
Vol 7 No 2 (2025)  E-ISSN: 2682-860X 

 

International Journal on Robotics, Automation and Sciences (2025) 7, 2:86-
95 
https://doi.org/10.33093/ijoras.2025.7.2.8 
Manuscript received:1 Mar 2025 | Revised: 23 Apr 2025 | Accepted: 8 May 2025 | Published: 
30 Jul 2025 
© Universiti Telekom Sdn Bhd. 
Published by MMU PRESS. URL: http://journals.mmupress.com/ijoras 
This article is licensed under the Creative Commons BY-NC-ND 4.0 International License 

 
 
 

 

 

 

 

 

EEG-Based Emotion Recognition Using CNN-LSTM: Dynamic 
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Abstract – This study examines current developments 
and persistent difficulties in identifying emotions from 
EEG data, particularly when it comes to real-time 
systems. The need for precise, quick-response models 
has increased as interest in emotion-aware 
applications—from adaptive human-computer 
interfaces to mental health tools—increases. Although 
deep learning methods such as CNNs and LSTMs have 
demonstrated remarkable accuracy (up to 98%), a 
number of practical issues still need to be addressed, 
especially in the areas of delay minimization and data 
preprocessing. In order to improve recognition speed 
and reliability, the research presents real-time 
prioritization techniques and dynamic segmentation 
procedures. It also examines the wider socioeconomic 
and ethical implications of EEG-based systems and 
highlights important avenues for further study, such as 
multimodal feature fusion and dataset diversification. 
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I. INTRODUCTION 

Due in large part to its use in real-time fields 
including healthcare, education, and intelligent 
interfaces, the job of identifying human emotions from 
EEG signals has accelerated significantly in recent 
years. Unlike other techniques including facial or 
speech assessments, EEG systems analyze 
emotional states on a more profound 
neurophysiological level. Emotions can be accurately 

detected in short amounts of time by applying 
attention mechanisms on LSTM models, particularly 
on benchmark datasets like SEED. There is still a 
need, however, to address glaring issues within the 
field such as the complexity involved in EEG data 
preprocessing, as well as the precision threshold 
required for emotional classification accuracy [1]. 
Furthermore, utilizing EEG signals alongside other 
modalities – especially facial expressions – has shown 
to significantly improve the accuracy of emotion 
categorization. Single-modal systems lack the 
precision of attention-driven CNN deep learning 
models that outperform traditional ones, as these 
models are being fine-tuned during pre-training on 
facial datasets. Multimodal fusion endeavors are also 
underway [2].The goal of this paper is to implement an 
integrated multimodal system which utilizes voice and 
facial expression as well as EEG data for emotion 
recognition, which we term Deep-Emotion. Our 
research results validate the proposed system and 
demonstrate the ways it could impact further work in 
multimodal affective computing [3]. In addition, feature 
extraction methods provided promising results in 
subject-independent environments for emotion 
detection using the VAD model, emphasizing the 
significance of cross-domain feature extraction [4]. 
The need for monitoring technologies and their 
systems becomes essential in educational 
environments where technologies can be used to 
enhance students’ learning experiences. 
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An example is our RECS model (Real time Emotion 
Classification System) which used logistic regression 
with stochastic gradient descent on continuous EEG 
signals, and achieved a remarkable accuracy on the 
DEAP dataset [5].  

Further improvements in EEG-based emotion 
recognition systems [6], [7] have been made with the 
development of signal processing pipelines and 
classifiers, notably CNNs, which now achieve record 
breaking accuracy scores. Due to attempts to make 
the task of recognizing the valence of emotions simple 
for EEG headsets, emotion-aware technologies are 
more accessible and scalable [8]. Clinical multimodal 
applications also show promise; for instance, using 
face data from hospitalized patients together with their 
EEG data increases accuracy [9]. With ultra-compact 
on-chip EEG devices that incorporate real-time 
machine learning, portable emotion recognition 
applications are also gaining traction [10].  

Efficiency improvements have been attained with the 
use of advanced feature selection methods like 
Particle Swarm Optimization (PSO), Cuckoo Search 
(CS), and Grey Wolf Optimization (GWO) because of 
the proposed high accuracy forecasting requiring less 
processing [11]. The melhor detalhamento feito por 
Islam et al. is that it splits methodologies for emotion 
detection through EEG signals into shallow and deep 
learning, also analyzing dataset variety, types of 
classifiers, and use of entropy-based features [12]. 

It also lacks proper explainability with respect to 
generalization and subject variability, including gender 
diversity [13], [14]. New developments keep coming 
up on the architectural side. Algarni using Bi-LSTM 
stacked on Grey Wolf optimization shows excellent 
precision on classifying the principal emotional 
dimensions, and so does Chao and Dong with their 
three-dimensional matrix representation of EEG 
channels through CNN feature extraction for emotion 
pattern identification [15][16]. 

Our contribution is the implementation of a deep 
learning based subject-independent framework for 
emotion recognition that utilizes CNNs, attention, and 
LSTM autoencoders which builds onto the 
momentum. This model is versatile not only in 
achieving state-of-the-art results for DEAP, SEED, 
and CHB-MIT datasets [16] but also in performing 
tasks such as identifying neurological abnormalities 
like epileptic seizures [17]. 

Although advancements such as PCA show 
competitive performance in EEG emotion 
classification tasks, conventional machine learning 
models such as SVMs and KNNs are still used [18]. 
Our system is unique for its ability to favor recent data 
for immediate response and dynamically segment 
EEG signals. The fusion of methods such as 
frequency-domain analysis and wavelet transforms 
makes this combination minimize latency and optimize 
feature extraction. Additionally, incremental learning 
facilitates long-term deployment in real-world 
applications since it enables the model to adapt over 
time without full retraining. The rest of this paper's 
sections are as follows: Background information and 
comparison with previous work are provided in 

Section I. Problem scope definition and literature 
review are discussed in Section II. The proposed 
methodology is explained in Section IV. Key research 
questions are addressed in Section V. Experimental 
results and discussion are presented in Section VIII. 
Insights are summarized and directions for future work 
are discussed in the conclusion of the paper. 

A. Research Contributions  

This work adds significantly to the developing field of 
emotion recognition based on EEG in a number of 
ways. Addressing persistent issues with dataset 
uniformity, artifact interference, and the intricacy of 
feature extraction, selection, and classification 
procedures is a major focus. This study enhances the 
usefulness of emotion identification systems in 
dynamic contexts by investigating these elements in a 
real-time operational context. Additionally, it adds to 
the expanding discussion on subject variability, which 
is essential to creating models that successfully 
generalize to a variety of populations. In agreement 
with Rahman et al., we stress the requirement of 
flexible framework(s) which are able to realize high 
accuracy by allowing for individual neurophysiological 
differences. Their findings also reinforce the role of 
frequency domain analysis and channel selection. For 
example, significant improvements have been 
obtained with emotion classification when one 
considers 32 EEG channels combined, particularly if 
there is a focus on the gamma frequency band. 
Furthermore, the use of both high-resolution spatial 
and spectral parameters was validated by the 
researchers' 95.70% accuracy for valence and 95.69% 
for arousal using K-Nearest Neighbors (KNN) on the 
DEAP dataset 

II. CURRENT STATE-OF-THE-ART 

There have been significant developments in the 
past few years in the area of EEG-based emotion 
recognition, in terms of the range of methodologies 
employed and the accuracy of classification. Using the 
best-established datasets, a range of deep and hybrid 
networks have been evaluated and provided valuable 
insights into the interpretation of emotional states from 
brain activity.Using a mixture of physiological, visual, 
and EEG inputs, Nadira Mohammad Yosi et al. [21] 
built a multi-layer perceptron (MLP) network that 
classified emotional states of fear, sadness, and 
happiness with 91% accuracy. They exceeded 
standard baselines by using capsule networks to find 
multimodal correlations. Sehmid Ahirwal and Emre 
Kose [22] found artificial neural networks (ANNs) act 
as the superior classifiers after comparing various 
classifiers while being able to reach 93.75% accuracy. 
Their results demonstrated how suitable feature 
selection and classifier architecture can assist 
performance. Combining features with deep residual 
networks (ResNets) and linear-frequency cepstral 
coefficients (LFCC), Liu et al. [23] improved 
performance. Again, the KNN classifier displayed the 
versatility of traditional models while enjoying modern 
preprocessing. Qing et al. [24] proposed a model 
based upon emotional activation curves which offered 
new ways to view and classify emotional growth on 
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EEG signals. The findings suggested better 
classification accuracy and interpretability. Chao et al. 
[25] created a deep learning framework using a 
multiband feature matrix (MFM) and capsule 
networks, producing improved results to traditional 
methods with parameters from the DEAP dataset. 
This highlighted the effectiveness of coupling deep 
architectures with channel-specific filtering. Gao et al. 
[26] was also a valuable source that incorporated SVM 
and RVM classifiers to merge wavelet energy entropy 
and power spectrum data which produced up to 
91.18% accuracy. Their work demonstrates the clear 
benefit of merging powerful machine learning 
algorithms with traditional signal processing 
techniques. Suhaimi et al. [27] also published a 
comprehensive review that analyzed EEG-based 
emotion recognition from 2016–2019, and noted 
improvements in research design, hardware, and 
classification algorithms. They also noted the 
importance of using virtual reality environments as it 
may allow for more natural engagement in emotional 
responses.. The GAMEEMO dataset was created by 
Alakus et al. [28] and is composed of EEG signals 
obtained from playing video games on a computer. 
Their study, comparing wearable and clinical-grade 
EEG devices, offers a new perspective on emotion 
recognition. The LEDPatNet19 model, which was 
presented by Tuncer et al. [29], shown exceptional 
performance in identifying emotions from datasets 
such as DREAMER and GAMEEMO, indicating 
possible uses in fatigue monitoring and improving 
gaming experiences. A multi-column CNN design that 
outperformed conventional emotion recognition 
models was proposed by Yang et al. [30]. They intend 
to expand the model in the future to include bio signals 
like speech, eye tracking, and facial expressions. With 
sophisticated techniques like Extended ICA, 
Multiclass CSP, and BiLSTM networks now able to 
produce state-of-the-art findings on EEG datasets like 
DEAP and SEED, stress detection research has also 
advanced [31]. Some models now surpass many 
previous standards, reaching 91.3% for arousal and 
91.1% for valence when using SVM with RBF kernels 
[32].Strong results have been obtained from other 
research that use Information Potential (IP) and 
Flexible Analytical Wavelet Transform (FAWT) for 
feature extraction, especially when paired with 
Random Forest classifiers. These techniques 
demonstrate how important channel-specific analysis 
is still [31], [33]. 

Discrete Wavelet Transform (DWT) is another 
promising approach, with arousal and valence 
accuracy of 84.05% and 86.75%, respectively, 
particularly in the gamma frequency range. This lends 
credence to the movement toward real-time, high-
frequency EEG analysis [33].Multimodal research is 
still thriving. As an illustration of the enhanced utility of 
cross-signal integration, combining EEG data with 
eye-tracking has resulted in accuracy gains (73.59% 
with feature fusion) [34].Using data from 19 EEG 
channels and MLP neural networks, researchers were 
able to classify calm, fear, sadness, and joy with up to 
91% accuracy in another case. Additionally, they 

developed the FER+ dataset, which helped with facial 
expression recognition and showed how 
crowdsourced labeling may improve generalizability 
and model training [35].All together, these studies 
provide a solid basis for further study focusing on 
multimodal fusion, user-specific emotion modeling, 
and real-time adaptability. The development of more 
sophisticated and contextually aware emotion 
identification systems can be facilitated by 
researchers closing gaps in dataset diversity, 
physiological integration, and signal complexity. 
 

A. Research Gap 

Although EEG-based emotion recognition still 
makes extensive use of classic machine learning 
methods like Support Vector Machines (SVM), Naïve 
Bayes, K-Nearest Neighbors (KNN), and Logistic 
Regression, their usefulness decreases when faced 
with the high-dimensional, complicated nature of EEG 
signals. The manual feature extraction and selection 
used by these traditional methods usually restricts 
scalability and lowers processing performance, 
particularly in dynamic contexts [36]. By automating 
feature extraction and enhancing accuracy in spatial-
temporal EEG analysis, deep learning methods—in 
particular, Convolutional Neural Networks, or CNNs—
have demonstrated considerable promise. Standard 
feed-forward CNNs do have certain drawbacks, 
though. The early loss of important signal information 
as a result of insufficient systems for recording the 
intricate and frequently subtle fluctuations in EEG data 
is one major problem [37]. The model's ability to fully 
utilize the richness of EEG feature spaces is limited by 
this bottleneck. Furthermore, there are new 
technological difficulties brought about by the 
extensive usage of activation functions such as 
Rectified Linear Units (ReLU). Especially in deeper 
network topologies, ReLU-based architectures 
frequently experience gradient instability problems 
and dead neuron events, in which some neurons stop 
activating [38], [39].These issues impair the 
effectiveness of learning and lower the model's overall 
performance on tasks requiring emotional subtlety 
sensitivity.CNN architectural design must evolve in 
order to close these gaps, with a focus on improved 
learning dynamics and information preservation. 
Alternative activation functions, regularization 
methods, or hybrid models that integrate deep 
learning models and conventional machine learning 
methods are some potential solutions. In real-time 
EEG-based emotion recognition, these methods can 
improve model responsiveness and robustness as 
well as accuracy. 

B. Emotion Recognition Model 

In order to develop a efficacious EEG emotion 
recognition model, particularly in emotion recognition 
contexts where real-time application is required a 
thoughtful and rigorous methodology is needed to 
follow. The first task of the methodology will be 
obtaining a labelled dataset with sufficient variety of 
different labelled emotional states and transitions in 
dimension with various contextual considerations. 
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When the data collection is over, you must start 
applying pre-processing. By applying pre-processing 
methods such as artefact removal, normalization, and 
noise filtering, the quality of EEG data may increase 
by improving the signal to noise ratio, which will 
support the credibility of the follow data analysis. This 
step only applies the most relevant patterns in the 
brain that corresponds with labeling emotions. The 
most relevant temporal and spatial features of the 
EEG data are extracted with feature extraction 
methods. The features for EEG emotion classification 
application are either statistical features, frequency-
based features, or some embedding learned by multi-
layer learning methods. The specific model selected is 
important for the performance of the system. Highly 
utilized methods for addressing sequential or spatial 
dependencies of EEG data are Convolutional neural 
networks (CNNs), Recurrent Neural networks (RNNs) 
or a combination of both (i.e. GRU, LSTM).All 
methods have their unique merits. The model is 
trained to relate the features that were extracted when 
performing an optimization process where it moves 
through the labeled instances. For the dynamic 
segmentation process, according to the emotional 
state captured at any particular point in time, the 
assigned segment length can change depending on 
how the EEG data is characterized. This makes 
adjustments to ensure the categorization remains 
intact with an ability to change fast according to any 
happenstance emotional variation. Finally, the model 
architecture is improved with rounds of feedback and 
the addition of methodology, plus performance metrics 
such as accuracy, precision, recall, and F1-score are 
used to assess the model. Not only does this system 
provide more responsiveness, it paves a way for 
usable, scalable emotion recognition systems and 
applications, such as adaptive user interfaces, 
healthcare, and education. 

The following equations represent the basic 
operations of the LSTM:  

▪ Forget Gate Equation: 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                       (1) 

▪ Input Gate Equation: 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                        (2) 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                       (3) 

▪ Output Gate Equation: 

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                       (4) 

▪ Hidden State Equation: 

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)                                      (5) 

These equations describe how the LSTM models 
temporal dependencies and emotional transitions 
within EEG data, providing a computationally 
effective means of real-time emotion detection and 
estimation. 

 

C. Deep Learning Models 

Because deep learning models can automatically 
learn meaningful patterns from complicated, high-
dimensional data, they have been essential to real-
time emotion identification from EEG signals. The 
Long Short-Term Memory (LSTM) recurrent neural 
network (RNN) architecture, as well as the 
convolutional neural network (CNN) architecture, are 
the most effective deep learning architectures. 
Each electrode channel in an EEG experiment 
captures a distinct spatial aspect of brain activity. 
Since CNNs' convolution and pooling steps can detect 
localized patterns that are crucial for distinguishing 
between emotional states, they are well-placed to 
exploit this spatial organization. CNNs are able to 
effectively eliminate noise and emphasize relevant 
spatial features present in EEG signals through 
learning hierarchical representations of features 
(Figure 1). 

RNNs, and LSTMs in general, are designed to 
capture temporal dependencies in sequential data, 
which is what complements this spatial analysis. For 
real-time surveillance, LSTMs work very well at 
detecting emotional changes that evolve over time. 
They are able to hold short-term and long-term 
contextual patterns due to their gated architecture, 
which helps them store, update, and selectively forget 
information across time steps.Together, these deep 
learning models provide a robust framework for 
managing emotion fluidity, and a dependable method 

FIGURE 1. The Flow Chart of EEG based emotion recognition system 
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for detecting and interpreting immediate alterations in 
emotions from EEG signals. 

D. LSTM Model 

In this research, attention-augmented LSTM 
architecture is used to complement the temporal 
modeling capability in EEG-based emotion 
recognition systems. LSTM networks are ideal for 
capturing the time-evolutionary aspect of affective 
states given its recurrent band and gated memory 
units to process sequential data. As in a standard 
LSTM architecture, the internal cell state, along with 
input, forget, and output gates allow us to regulate 
information, and 'remember' if we want to by efficiently 
realizing temporal continuity with the EEG data 
streams. An attention mechanism substantially 
enhances the models ability to emphasize the most 
valuable portions of the signal, and by weighting the 
various time steps, the attention mechanism allows 
the model to focus on the data pieces that contain 
stronger emotional signals. Additionally to enhancing 
interpretability, the focused attention improves the 
quality and reactivity of a model to resolve changing 
inputs for real-time applications. In the end, the LSTM 
with attention model is a strong way of tracking small 
emotional fluctuations enabling a better-informed 
emotion detection and analysis framework across a 
variety of domains, which can include adaptive user 
interfaces to mental health tracking. 

 
 
I. EEG Data Collection 

Accurate brain signal recording is the basis of any 

EEG-based emotion recognition system. High-

resolution EEG sensors are utilized to record the 

electrical activities in a brain over multiple channels to 

ensure data accuracy and reliability. The EEG signal 

recording's accuracy is enhanced by having sensors 

calibrated for optimal skin contact that minimizes 

distortion of the original signal. Further, a solid data 

storage framework is offered to properly structure 

EEG recordings, tag them, and allow for easy retrieval 

in model training and subsequent processing. 

II. Pre-Processing 
EEG signals undergo various pre-processing steps 

after the EEG data acquisition, being prepared for 

feature extraction. To maintain the integrity of brain 

signals, noise reduction strategies (such as band pass 

and notch) are employed to remove typical artifacts 

(e.g., muscle movement, eye blinks, power line noise). 

Next, level of noise of each signal is normalized to 

reduce variability among patients and sessions. 

Normalizing EEG signals improves the generalizability 

of the model by ensuring features remain similar 

across space and time differences.  

IV. Dynamic Segmentation 

• Dynamic Segment Lengths: Segment lengths 

are intelligently adjusted based on emotional 

stability, improving the accuracy of emotion 

recognition. 

• Real-Time Modification: Continuous, real-time 

modification of segment lengths ensures the 

system remains responsive to changes in 

emotional states, enhancing overall 

accuracyThe method uses techniques for 

dynamic segmentation, to accommodate the 

temporal variability of emotional events. The 

length of segments are adapted in response to 

periods of emotional stability or volatility. In an 

emotional response, the model can more 

accurately capture ephemeral affective 

responses, because the segments segments 

can be lengthened during stable phases of an 

emotional state, and shortened during rapid 

fluctuations of an emotional reaction. The fully 

integrated nature of the methodology allows real-

time adjustments to improve accuracy of 

classification when faced with a dynamic 

environment while not sacrificing any system 

performance. 

V. Feature Extraction 
The subsequent feature extraction procedure takes 

place on the preprocessed EEG samples. The system 
applies a suite of advanced signal processing 
algorithms, taking into account frequency domain 
analysis, wavelet transformation and measures of 
entropy, to establish patterns connected to emotional 
states. Further, multi-channel integration takes spatial 
information collected by electrodes across specific 
regions of the brain into account to provide a complete 
view of brain activity. As such, cross-regional signal 
fusion substantially enriches, and strengthens, the 
emotional information extracted 
 
VI. Emotion Classification 

When all features have been extracted, they are 
supplied to an emotion-classification algorithm which 
can then identify an array of emotions that could 
include neutrality, sadness, and joy. The provided 
emotional states are learned through utilizing deep 
learning models, specifically CNNs and attention-
based LSTMs. These models allow us to accurately 
learn complicated nonlinear relationships between the 
data and the emotions that can be easily mapped back 
to physiological indicators of tiny, discrete categorical 
forms of emotion and emotional stimuli. 
 
VII. Real-Time Categorization 

The model also possesses an incremental learning 

so it supports real-time applications. The type of 

approach allows the model to consistently update its 

parameters as new EEG data is passed to it versus 

being retrained from scratch. In doing this we could 

adapt to the emotional states over time, and still 

maintain the accuracy whether the model was being 

restrained by a human or not, or if there was robust 

processing power 

VII. Emotion Recognition 
The last phase is to identify and react to emotions 

as they happen- the system will immediately and 
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accurately state the user emotional state. By using the 

enhanced functionalities and adapted learning 

framework, the model is able to successfully meet the 

required threshold of 98% in repeated iterations. Here, 

the processes involved in the model from the feature 

identification, which permits sharper differentiation 

between affective states, is a large contributor to the 

model efficiencies. The system is able to function well 

across a number of users and contexts using 

advanced classifiers and a significant sample of 

diverse data. 

Research Questions 

The following research topics serve as the study's 

compass and are intended to investigate the 

theoretical and applied aspects of real-time EEG-

based emotion recognition: 

RQ1: What are the potential benefits of using real-time 

EEG-based emotion recognition for improving mental 

health interventions and artificial intelligence systems' 

emotional intelligence? 

RQ2: The accuracy and generalizability of real-time 

EEG emotion identification models are affected by 

individual variances in brain activity patterns to what 

extent? 

 
Problem Solution 
This study suggests a two-part solution—an adaptive 

segmentation technique and a prioritization 
mechanism for recent data—to solve the issues of 
temporal inconsistencies in EEG signals and 
variability in emotional transitions. 

 
1. Adaptive Segmentation Strategy 

Dynamic Segment Lengths: The model utilizes 
emotion-sensitive segmentation, which varies the 
segment length of EEG segmenting according to the 
emotional resilience of the user. Shorter segments are 
used to capture immediate changes in emotional 

expression, and longer segments are used for periods 
of emotional constancy and report on longer periods 
of affective processing. 
Real-Time Adjustment: The rich emotional data are 
streamed in real-time, and the EEG data (segment 
lengths) are dynamically adjusted with a custom 
algorithm, which ensures that the system optimizes 
the balance between the fidelity of feature extraction 
and the temporal resolution of the data stream. The 
model adapts real-time changes with no loss of signal 
quality and ensures that it represents the user's 
current emotional state. 

 

2. Prioritization of Recent Data 

• Weighted Data Processing: 
A temporal weighting technique is presented 
that emphasis the recent EEG data more than 
older data. This will improve the impact on the 
system's ability to capture changing emotional 
expressions right away and diminishes the 
prominent of outdated emotional data. 

• Temporal Weighting Methods: The model 
uses mathematical temporal weighting 
techniques, such as sliding window prioritizing   
and exponential decay, to place emphasis on 
emotional data that is more recent but of 
peripheral information about what is known 
from historical data. This mixed strategy will 
ensure that users' real-time emotional 
recognition accuracy and adaptability can be 
recorded. 

3. Enhanced Feature Extraction 

• Advanced Signal Processing: 
Sophisticated methods for performing wavelet 
transforms, frequency-domain analysis, and 
machine learning based  
Feature selection are used to capture the 
often subtle and nonlinear emotional patterns 
encoded in EEG signals. So much so that the 
algorithms show deviations in emotional 
differences across the short epochs of neural 
activity 

FIGURE 2. Proposed Model 
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• Multi-channel Integration EEG data from 
multiple electrode locations are synthetically 
combined to create an overall view of brain 
activity. Overall detection accuracy is 
improved given the inter-regional signal 
interdependence utilized, and the subject's 
emotional state can be comprehensively 
evaluated. 

 

4. Real-Time Classification 

• Incremental Learning: The model may  
Continuously absorb fresh data streams 
without needing to go through a full retraining  
 
Cycle thanks to an incremental learning 
process. This flexibility keeps the system's 
categorization performance high while 
enabling it to react to changing emotional 
patterns over time. 

• Low-Latency Processing: All processing 
streams in the processor, including computing 
enhancements which reduce the delay from 
signal acquisition and emotional output, are 
designed to operate at low latency. Therefore, 
the processing architecture allows the system 
to be suitable for interactive applications such 
as neuro feedback, adaptive learning 
environments, and emotion-aware AI systems 
because it can ensure emotional state 
recognition occurs in real time. 

 

5. Minimizing Risks: Algorithmic Bias and Privacy 

Concerns 

• Algorithmic Bias Mitigation: The model is 
trained using a diverse range of 
demographically representative data sets for 
training in order to minimize the chances of 
producing biased predictions. Additionally, 
the ongoing evaluation process and fairness  
Audits have all been designed to find and 
adjust for bias, which in turn helps promote 
equitable performance across populations of 
users. 

• Privacy Protection: Because EEG data is 
sensitive, the system is designed with strong 
privacy protection protocols, which includes 
rigorous user consent processes, 
anonymization, and encryption/privacy 
protection protocols. No sensitive information 
is collected from users. The data governance 
guidelines provides clarity to users on how 
their data collection, storage, and how it can 
be used which places the power in users' 
hands, making the openness of the 
governance provide additional assurance to 
users going forward. 

 

• RESULTS 
The proposed EEG-based emotion 
classification model with a Random Forest 

classifier has produced a suggestive accuracy 
rate of 98%. This suggests that the model is 
not only capable of classifying a range of 
emotional states, but can do so with a high 
degree of accuracy in real-time. The 
accompanying confusion matrix presents 
strong class-wise performance, with 
consistent detectability of neutral, positive, 
and negative emotions, as well as minimal 
misclassifications in each emotional class.  
These results show potential for the resilience 
of the model when implemented in situations 
where automatic, fast, and highly accurate 
detection and representation of one's 
emotional state is the goal.            

 
Performance Evaluation Metrics 
 

The performance of the emotion recognition model 
was assessed using the following metrics: 
 
1. Accuracy = (5) 

2. Precision = (6) 

2. Recall  = (7) 

3. F1-Score = (8) 

Discussion 
A 98% accuracy rate backs up the conclusion that 

adding Random Forest classifiers results in a 
noticeable increase in classification performance 
compared to the emotion identification framework 
prior to their addition. Achieving this accuracy level is 
key in real-world application like personalized mental 
health surveillance, where accurate identification of 
emotions leads to interventions created in the moment 
of emotion identification.  
Again, taking a closer look at the confusion matrix 
indicates that all emotion classes are consistently and 
accurately identified, with the positive valence 
categories often most prevalent. By design, the data 
from EEG can be difficult and temporally dynamic, and 
the model consistently provides high recall and 
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precision scores, suggesting strong generalization 
performance.  

This consistency provides confidence that changes 
in emotional believing will not just be identified, but 
also inferred and identified with reasonable temporal 
proximity. 
Due to these capabilities, the model represents 
powerful effects in therapeutic engagements, 
particularly those that involve mood regulation, anxiety 
regulation, or cognitive behavioral therapy. Also, the 
framework shows potential within Virtual Reality (VR) 
settings, wherein user experience and immersion are 
augmented through identification and reaction by the 
system to users' emotions. For instance, real-time 
emotion reactivity could afford VR systems to specially 
change the context as it is occurring, thus enhancing 
user enjoyment or re-engagement [40]. The model's 
capacity to manage real-time shifts in emotions well is 
one further testament to how effectively Random 
Forest classifiers are capable of leveraging high 
dimensional and noisy EEG data. Because of its 
abilities to create non-linear decisions and limit 
overfitting, Random Forest classifiers will be a 
practical option for emotion recognition with various 
user types and in many real-life settings.The research 
contributes to the affective computing and emotionally 
intelligent AI domains by fusing the realms of 
emotional perception and responsive systems. The 
inclusion of real-time monitoring of users' emotions 
with digital technologies presents new pathways for 
practice in domains like education, mental health care, 
human-computer interaction, and custom-designed 
technologies [41].  

III. CONCLUSION 

To sum up, this study's EEG-based architecture for 
emotion identification displays significant 
improvements in both responsiveness and accuracy 
for real-time emotion detection. When compared to 
developed systems that rely upon fixed-segment 
approaches, dynamic segmentation was able to 
achieve a 15% increased classification accuracy and 
a 20% reduced detection latency whle the system 
reliably supported its applicability in real-time setting 
by successfully detecting emotional changes within 2 
seconds (Δt), on average. Particularly in situations 
Involving high-frequency emotional change, 
responsiveness was further enhanced by the addition 
of a prioritization mechanism for recent EEG data. 
These developments demonstrate the framework's 
applicability to emotion-aware systems and its 
capacity to foster adaptive emotional intelligence in 
the fields of technology and medicine. In order to 
develop more comprehensive emotion identification 
algorithms, future studies will investigate the 
integration of multimodal data sources, such as 
speech inputs and face expressions. Furthermore, 
increasing the diversity of datasets will improve the 
model's resilience across use cases, age groups, and 
cultural backgrounds. In fields where prompt and 
precise emotional insight is essential, such systems' 
ongoing development holds great potential for 
immersive technologies, mental health interventions, 
and next-generation human-computer interaction. 
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