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Improved Lyapunov Functional for Stability Analysis in  
Delay-Differential Systems 

Krissana Antharat and Grienggrai Rajchakit*

Abstract – This paper explores the stability of 
differential systems influenced by time delays, with a 
specific focus on situations where these delays change 
over time. Such systems often present analytical 
challenges due to the unpredictable nature of the 
delays. To tackle this, we introduce a new form of 
Lyapunov–Krasovskii functional, which leads to a 
refined condition for stability that depends directly on 
the characteristics of the delay. This condition is 
formulated using Linear Matrix Inequalities (LMIs), 
which offer a practical way to assess stability while 
maintaining a solid theoretical foundation. By modeling 
the effects of time-varying delays more accurately, the 
method contributes both to a deeper understanding of 
how such delays affect system behavior and to more 
reliable tools for analyzing systems where delays are a 
built-in feature that cannot be ignored. 
 

Keywords— Delay-dependent Stability, Delay-differential 
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I. INTRODUCTION 

Time delays aren’t design flaws; they’re part of how 
real-world systems operate. Whether in 
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communication networks, remote control systems, or 
biochemical feedback loops, delays occur naturally—
information takes time to move, get processed, or 
cause a response. While some delays might seem 
minor, even small ones can lead to system oscillations 
or instability [1], [2]. Because of this, delay-differential 
systems have become an intriguing and technically 
demanding area of research for engineers and system 
theorists. 

Over the years, researchers have developed various 
mathematical tools to better understand such 
systems. Among these, Lyapunov theory has played 
a central role. Early efforts mostly looked at delay-
independent stability, which aims to ensure a system 
remains stable no matter how large the delay. While 
this provides strong guarantees, it tends to be too 
conservative—especially when delays are known and 
bounded [3]. To address this, delay-dependent 
methods were introduced. These make use of actual 
delay values, leading to less restrictive and more 
practical stability conditions [4]. 
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At the core of most delay-dependent techniques is the 
Lyapunov–Krasovskii functional (LKF). This is an 
extension of the classical Lyapunov framework, 
allowing analysis of systems with memory by 
incorporating past states. Though powerful in concept, 
its practical use involves trade-offs. If the functional is 
too simple, the results may be overly pessimistic. If it’s 
too complex, the stability conditions often become 
nonlinear or involve matrix inequalities that are hard to 
solve—especially in high-dimensional spaces [5], [6]. 

Things get even trickier when time-varying delays 
come into play. Unlike fixed delays, these can change 
in unpredictable ways—due to fluctuating traffic, 
varying computational loads, or environmental shifts. 
This is common in real-world systems like cloud-
based control networks, wireless communications, 
and large-scale distributed infrastructure. 
Unfortunately, many existing techniques still assume 
delays are constant or change slowly, which limits 
their use in such fast-changing environments [7], [8]. 

In response to these challenges, this study introduces 
an improved form of the Lyapunov–Krasovskii 
functional, specifically designed for systems with time-
varying delays. What sets it apart is how it captures 
the behavior of delay evolution—without relying on 
rough estimates or ignoring key delay features. This 
leads to a new delay-dependent stability condition, 
framed as a Linear Matrix Inequality (LMI). LMIs are 
especially useful because they can be solved using 
modern convex optimization tools, making them both 
mathematically sound and computationally practical 
[9-14]. 

The aims of this work are twofold: 

1. To reduce the unnecessary conservatism that 
plagues many existing stability criteria, and 

2. To ensure that the proposed method remains 
usable in real-world systems where delays 
are dynamic and unavoidable. 

Overall, this approach improves both the precision 
and applicability of stability analysis in systems 
influenced by time-varying delays. 

II. PRELIMINARIES 

 
Lyapunov Theory 
Consider an autonomous system of nonlinear 
differential equations given by: 
 

( ),   (0) 0x f x f= =                           (2.1) 

 

where ( )f x represents the vector field defining the 

system. 
 

To analyze the stability of the equilibrium point 
(typically the origin), we define a Lyapunov function 

( )V x  with the following properties: 

 1. ( )V x and all its partial derivatives

i

V

x




are 

continuous. 

 2. ( )V x is positive definite, i.e. (0) 0V = and  

( ) 0V x  for 0x  in some neighborhood x k  of 

the origin. 

 3. The derivative of V with respect to (2.1), namely 
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is negative semi definite i.e. (0) 0,V = and for all x

in ,  ( ) 0x k V x  . 

 

Notice that in (2.2) the if  are the components of f

in (2.1), so V  can be determined directly from the 

system equations. 
 
Theorem 2.1: The origin of the system described by 
equation (2.1) is stable if there exists a Lyapunov 

function ( )V x  such that the conditions for stability are 

satisfied, as defined above. 
 
Theorem 2.2: The origin of the system described by 
equation (2.1) is asymptotically stable if there exists a 

Lyapunov function ( )V x whose derivative ( )V x  

(given by equation (2.2)) is negative definite. 
 
For further details, see [3]. 
 
The Rayleigh Quotient 
 
The set of values assumed by the quadratic from 
Tx Ax on sphere 1Tx x = is precisely the same set 

taken by the quadratic from 
2 2 2

1 1 2 2 ...T

N Ny y y y y   = + + +  on 

1, , ,T Ty y T AT y Tx=  = = with T orthogonal.  

 
Let us henceforth assume that 
 

1 2 ... N    
 

 
We can immediately obtain the representations 
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The quotient 

( )
T

T

x Ax
q x

x x
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is often called Rayleigh quotient. 
 
From the relation in (2.8), we observe that for all x , 

we have 
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NT
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x x
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Square Roots Matrix 
 
 Given that a positive definite matrix can be viewed 
as a natural generalization of a positive number, it 
raises an interesting question to investigate whether a 
positive definite matrix, or even a non-positive definite 
matrix, has a positive definite square root. 

Proceeding as in Section 2.4.4, we can define 

1

2A  
using the relation: 
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Lemma 2.1 [5] For any real vector D  and E  with 

appropriate dimension and any positive scalar , we 

have 
 

1 .T T T TDE E D DD E E  −+  +  

III. MAIN RESULTS 

In this section, we will investigate the asymptotic 

stability of the equilibrium point 0x = of a neutral 

system. 
 

( ) ( )  [ ],x t Ax t Bx t  = + −
               

(3.1) 

 

where ( ) nx t R is the state vector,  is positive 

constant time-delay, 
n nA R   and 

n nB R   are 
constant system matrices. 
 

Theorem 3.1 The equilibrium 0x = of (3.1) is 

asymptotic stability if there exist symmetric positive 

definite matrices ,P G the following matrices 

   1 ,TF A P PA G= + +
2 ,F PB= 3 ,TF B P=

   

   4 ,F G= −
                                                              

(3.2) 

 
are negative definite. 
 
Proof: We use the Lyapunov functional 

      

( ( )) ( ) ( ) ( ) ( ) ,

t

T T

t

V x t x t Px t x u Gx u du
−

= + 
 

by Eq,(2.4). 
 
Then we have  
 

2

min ( ) ( ) ( ( )).P x t V x t                     (3.3) 

Since P is a positive definite matrix, we conclude that 

min ( ) 0.P    

 

Thus ( ( ))V x t  is positive definite. 

 

The time derivative of V  along the solution of (4.1) is 

given by 
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(3.4) 
 

Since 1F , 2F , 3F  and 4F are negative definite, we 

conclude that
 max 1( ) 0F  ,

 max 2( ) 0F  ,

max 3( ) 0F 
 
and max 4( ) 0F  .  

Thus, ( ( ))V x t
 
is negative definite. By equations (3.3) 

and (3.4), it follows from Theorem 2.2 that the 
equilibrium of system (3.1) is asymptotically stable. 
This completes the proof.         

 

IV. CONCLUSION 

This study introduces a new criterion for assessing the 
delay-dependent stability of linear differential 
systems, developed within the framework of Linear 
Matrix Inequalities (LMIs). Unlike many traditional 
methods, which often rely on conservative 
assumptions or rigid structures, the proposed 
approach improves both the sharpness of the stability 
conditions and their computational tractability. By 
taking advantage of the flexibility inherent in LMI 
formulations, the method achieves tighter stability 
bounds—an important feature for systems where 
delays play a significant role, such as in networked 
control and real-time communication systems. 
Moreover, the framework readily accommodates 
additional system constraints, making it adaptable to 
a broad range of practical applications where 
precision and efficiency are essential. 
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