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Abstract–This paper explores a simple yet effective 
way to synchronize the chaotic Lü system using just 
one variable from the master system. Rather than 
relying on full-state observation or advanced nonlinear 
control, the method uses a straightforward linear 
feedback approach and takes advantage of the inherent 
stability in cascade-connected systems to achieve 
synchronization. 

One of the main strengths of this approach is its 
efficiency. By transmitting only a single state variable, 
it keeps communication demands low—something 
that’s especially helpful in real-time applications or 
when resources are limited. Another benefit is that the 
method doesn’t depend on knowing the bounds of the 
master system’s trajectories in advance, which makes 
it more flexible for systems that are unpredictable or 
constantly changing. The controller itself is also 
relatively simple to put into practice, avoiding the 
complexity often seen in other synchronization 
methods. 

The approach is backed by solid theoretical analysis, 
and simulation results using MATLAB show that it 
works well in practice. Overall, this method offers a 
lightweight and practical solution for chaos 
synchronization—ideal for situations where minimal 
data and easy implementation are key. 
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I. INTRODUCTION 

In the last few decades, chaotic systems have gone 
from being mere mathematical curiosities to becoming 
valuable tools across various scientific and 
engineering domains. What’s fascinating about chaos 
isn’t just the unpredictability—but the fact that it comes 
from systems that are entirely deterministic. A tiny 
change at the beginning can lead to dramatically 
different outcomes. While this sensitivity was once 
seen as a problem, today it's a key feature in 
everything from secure communications and robotics 
to lasers and even medical devices [1–5]. 

But chaos is tricky. On one hand, it gives us rich, 
flexible behavior. On the other, it makes systems hard 
to manage. That’s where synchronization comes in—
getting one chaotic system to track or follow another. 
In cryptography, for instance, it’s used to scramble 
and unscramble signals. In medicine, it can help 
regulate erratic heart rhythms [6]. 

Still, managing chaotic systems is anything but simple. 
They're nonlinear, highly sensitive, and often complex 
in dimension. Even small measurement errors or 
parameter mismatches can lead to failure. Over time, 
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researchers have developed various tools: 
backstepping for layered stabilization [3], adaptive 
controls that adjust on the fly [4], impulsive controls for 
quick corrections [5], and sliding mode approaches for 
robust performance under disturbance [7]. 

Lately, hybrid control methods have caught attention. 
These combine different control techniques to balance 
out their strengths and weaknesses [8–10]. Think of it 
as building a balanced team—where backstepping 
brings structure, sliding mode adds robustness, and 
adaptive control makes the system more flexible. 
Such combinations have been promising, especially 
for real-world systems that rarely behave in nice, 
linear ways [11–22]. 

However, there’s a common assumption in most of 
these methods: that we can observe and control all 
variables of the system. In real life, that’s often not 
possible. Full-state measurement is expensive, and 
sometimes just impractical—especially in systems like 
the Lü system, which has multiple variables and 
complicated dynamics. That’s what motivated this 
study. 

Here, we present a different approach. Instead of 
watching everything, we use just one variable from the 
master system to synchronize the rest. This simple 
feedback strategy reduces the amount of data 
needed, simplifies the controller, and makes real-time 
applications more practical. Whether it’s a drone with 
limited sensors or a small embedded medical device, 
needing only a single signal makes things easier. 

This paper focuses on the Lü system, a classic three-
variable chaotic system. We build a controller based 
on hybrid principles and prove that it can achieve 
synchronization using only one state variable. We also 
provide simulation results to show it works—not just in 
theory, but in practice too. 

II. CHAOS SYNCHRONIZATION OF LU SYSTEMS 

Consider two distinct nonlinear systems: 
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is the collection of real numbers that are not negative. 

In this context, 
n denotes the set of non-negative 

real values. Let system (1) represent the driving 
system and system (2) the response system, with 

( , , )u t x y  as the control input. 

 
Definition 1. The response system and the drive 
system are considered synchronized if, for any given 

initial conditions, their trajectories converge over time
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In this section, we examine two Lu systems, where the 
system labeled with subscript 1 serves as the driving 
system and influences the response system labeled 
with subscript 2. The dynamics of both systems are 
described by the following equations: 
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In equation (4), a control function is introduced, and 
our task is to determine its specific form. The error 
system is formulated as the difference between the 
drive system (3) and the controlled response system 
(4). To proceed, we define the state errors as the 
variation between the response system (4) and the 
drive system (3): 
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By taking the difference between equations (3) and 
(4) and applying the notation defined in equation (5), 
we obtain: 
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We define the active control functions in the following 
manner: 
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As a result, the error system (6) is transformed into: 
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The error system (7) is a linear system where the 
control input depends on the error terms. Several 
control function choices are available, and we select: 
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Where A is a fixed constant matrix. We select the 

matrix A  in the following form: 
 

0 0

0 0

0 0

a

A c

b

− 
 

= − 
 − 

. 

 

Given the eigenvalues of A  are , , ,a b c− − −  where 

, ,a b c  constitute positive constants. Consequently 

, ,x y ze e e  approach zero as t  tends to +  

Consequently, the Lu's systems (3) derived from (4) 
are synchronous. 

III. NUMERICAL SIMULATIONS 

The fourth-order Runge-Kutta integration method is 
employed to solve two systems of differential 
equations (3) and (4) with a time step value of 0.01. 
The parameter values in (3) are selected as  

1, 3, 2a b c= = =  to ascertain the erratic dynamics 

of Lu's systems. The preliminary parameters of the 

driving system are 
1 1 1(0) 1, (0) 1, (0) 2x y z= − = =  

the initial conditions of the response system are 

2 2 2(0) 1, (0) 2, (0) 3.x y z= = =  Consequently, the 

preliminary values of the error system are  

(0) 1, (0) 1, (0) 2.x y ze e e= − = =  Figure 1. 

Demonstrate the state faults ( , , )x y ze e e  of Lu's 

systems of equations with the active control engaged. 
The slave trajectories align closely with the 
corresponding master trajectories. Within one second, 

the tracking error is below the level 
310−

. 

 

 
 

FIGURE 1. The temporal response of states for the master 
system (3) and the slave system (4) utilizing the control law 

(6). 

IV. CONCLUSION 

 This paper introduces a streamlined yet powerful 
approach to synchronizing chaotic systems—focusing 
on the Lu system—using feedback from just a single 
variable of the master system. By applying stability 
theory for cascade-connected systems, we derive a 
sufficient condition that guarantees successful 
synchronization. The control strategy is intentionally 
kept simple: a linear feedback law that avoids the 
complexity of full-state observers and nonlinear 
controllers, yet delivers reliable performance. 
 A standout contribution of this work is its minimal 
data requirement. Instead of relying on full system 
measurements, our method synchronizes chaotic 
systems using just one transmitted signal. This 
dramatically reduces both computational overhead 
and sensor demands, making the method highly 
relevant for real-time applications like remote sensing, 
embedded control systems, and biomedical devices. 
The design also sidesteps the need to estimate or 
bound the master system’s full trajectory, which is 
often a limiting factor in conventional approaches. 
 Beyond the Lu system, the proposed framework is 
adaptable to other high-dimensional chaotic systems 
such as Lorenz, Chen, and Chua systems—each 
widely used in both theoretical research and applied 
engineering. This generalizability makes the single-
variable feedback approach a compelling tool for 
chaos synchronization across a broad range of use 
cases, including secure communication, industrial 
automation, and autonomous systems. 
 To back the theory, we present numerical 
simulations that validate the method’s effectiveness 
under various initial conditions. The results show 
robust synchronization behavior, even when the initial 
mismatch between systems is large—underscoring 
the method’s practicality in real-world settings. 
 This work opens up several promising avenues for 
future research. Extensions to more complex chaotic 
systems, implementation in real-time hardware, and 
integration with adaptive or learning-based controllers 
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could further enhance performance and robustness—
especially in systems with uncertain or time-varying 
dynamics. 
 In summary, this paper offers an efficient, low-data, 
and broadly applicable solution for chaos 
synchronization. The simplicity of the single-variable 
feedback method, paired with its solid theoretical 
grounding, makes it a strong candidate for deployment 
in real-time and resource-constrained environments—
where complexity is costly and reliability is key. 
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