min{𝑁𝐸𝑥1𝑖 , 𝑁𝐸𝑥1𝑗}] 

  

V. APPLICATION 

In [11], an application was discussed regarding the 
COVID-19 spread in the case of an intuitionistic co-
fuzzy graph. Here, an uncertain membership for 
vertices and edges can be defined to deal with the 
PCNGs. The uncertain membership of vertex and 
edge can be taken as an imbalanced health rate of 
individuals due to other health issues, and mediatory 
infection between persons due to contact, 
respectively. Through this approach, one can 
compare the different criteria of a pandemic spread. 
As a result, the affected and recovery rate of an 
individual or a community can be obtained. 

VI. CONCLUSION 

A research gap between intuitionistic and 
neutrosophic kind of graphical approaches has been 
filled by introducing complementation in Pythagorean 
Co-Neutrosophic graphs (PCNG). This paper deals 
with the PCNG and some cases related to PCNG like 
subgraph, vertex degree, and strong property. The 
complement of some types of PCNGs is discussed in 
detail. In addition, the co-complement property was 
applied to PCNGs. Through this work, the application 
related to the reverse kind of Pythagorean 
neutrosophic graphs can be studied further. The 
novelty of our work is enforced by the above new 
analyzing properties with PCNG and its application. In 
the future, we had planned to elaborate this co-
behaviour property to other kinds of neutrosophic 
graphs and their properties will be studied briefly.  

ACKNOWLEDGMENT 

The article has been written with the joint financial 
support of RUSA-Phase 2.0 grant sanctioned vide 
letter No.F.24-51/2014-U, Policy (TN Multi-Gen), 
Dept. of Edn. Govt. of India, Dt. 09.10.2018, UGC-
SAP (DRS-I) vide letter No.F.510/8/DRS-I/2016(SAP-
I) Dt. 23.08.2016 and DST (FST - level I) 657876570 
vide letter No.SR/FIST/MS-I/2018/17 Dt. 20.12.2018. 



Vol 6 No 2 (2024)  E-ISSN: 2682-860X 

51 
 

REFERENCES 

[1] L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 
3, pp. 338-353, 1965.  
DOI: https://doi.org/10.1016/S0019-9958(65)90241-X  

[2] A. Kaufmann and A.P. Bonaert, "Introduction to the theory of    
fuzzy subsets-vol. 1: fundamental theoretical elements," 
in IEEE Transactions on Systems, Man, and Cybernetics, vol. 
7, no. 6, pp. 495-496, 1977.  
DOI: https://doi.org/10.1109/TSMC.1977.4309751 

[3] A. Rosenfeld, “Fuzzy graphs”, Fuzzy Sets and Their 
Applications to Cognitive and Decision Processes, Academic 
press, New York, USA,1975.  
DOI: https://doi.org/10.1016/B978-0-12-775260-0.50008-6 

[4] J.N. Mordeson and P.S. Nair, “Studies in fuzziness and soft 
computing,” Fuzzy Graphs and Fuzzy Hypergraphs, 1st ed. 
New York, USA: Physica-Verlag, Heidelberg, pp. XIII, 250, 
2000.  
DOI: https://doi.org/10.1007/978-3-7908-1854-3 

[5] M. Akram, “Anti fuzzy structures on graphs,” Middle East 
Journal of Scientific Research, vol. 11, no. 12, pp. 1641-1648, 
2012.  
DOI: http://dx.doi.org/10.5829/idosi.mejsr.2012.11.12.131012 

[6] K.T. Atanassov, “Intuitionistic fuzzy sets: theory and 
applications,” Studies in Fuzziness and Soft Computing, 1st 
ed., New York, USA: Physica Heidelberg, pp. XVIII, 324, 
1999.  
DOI: https://doi.org/10.1007/978-3-7908-1870-3 

[7] R. Parvathi and M.G. Karunambigai, “Intuitionistic fuzzy 
graphs,” Reush, B.(eds) Computational Intelligence, Theory 
and Applications, vol.38, Springer, Berlin, Heidelberg, pp. 
139-150, 2006.  
DOI: https://doi.org/10.1007/3-540-34783-6_15 

[8] R. Parvathi, M.G. Karunambigai and K. Atanassov, 
“Operations on intuitionistic fuzzy graphs,” 2009 IEEE 
International Conference on Fuzzy Systems,  pp. 1396-1401, 
2009.  
DOI: http://dx.doi.org/10.1109/FUZZY.2009.5277067 

[9] M. Akram and R. Akmal, “Operations on intuitionistic fuzzy 
graph structures,” Fuzzy Information and Engineering, vol. 8, 
no. 4, pp. 389-410, 2016.  
DOI: https://doi.org/10.1016/j.fiae.2017.01.001 

[10] M. Akram and B. Davvaz, “Strong intuitionistic fuzzy graphs,” 
Filomat, vol. 26, no. 1, pp. 177-196, 2012.  
DOI: https://doi.org/10.2298/FIL1201177A  

[11] R. Muthuraj, V. V. Vijesh and S. Sujith, “Complementation and 
co-complementation in intuitionistic anti-fuzzy graphs,” 
Malaya Journal of Matematik, vol. 7, no. 4, pp. 883–891, 2019. 
DOI: https://doi.org/10.26637/MJM0704/0043  

[12] F. Smarandache, “Neutrosophic set- a generalization of the 
intuitionistic fuzzy set,” 2006 IEEE International Conference 
on  Granular Computing, pp. 38-42, 2006.  
DOI: https://doi.org/10.1109/GRC.2006.1635754  

[13] F. Smarandache, “A geometric interpretation of the 
neutrosophic set- A generalization of the intuitionistic fuzzy 
set,” 2011 IEEE International Conference on Granular 
Computing, pp. 602-606, 2011.  
DOI: https://doi.org/10.1109/GRC.2011.6122665  

[14] S. Das, B. K. Roy, M. B. Kar, S. Kar et. al, “Neutrosophic fuzzy 
set and its application in decision making,” Journal of Ambient 
Intelligence and Humanized Computing, pp. 5018-5027, 
2020.  
DOI: https://doi.org/10.1007/s12652-020-01808-3  

[15] S. Broumi, F. Smarandache, M. Talea and A. Bakali, “Single 
valued neutrosophic graphs: degree, order and size,” 2016 
IEEE International Conference on Fuzzy Systems, pp. 2444-
2451, 2016.  
DOI: https://doi.org/10.1109/FUZZ-IEEE.2016.7738000  

[16] M. Gomathi and V. Keerthika, “Neutrosophic labeling graph,” 
Neutrosophic Sets and Systems, vol. 30, pp. 262-270, 2019. 
DOI: https://doi.org/10.5281/zenodo.3569706   

[17] R. Dhavaseelan, S. Jafari, M.R. Farahani and S. Broumi, “On 
single-valued co-neutrosophic graphs,” Neutrosophic Sets 
and Systems, vol. 22, pp. 180-187, 2018.  
DOI: https://doi.org/10.5281/zenodo.2159886  

[18] R.R. Yager, “Pythagorean membership grades in multicriteria 
decision making,” IEEE Transactions on Fuzzy Systems, vol. 
22, no. 4, pp. 958-965, 2014.  
DOI: https://doi.org/10.1109/TFUZZ.2013.2278989  

[19] R.R. Yager and A.M. Abbasov, “Pythagorean membership 
grades, complex numbers and decision making,” International 
Journal of Intelligent Systems, vol. 28, no. 5, pp. 436-452, 
2013.  
DOI: https://doi.org/10.1002/int.21584  

[20] R.R. Yager, “Pythagorean fuzzy subsets,” 2013 Joint IFSA 
Congress and NAFIPS Annual Meeting, pp. 57-61, 2013.  
DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375  

[21] M. Akram, J.M. Dar and S. Naz, “Certain graphs under 
pythagorean fuzzy environment,” Complex & Intelligent 
Systems, vol. 5, pp. 127-144, 2019.  
DOI: https://doi.org/10.1007/s40747-018-0089-5  

[22] M. Akram, A. Habib, F. Ilyas and J.M. Dar, “Specific types of 
pythagorean fuzzy graphs and application to decision-
making,” Mathematical and Computational Applications, vol. 
23, no. 3, pp. 1-28, 2018.  
DOI: https://doi.org/10.3390/mca23030042  

[23] M. Akram, F. Ilyas and A.B. Saeid, “Certain notions of 
pythagorean fuzzy graphs,” Journal of Intelligent & Fuzzy 
Systems, vol. 36, no. 6, pp. 5857-5874, 2019.  
DOI: https://doi.org/10.3233/JIFS-181697  

[24] M. Akram and S. Naz, “Energy of pythagorean fuzzy graphs 
with applications,” Mathematics, vol. 6, no. 8, pp. 1-27, 2018. 
DOI: https://doi.org/10.3390/math6080136  

[25] S. Naz, S. Ashraf and M. Akram, “A novel approach to 
decision-making with pythagorean fuzzy information,” 
Mathematics, vol. 6, no. 6: 95, pp. 1-28, 2018.  
DOI: https://doi.org/10.3390/math6060095  

[26] D. Ajay and P. Chellamani, “Pythagorean neutrosophic fuzzy 
graphs,” International Journal of Neutrosophic Science, vol. 
11, no. 2, pp. 108-114, 2020.  
DOI: https://doi.org/10.54216/IJNS.0110205  

[27] D. Ajay, S. Karthiga and P. Chellamani, “A study on labelling 
of pythagorean neutrosophic fuzzy graphs,” Journal of 
Computational Mathematica, vol. 5, no. 1, pp. 105-116, 2021. 
DOI: https://doi.org/10.26524/cm97  

[28] D. Ajay and P. Chellamani, “Operations on pythagorean 
neutrosophic graphs,” AIP Conference Proceedings, vol. 
2516, no. 1, 2022.  
DOI: https://doi.org/10.1063/5.0108432  

[29] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit and P. 
Hammachukiattikul, “Regularity of pythagorean neutrosophic 
graphs with an illustration in MCDM,” AIMS Mathematics, 
vol.7, no. 5, pp. 9424-9442, 2022.  
DOI: https://doi.org/10.3934/math.2022523  

[30] P. Chellamani, D. Ajay, M.M. Al-Shamiri and R. Ismail, 
“Pythagorean neutrosophic planar graphs with an application 
in decision-making,” Computers, Materials & Continua, vol. 
75, no. 3, pp. 4935-4953, 2023.  
DOI: https://doi.org/10.32604/cmc.2023.036321  

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1109/TSMC.1977.4309751
https://doi.org/10.1016/B978-0-12-775260-0.50008-6
https://doi.org/10.1007/978-3-7908-1854-3
http://dx.doi.org/10.5829/idosi.mejsr.2012.11.12.131012
https://doi.org/10.1007/978-3-7908-1870-3
https://doi.org/10.1007/3-540-34783-6_15
http://dx.doi.org/10.1109/FUZZY.2009.5277067
https://doi.org/10.1016/j.fiae.2017.01.001
https://doi.org/10.2298/FIL1201177A
https://doi.org/10.26637/MJM0704/0043
https://doi.org/10.1109/GRC.2006.1635754
https://doi.org/10.1109/GRC.2011.6122665
https://doi.org/10.1007/s12652-020-01808-3
https://doi.org/10.1109/FUZZ-IEEE.2016.7738000
https://doi.org/10.5281/zenodo.3569706
https://doi.org/10.5281/zenodo.2159886
https://doi.org/10.1109/TFUZZ.2013.2278989
https://doi.org/10.1002/int.21584
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
https://doi.org/10.1007/s40747-018-0089-5
https://doi.org/10.3390/mca23030042
https://doi.org/10.3233/JIFS-181697
https://doi.org/10.3390/math6080136
https://doi.org/10.3390/math6060095
https://doi.org/10.54216/IJNS.0110205
https://doi.org/10.26524/cm97
https://doi.org/10.1063/5.0108432
https://doi.org/10.3934/math.2022523
https://doi.org/10.32604/cmc.2023.036321

