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DRD-Net: Diabetic Retinopathy Diagnosis Using A Hybrid 
Convolutional Neural Network

Muhammad Hassaan Ashraf*, Muhammad Esham Qureshi, Ahmed Khan, Jawaid Iqbal and 

Musharif Ahmed

Abstract – Diabetic Retinopathy (DR) has become a 
leading cause of blindness among diabetic patients. 
Accurate and timely diagnosis of DR is critical to 
slowing disease progression. This research proposes a 
Hybrid Convolutional Neural Network (CNN)-based 
model, named Diabetic Retinopathy Detection Network 
(DRD-Net). The proposed DRD-Net designed to enhance 
diagnostic accuracy by addressing key challenges such 
as gradient vanishing and lesion scale variability in 
fundus images. Contrast-Limited Adaptive Histogram 
Equalization (CLAHE) was used to enhance contrast 
and highlight lesions in fundus images. To increase the 
diversity of training samples, the proposed framework 
employs geometric data augmentation techniques. 
DRD-Net incorporates the Swish activation function 
along with densely connected blocks to mitigate 
gradient vanishing and enhancing feature propagation 
within the network. Additionally, the model integrates 
two Inception blocks to facilitate multiscale feature 
extraction, which is essential for detecting small 
Regions of Interest (RoI) in fundus images. 
Experimental results demonstrate that DRD-Net 
achieves a precision of 84.4%, recall of 84.5%, F1-score 
of 84.1%, and accuracy of 85.1%, outperforming several 
state-of-the-art models on the IDRiD dataset. These 
results highlight DRD-Net’s potential as an effective 
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solution for automated DR diagnosis, contributing to 
more efficient and accurate DR screening. 
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Multilevel Features, Swish Activation Function. 

I. INTRODUCTION 

Chronic Diabetic Mellitus (DM) can develop in DR, 
a microvascular problem that can damage the retina 
and impair the vision, possibly leading to blindness. 
The blood arteries around the retina are gradually 
harmed by high blood sugar levels in DR, a disorder 
that affects the eyes and progresses over time.  In the 
last 40 years, the number of adults with DM has 
increased five-fold globally, from 108 million in 1980 to 
537 million in 2021 [1]. The countries with the highest 
percentage of diabetics in 2021, according to the 
International Diabetes Federation (IDF), were China 
with 140.9 million people affected by diabetics, India 
with 74.2 million, Pakistan with 33.0 million, and the 
United States with 32.2 million [2].  Type-1 diabetes 
(T1D) and Type-2 diabetes (T2D) patients, 
respectively, have DR in 77.3% and 25.1% of cases, 
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and in 25 to 30% of these cases, diabetic macular 
edema poses a threat to vision [3].  If timely treatment 
is neglected, those who are still in the early stages of 
the disease and everyone with some degree of visual 
impairment brought on by DR risk losing their vision. 
Regular screening is essential to identify DR early and 
enable action to arrest progressive degeneration using 
the right medications. 

DR typically progresses through a series of distinct 
stages, from minor non-proliferative problems with the 
increased vascular permeability to non-proliferative 
diabetic retinopathy (NPDR) problems with vascular 
closure to PDR with retinal and posterior vitreous 
surface neovascularization [4]. There are four further 
different levels of severity of NP-DR: stage zero, stage 
mild, stage moderate, and stage severe [5]. A 
Microaneurysm (MA), a microscopic, dark red lesion 
that appears close to the end of a blood vessel, is one 
of the typical DR symptoms, as seen in Figure 1. 
Retinal vein obstruction, which can resemble MAs, and 
retinal Hemorrhages (HMs), which are caused by 
hypertension, are other DR-related consequences. 
Exudates, which are yellow deposits made of protein 
and lipid residues, develop when capillaries are 
damaged. In the later stages of DR, it becomes even 
more challenging to cure. The mild stage of NPDR only 
exhibits a small number of microaneurysms. In 
contrast, the moderate stage of NPDR is distinguished 
by a great deal of MAs, HMs, and venous beading, all 
of which impair blood flow to the retina. Along with the 
previously stated symptoms, the PDR stage also 
results in the creation of new blood vessels (i.e., 
neovascularization) [6].  

DR can be effectively diagnosed using fundus 
camera, a noninvasive tools in ophthalmology. That 
captures detailed images of eye structures, such as the 
retinal blood vessels, optic nerve head, retina, choroid, 
vitreous, and macula [7]. Fundus photography allows 
for in-depth evaluations of the eye, enabling timely 
diagnoses and effective treatment planning, ultimately 
improving patient outcomes and preserving vision. 

Diagnosing DR from color fundus images requires 
clinicians to recognize subtle features, a complex 
process due to the intricate grading system. 

Automated systems for DR detection have evolved 
into traditional hand-crafted feature-based methods 
and modern deep learning approaches. Different 
classical computer vision and machine learning 
methods, such as Speeded-Up Robust Features 
(SURF) and Scale-Invariant Feature Transform (SIFT) 
which help in identifying DR, with classifiers such as 
Naive Bayes and Support Vector Machines (SVM) 
determining its presence. However, these methods 
face challenges like domain dependence, which limits 
generalization across different imaging conditions, and 
difficulties with high-dimensional spaces that can drag 
down detection performance [8]. 

Based on the limitations of traditional feature 
extraction methods, deep learning methodologies 
using CNNs are preferred for their capability to 
automatically identify spatial hierarchies of features in 
images [9]. CNNs excel in medical imaging due to the 
capability to automatically extract features from raw 
images, eliminating the manual features extraction. 
They capture a range of representations, from simple 
edges to complex patterns, enhancing detection 
accuracy. Despite challenges like the gradient 
vanishing issue and varying scales of retinopathy 
regions in fundus images, the objective of this study is 
to automatically detected Diabetic Retinopathy (DR) 
using CNNs. 

A. Research Contributions  

The research contributions are summarized below: 

This study presents the Diabetic Retinopathy 
Detection Network (DRD-Net), a CNN framework that 
integrates elements from VGG16, DenseNet, and 
Inception Net. DRD-Net leverages the depth of 
VGG16, DenseNet’s connectivity, and Inception Net's 
efficiency, incorporating a "Dense Block" modeled by 
DenseNet-201, which includes features specialized 

FIGURE 1. Normal retina vs. diabetic retinopathy affected retina 
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transition and convolutional layers. The architecture 
involves multiple convolutional and max-pooling 
layers, alongside two Inception sections for the 
extraction of multi-scale features. To enhance feature 
flow and mitigate the gradient vanishing problem, 
dense connections are integrated. The network 
incorporates Global Average Pooling (GAP) for 
feature aggregation, a dropout layer for regularization, 
and concludes with a softmax activated output layer 
for classification. The Swish activation function is 
included to enhance convergence speed and overall 
performance [8]. 

Performance evaluations are carried out to 
compare the proposed diabetic retinopathy detection 
method against prominent CNN architectures 
designed for this DR detection: AlexNet [10], Light-
CNN [11], DenseNet-121[12] , ResNet-50 [13], 
Inception V3 [14], and MobileNet V2 [15]. 

B. Section Organization and Outline 

This study is organized as follows: Current state-of-
the-art is discussed in Section 2, Section 3 outlines the 
proposed architecture of diabetic retinopathy 
detection, experimental findings are discussed in 
Section 4, and in Section 5 we discussed the 
conclusion and future work. 

II. CURRENT STATE-OF-THE-ART 

The rising incidence of diabetes and the serious 
effects of advanced diabetic retinopathy (DR) 
emphasize the importance of early detection. Timely 
diagnosis is vital for effective treatment. With 
advancements in Artificial Intelligence (AI), particularly 
in convolutional neural networks (CNNs), interest in 
their application for DR diagnostics is on the rise. 

Discusses the difficulties in manually interpreting 
color fundus images for diabetic retinopathy (DR) 
diagnosis, as it is time-consuming and prone to errors. 
To address these challenges, the author proposed a 
CNN model that efficiently classifies DR images using 
a streamlined set of learnable parameters. This model 
integrates VGG16 with a spatial pyramid pooling (SPP) 
layer, improving nonlinearity and robustness against 
scale variations. In [11], the authors analyzed several 
CNN-based method for DR detection, and proposed a 
lightweight feed-forward CNN. Using the IDRiD 
dataset, their results demonstrated the effectiveness of 
CNN approaches in DR diagnosis, highlighting CNN's 
significant impact on medical diagnostics. 

In [16] the authors surveyed VGG16 and VGG19 
CNN frameworks for fundus image analysis. Using 
5,000 images, they showed VGG16's superior 
performance in segmenting DR across severity levels 
and suggested that genetic algorithms and 5-fold 
cross-validation could enhance diagnostic accuracy. 
On the other hand, authors [4] addresses challenges 
in DR image analysis, such as low contrast, 
inadequate lighting, and noise, which affect diagnostic 
accuracy. The authors improved the VGG16 
architecture to enhance classification precision, 
employing augmentation and class balancing 
techniques during training of model, which strengthens 
its robustness. 

Ali et al.,[17] introduced Incremental Modular 
Networks (IMNets), which consist of small subnet 
modules enhanced to detect specific features in 
images. This design promotes efficient feature capture 
while minimizing computational demands, improving 
performance. In another study Gangwar et al., [18] 
introduces a novel CNN framework for classifying DR 
images. With ten layers of 3x3 convolutions inspired by 
VGGNet and leaky ReLU activation, the model 
identifies vascular features like hemorrhages, 
exudates, and microaneurysms, categorizing them 
from 'absent' to 'proliferative' based on severity. 

In [19], introduced a deep learning framework that 
incorporates three integrated CNNs into a single meta-
learner for DR diagnosis. Utilizing the EyePACS 
dataset, their model achieved 97.92% accuracy in 
binary classification, outperforming models like 
VGG16 and ResNet-50. However, further 
enhancements in image quality and noise reduction 
are still needed. Turning to [20], the authors combined 
deep learning and machine learning by using features 
from ResNet-50 to enhance a Random Forest 
classifier for DR image classification. This method 
achieved 96% accuracy on Messidor2 dataset and 
75.09% on EyePACS dataset, showcasing the 
effectiveness of integrating these approaches into DR 
diagnostics. 

In [21], the authors outlined a two-phase technique 
for DR detection from fundus images, focusing on 
feature extraction and classification. Their approach 
involves color space transformation, optic disc 
removal, and segmentation of blood vessels. Utilizing 
a Deep Convolutional Neural Network (DCNN) and 
SVM with Genetic Algorithm (SVMGA), they achieved 
98.80% accuracy but lacked detailed severity 
classification. 

In [22] , the authors presented the Coarse-to-Fine 
Network (CF-DRNet), which includes a coarse network 
for binary classification and a fine network for 
classifying four levels DR severity. Using the IDRiD 
and Kaggle datasets with data augmentation, CF-
DRNet outperformed ResNet, achieving an accuracy 
of 83.10% on Kaggle dataset and 56.19% on the IDRiD 
dataset. 

In [23], the authors presented a deep learning 
method to categorize images as either DR or no-DR. 
Their process involves pre-processing, Hessian 
matrix-based segmentation, and feature extraction via 
CNN. Tested their model on DIARETDB1 dataset and 
achieved a precision of 97.2% and an accuracy of 
98.7%, surpassing traditional techniques. 

To combat limited data availability, [24] developed 
a deep learning architecture using MESSIDOR 
dataset, refining AlexNet by adjusting convolution and 
max-pooling configurations in the starting layers and 
enhancing the final fully connected layers, resulting 
notable accuracy. 

In [25], the authors explored deep neural networks 
like VGG16, Inception, and ResNet, focusing on 
transfer learning and employing Gaussian 
preprocessing to reduce noise. InceptionV3 emerged 
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as the top performer with a 81.2% accuracy in training 
and 79.4% validation accuracy. 

In [26], the authors presented the DAG network 
model to extract complex DR features for accurate 
categorization. Their approach, validated with medical 
institution data and the DIARETDB1 dataset, 
demonstrated effective classification. 

In [27], the authors proposed a CNN-based DR 
diagnostic system that accurately categorized fundus 
images by DR presence and severity, achieving 
improved detection rates using a public Kaggle 
dataset. 

 In parallel, [28] investigated integrating CNN with 
meta-plasticity for DR detection, showing enhanced 
performance during backpropagation with the 
InceptionV3 model on a widely available dataset. 

Recognizing the challenges of attaining peak 
accuracy in DR classification with singular-view fundus 
datasets, [29] developed an automated DR detection 
system using multi-view fundus images, employing 
attention mechanisms to extract lesion attributes and 
improve diagnostic accuracy, outperforming traditional 
models on a multi-view dataset.  

Progress in diabetic retinopathy (DR) lesion 
identification faces challenges, especially with small 
lesions. Accurate detection relies on high-resolution 
imaging, highlighting the need for quality retinal 
images. The tiny size of some lesions can complicate 
differentiation between closely located DR sites. 
Furthermore, recognizing severe lesions with large 
receptive fields may encounter gradient issues that 
hinder model learning. Handling high-definition images 
also demands substantial computational resources, 
making training both resource-intensive and costly. 

A. Research Gap Analysis 

A detailed review of the existing literature reveals 
numerous unexplored areas and opportunities for 
further innovation: Research focused on 
straightforward feed-forward CNNs [30], [24], including 
architectures like VGG16 and AlexNet, highlights their 
challenges with the gradient vanishing problem This 
issue becomes especially prominent during the 
training of deep networks, ultimately affecting the 
model’s accuracy and effectiveness [12]. While 
densely interconnected CNNs for DR detection [31] 
appear as a more promising solution compared to 

basic feed-forward CNNs, the extensive incorporation 
of dense connection blocks in some design conductors 
in considerable computational overheads [9]. Although 
dense connection blocks are designed to enhance 
feature transmission, they also significantly increase 
the model’s complexity, making training more 
challenging in resource-limited environments. Despite 
the merits of DenseNet-based DR detection models 
[31], there appears to be an oversight concerning the 
importance of multiscale features [32]. Recognizing 
scale differences is critical, particularly in images that 
display Regions of Interest (RoI) of varying sizes. 
Overlooking this multiscale dimension could 
undermine the network's proficiency in generalizing 
across varied datasets characterized by important RoI 
scale variations [8]. While Inception-Net stands as a 
remarkable CNN architecture adept at extracting 
multiscale features [33], it tends to neglect the 
importance of multilevel features. Such an oversight 
can be detrimental in combating the gradient vanishing 
challenge [9]. Neglecting to leverage multilevel 
features could hinder the network's optimization 
efforts, leading to subpar results. A discernible pattern 
across various CNN designs [27], [34], [35], [36] is their 
reliance on conventional activation functions. At times, 
this leads to a ‘dead neuron’ predicament. When a 
neuron stagnates during training and regularly emits a 
uniform value, and it becomes inert or non-
contributory, which hinders the network's ability to 
learn effectively [32]. These issues make training more 
difficult and limit the model's effectiveness. By 
addressing these gaps, we can pave the way for 
developing DR detection models that are both strong 
and adaptable. Such improvements could lead to 
greater accuracy, better training methods, and 
improved handling of complex datasets. 

III. MATERIALS AND METHODS 

A. Data Acquisition 

The IDRiD (Indian DRImage Dataset) and 
APTOS19 is a key resource for diabetic retinopathy 
(DR) research. Both datasets contain five classes: 
Normal, Mild, Moderate, Severe, and Proliferative. 
The IDRiD dataset comprises 516 high-resolution 
color fundus images, while APTOS19 contains 3,662 
images that capture various aspects of the retina and 
DR stages. In this research, these datasets were 
combined to validate the effectiveness of the 
proposed model. The primary goal is to advance and 

Classes Dataset Post-Augmentation 

IDRiD APTOS19 Total Train Test Total 

Normal 168 1805 1973 1578 395 1973 

Mild 25 370 395 1264 316 1580 

Moderate 168 999 1167 933 234 1167 

Severe 93 193 286 915 229 1144 

Proliferative 62 295 357 1142 286 1428 

TABLE 1. Dataset distribution before and after 

Augmentation 
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benchmark image classification algorithms for early 
DR detection.  

The original dataset distribution is as follows: 
Normal with 1,973 samples, Mild with 395 samples, 
Moderate with 1,167 samples, Severe with 286 
samples, and Proliferative with 357 samples. 
However, it was observed that the Mild, Severe, and 
Proliferative classes had fewer samples, leading to a 
class imbalance issue. To address this limitation, 
geometric augmentation techniques were applied on 
these classes, expanding the total dataset size to 
7,292 images. Of these, Mild with 1,580 images, 
Moderate with 1,167 images, Severe with 1,144 
images, Proliferative with 1,428 images, Normal with 
1,973 images representing healthy retinas. For 
machine learning applications, the dataset is split into 
two sets training and evaluation, with 80% (5,832 
images) allocated for training which helps the model 
to learn the intricate patterns of DR and remaining 
20% (1,460 images) are reserved for testing, providing 
an unbiased assessment of model performance. All 
images are in the universal JPG format, enhancing 
accessibility and compatibility across different 
computational platforms. 

B. Image Preprocessing and Augmentation 

Image preprocessing is key for improving DR 
classification. Images are resized to 224x224 pixels 
for consistency, then pixel values are normalized 
between 0 and 1 to facilitate smoother and faster 
model training, reducing issues like gradients 
vanishing or exploding. To further enhance lesion 
visibility and subtle retinal features CLAHE is applied. 
CLAHE performs localized histogram equalization 
within small regions of the image, enhancing local 
contrast while preventing over-amplification of noise. 
We set the clip limit to 2.0 to preserve critical retinal 
structures like microaneurysms and hemorrhages 
without introducing excessive noise or distorting the 
image. The 8x8 tile grid size ensures effective contrast 
enhancement across the image, preserving both 
large-scale structures and intricate details. 

 To expand dataset diversity and improve model 
adaptability, image augmentation techniques are 
applied. This includes 180-degree rotations to account 
for orientation changes and horizontal and vertical 
flips to help the model recognize retinal features from 
various spatial perspectives. Figure 2 shows visuals of 
geometrically augmented samples. 

C. The Proposed CNN Architecture  

In the field of deep learning for biomedical image 
classification, improving established architectures to 
create better models is a common approach. Our 
proposed architecture combines the strengths of 
VGG16, DenseNet, and Inception Net. By combining 
VGG16's ability to extract rich semantic features, 
DenseNet’s dense connections to improve gradient 
flow and training efficiency, and Inception Net’s 
multiscale feature extraction to handle various lesion 
sizes, we aim to develop a more effective DR detection 

model. This architecture enhances feature extraction, 
computational efficiency, and overall accuracy in 
identifying complex DR patterns. 

 

 

The CNN architecture shown in Figure 3 starts with 
a convolutional and max-pooling block designed to 
capture detailed patterns from color input fundus 
images. The first two layers have 3x3 filters, with the 
initial layer containing 64 filters and the next with 128. 
This gradual increase in filter count enables the model 
to recognize increasingly complex features as it goes 
deeper, while the compact 3x3 filter size helps keep 
computational requirements manageable. 

Following the convolutional layers, a max pooling 
layer is added with a stride of 2, reducing the feature 
map dimensions from 224x224 to 112x112. Max 
pooling decreases spatial dimensions, lowering 
computational complexity and mitigating overfitting. 
The second convolutional and max-pooling block 
builds on the first, using layers with 128 and 256 filters 
to capture increasingly abstract features. After this, a 
max-pooling layer reduces the feature map size to 
56x56, preparing it for more complex analysis. Next is 
an Inception block, designed to capture features at 
multiple scales. It includes four 1x1 convolution layers, 
a 3x3 convolution layer containing 192 filters, a 5x5 
convolution layer containing 96 filters, and a 3x3 max 
pooling layer with stride 1. This arrangement supports 
simultaneous feature extraction at different levels of 
detail and improves computational efficiency by 
reducing dimensionality before applying larger filters. 

After the Inception block, a 1x1 convolutional layer 
containing 256 filters decreases dimensionality and 
enhances non-linearity while decreasing 
computational demands. A subsequent max pooling 
layer with a stride of 2 further lowers feature map 
dimensions. The third convolutional and max pooling 
block follows, extracting 256 and 512 features through 

FIGURE 2. Data augmentation on original image. 
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two convolutional layers, which are then processed by 
another max pooling layer. Finally, a second Inception 
block is introduced, similar to the first, to extract 
multiscale features at a deeper level. 

D. The Activation and Loss Function 

To avoid the need for one-hot encoding, we used 
the sparse categorical cross-entropy loss function in 
this framework for multi-class classification with integer 
target labels. This method maintains computational 
resources and works effectively in the final layers by 
using SoftMax activation, optimizing model to 
maximize the probability of the correct class. The loss 
is mathematically defined as,  

The Activation function Swish is defined as: 
 

 𝑓(𝑥) = 𝑥 × 𝜎(𝑥)  (1) 
 

Sigmoid function is denoted as σ(x), and it's given by 
the equation: 

 𝜎(𝑥) =
1

1+ⅇ−𝑥 (2) 

Mathematically, the Loss is defined as follows: 
 

 𝐿𝑜𝑠𝑠 = − ∑ 𝑡𝑖 log(𝑝𝑖)𝑛
𝑖=1  (3) 

Where pi represents the Softmax probability for the ith 
class, n is number of classes, and ti is the actual labels.  

E. Technologies  

This research utilizes Google Colab for tasks 
ranging from preprocessing of data to model 
evaluation. Colab, a cloud-based Jupyter Notebook 
platform, offers an interactive environment for 
visualization and analysis of data. Its integration with 
powerful GPUs, such as the NVIDIA Tesla K80, 
significantly speeds up computation and reduces 
training time compared to non-GPU systems. 

F. Training and Testing 

For automated DR detection from retinal images, 
we utilized TensorFlow and Keras frameworks. The 
dataset was categorized into five classes, with each 
image resized to 224x224 pixels for computational 
efficiency and detail preservation. We used Keras's 
ImageDataGenerator for image normalization and 
allocated 20% of the data for validation to evaluate the 
model on new samples. 

The Adam optimizer was applied alongside with 
sparse categorical cross-entropy loss, suitable for 
sparse labels. Early stopping was used to monitor 
validation loss and stop training if no improvement 
was monitored for 15 epochs, preventing overfitting. 
Then 60 epochs was set for the training phase, with 
visual plots of accuracy and loss providing insights 
into model performance. 

G. Performance Evaluation Metrics 

In conclusion, we evaluated the model’s ability in 
detecting and categorizing diabetic retinopathy using 
performance indicators, which includes accuracy, 
recall, precision, and the F1-score. 

 

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

 

 𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 2 ×  
(𝑅ⅇ𝑐𝑎𝑙𝑙 × 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅ⅇ𝑐𝑎𝑙𝑙+𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)
 (6) 

 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
         (7) 

 

IV. EXPERIMENTS 

We introduced DRD-Net to improve DR diagnosis 
using deep learning and compared it with six different 
models such as: AlexNet, DenseNet-121, Light CNN, 

FIGURE 3. Proposed DRD-Net backbone architecture. 
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ResNet-50, MobileNet and InceptionNet. Experiments 
included evaluating activation functions, and testing 
each architecture's performance, with DRD-Net 
demonstrating its effectiveness for detecting DR. 

A. Behavior comparison of ReLU and Swish 
Activation Functions  

In the initial phase, we compared the effects of the 
traditional ReLU activation function with the newer 
Swish function using a CNN framework which consists 
of two convolutional and max pooling blocks, as 
depicted in the Figure 4. 

 

 

 

 

 

 

 

 

 

 

This framework utilized two consecutive 
convolutional layers with 3x3 filters to efficiently 
capture localized patterns in the input images. A max 
pooling layer of stride 2 subsequently reduced the 
feature map dimensions from 224x224 to 112x112, 
enhancing computational efficiency and providing 
translational invariance to mitigate overfitting. The 
second block followed a similar structure but focused 
on more complex image details. However, the study 
highlighted that the ReLU activation function suffered 
from "dead neurons" resulting in empty feature maps 
and a loss of critical information, as illustrated in 
Figure 5. 

In contrast, the Swish-activated feature maps in 
Figure 6 showed no blank areas, emphasizing its 
superiority over ReLU. Swish consistently activated 
features, effectively preserving critical details 
essential for diabetic retinopathy detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Max pooling and two consecutive conv. 
blocks. 

FIGURE 5. Feature maps generated with ReLU activation, highlighting the "Dead Neuron" issue shown through visibly blank 
maps. 

FIGURE 6. Feature maps generated with SWISH activation, showcasing the robustness of SWISH by demonstrating consistent 
activation without blank maps. 
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B. DRD-Net Performance Evaluation and Comparison 

We analyze the performance of our customized 
CNN architecture (i.e., DRD-Net). Experimental results 
demonstrate the model's effectiveness. Figure 7 and 
Figure 8 depict the training and validation loss and 
accuracy, illustrating the model's performance 
progression.  

The confusion matrix in Figure 9 illustrates the 
performance of the proposed model across the five 
classes. For the Normal class, the model correctly 
classified 382 out of 395 samples, only misclassified 
13 samples as Moderate, For the Mild class, the 
model correctly classified 259 out of 316 samples, with 
23 samples misclassified as Severe, 33 as 
Proliferative, and only one as Moderate. The model 
performed exceptionally well for the Moderate class, 
misclassifying just 12 out of 234 samples, with 9 
samples classified as Mild and 1 as Severe, correctly 
classifying 222 samples. However, the model faced 
challenges with the Severe and Proliferative classes 
due to their similar and complex patterns. For the 
Severe class, the model correctly classified 188 out of 
229 samples, with 39 samples misclassified as 
Proliferative and 2 as Moderate. For the Proliferative 
class, the model correctly classified 192 out of 286 
samples, with 78 samples misclassified as Severe, 10 
as Normal, 3 as Mild, and 3 as Moderate. Despite 
these challenges, the model demonstrates strong 
overall performance in DR diagnosis, particularly for 
the Normal, Mild, and Moderate classes.  

 

 

 

 

Table 4 presents a comparison of DRD-Net's 
performance against state-of-the-art classifiers for 
diagnosing diabetic retinopathy. AlexNet, a lightweight 
foundational CNN, performs well in the Normal class 
(90.6% precision, 95.4% recall, 92.97% F1-score) and 
Moderate class (85.89% F1-score). However, due to 
inter-class similarity and intra-class variation, the 
model struggles in the Severe and Proliferative 
classes, achieving F1-scores of 57.79% and 49.89%, 
respectively.  ResNet-50, a deep model with residual 
connections, outperforms AlexNet and achieves strong 
results in Normal (94.94% F1-score) and Moderate 
(88.15% F1-score), but performs poorly in Proliferative 
(43.98% F1-score). The computationally efficient Light 
Weight CNN performs well in Normal (95.87% F1-
score) and Moderate (91.03% F1-score) but struggles 
in Severe (47.75% F1-score). With dense connectivity 
for feature reuse, DenseNet-201 struggles in Severe 
(52.33% F1-score) but performs well in Normal 
(94.66% F1-score) and Moderate (89.61% F1-score), 
with high Mild recall (97.2% recall). Inception V3, 
utilizing multi-scale feature extraction, performs well in 
Normal (96.76% F1-score) and Moderate (93.01% F1-
score) but struggles in Severe (45.76% F1-score). 
MobileNet V2, optimized for mobile applications, 
matches DRD-Net in Severe (72.3% F1-score) by 
striking a balance between Normal (94.5% F1-score) 
and Proliferative (72.7% F1-score). For proposed 
DRD-Net's model, Normal class outperforms all other 
models with 97.7% precision, 96.7% recall, and 
97.20% F1-score. The Mild class achieves a notable 
precision of 95.2%, recall of 82.0%, and F1-score of 
88.10%. While the Proliferative class ranks second 
among all models with 72.7% precision, 67.1% recall, 
and 69.82% F1-score, the Severe class excels in recall 
with 64.6% precision, 82.1% recall, and 72.31% F1-
score. These results demonstrate DRD-Net's strong 
performance across all classes. 

 

 

FIGURE 9. Proposed Multi-scale DRD-Net’s confusion matrix. 

FIGURE 7. Training and validation loss for the proposed 
Multi-scale DRD-Net model. 

FIGURE 8. Training and validation accuracy for the 
proposed Multi-scale DRD-Net. 
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AlexNet records an average of 73.4% precision, 
73.9% recall, 72.9% F1-score, and 75.7% accuracy, 
while ResNet-50 shows a slight improvement with an 
average of 77.1% precision, 74.6% recall, 73.6% F1-
score, and 76.1% accuracy, reflecting better precision. 
Light Weight CNN achieves an average of 74.5% 
precision, 73.8% recall, 74.1% F1-score, and 76.2% 
accuracy, improving over ResNet-50 in precision and 
accuracy.  

DenseNet-201 records an average of 76.3% 
precision, 73.8% recall, 73.6% F1-score, and 76.9% 
accuracy, showing a notable gain in recall compared 
to Light Weight CNN. Inception Net V3 performs at an 
average of 79.3% precision, 78.1% recall, 77.6% F1-
score, and 81.1% accuracy, with better recall than 
DenseNet-201.  

MobileNet V2 reaches an average of 80.4% 
precision, 79.8% recall, 79.9% F1-score, and 81.4% 
accuracy, slightly improving over Inception Net V3 in 

F1-score. The proposed DRD-Net model leads with an 
average of 84.4% precision, 84.5% recall, 84.1% F1-
score, and 85.1% accuracy, demonstrating the 
highest performance across all metrics. These results 
are illustrated in Figure 10. 

CNN architecture Class TP FP FN TN Precision (%) Recall (%) F1-Score (%) 

 
 

AlexNet [10] 

Normal 377 39 18 1083 90.6 95.4 92.97 

Mild 264 94 52 1196 73.7 83.5 78.34 

Moderate 207 41 27 1253 83.5 88.5 85.89 

Severe 141 118 88 1319 54.4 61.6 57.79 

Proliferative 116 63 170 1344 64.8 40.6 49.89 

 
 

ResNet-50  [13] 
 

Normal 394 41 1 1066 90.6 99.7 94.94 

Mild 247 51 69 1213 82.9 78.2 80.46 

Moderate 186 2 48 1274 98.9 79.5 88.15 

Severe 189 204 40 1271 48.1 82.5 60.77 

Proliferative 95 51 191 1365 65.1 33.2 43.98 

 
 

Light Weight CNN  
[11] 

Normal 383 21 12 1077 94.8 97.0 95.87 

Mild 243 65 73 1217 78.9 76.9 77.88 

Moderate 208 15 26 1252 93.3 88.9 91.03 

Severe 101 93 128 1359 52.1 44.1 47.75 

Proliferative 178 153 108 1282 53.8 62.2 57.70 

 
 

DenseNet-201  [12] 

Normal 390 39 5 1070 90.9 98.7 94.66 

Mild 307 159 9 1153 65.9 97.2 78.52 

Moderate 194 5 40 1266 97.5 82.9 89.61 

Severe 101 56 128 1359 64.3 44.1 52.33 

Proliferative 132 77 154 1328 63.2 46.2 53.33 

 
 

Inception Net V3  [33] 

Normal 388 19 7 1072 95.3 98.2 96.76 

Mild 305 82 11 1155 78.8 96.5 86.77 

Moderate 213 11 21 1247 95.1 91.0 93.01 

Severe 81 44 148 1379 64.8 35.4 45.76 

Proliferative 198 119 88 1262 62.5 69.2 65.67 

 
 

MobileNet V2  [15] 

Normal 382 31 13 1078 92.5 96.7 94.5 

Mild 239 32 77 1221 88.2 75.6 81.4 

Moderate 185 50 49 1275 78.7 79.1 78.8 

Severe 162 57 67 1298 74.0 70.7 72.3 

Proliferative 221 101 65 1239 68.6 77.3 72.7 

 
 

DRD-Net 

Normal 382 9 13 1078 97.7 96.7 97.20 

Mild 259 13 57 1201 95.2 82.0 88.10 

Moderate 222 20 12 1238 91.7 94.9 93.28 

Severe 188 103 41 1272 64.6 82.1 72.31 

Proliferative 192 72 94 1268 72.7 67.1 69.82 

TABLE 2. Comparative analysis of DRD-Net with state-of-the-art schemes. 
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V. CONCLUSION  

The increasing prevalence of diabetes necessitates 
an urgent need for accurate and rapid diabetic 
retinopathy (DR) diagnosis. This study introduces the 
DRD-Net framework, which automates DR 
identification and grading by integrating features from 
established architectures like VGG16, DenseNet, and 
Inception Net. Our analysis underscores the 
importance of combining both multi-level features 
(MLF) and multi-scale features (MSF) for enhanced 
performance. DRD-Net merges feedforward CNN, 
Inception, and dense connection blocks, achieving an 
accuracy of 85.1%. With superior precision, recall, and 
F1-score, it outperforms models such as ResNet-50, 
AlexNet, Light-CNN, DenseNet-121, MobileNet V2 and 
Inception V3, demonstrating its effectiveness in DR 
detection. As diabetes cases rise, the automation 
provided by DRD-Net can alleviate the diagnostic 
burden on healthcare professionals, representing a 
significant advancement in the integration of medical 
imaging and deep learning.  

Future work will include testing the proposed DRD-
Net framework on more diverse datasets, refining its 
activation functions, and optimizing strategies to 
further improve performance. 
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