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Numerical Integration Approach for Nonlinear Differential 
Equation in Growth Modelling
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Abstract – The nonlinear ordinary differential 
equation (ODE) is a common mathematical model for 
real-world problems. However, its analytical solution is 
hard to find and may not exist due to the nonlinear and 
complex structures. Thus, an approximate method is 
usually employed in mathematical modelling to obtain 
its solution. This study applies numerical integration 
techniques, namely Gaussian quadrature and 
Simpson’s rule methods, to solve nonlinear ODE, which 
is a hyperbolic growth model. We first discuss the ODE 
model and then substitute its exact solution model into 
the ODE model to obtain the model’s numerical solution 
using numerical integration approaches. Next, we aim 
to predict the solution of the nonlinear growth model by 
proposing two linear models and integrating them 
iteratively. We introduce a least square optimization 
problem and derive a set of first-order necessary 
conditions for estimating the model parameter 
optimally. A gradient descent method is employed to 
iterate and update the solution of the linear model. The 
numerical integration techniques are efficient, while the 
proposed method has proved to be an alternative 
approach to handling nonlinear ODEs, especially for a 
nonlinear growth model, since the optimal linear model 
solution satisfactorily approximates the growth model 
solution with a small mean square error value.  

Keywords—Nonlinear Ordinary Differential Equations, 

Approximate Solution, Numerical Integration Approach, 

Growth Modelling, Euler, Runge-Kutta.  

 
Corresponding Author email: mazzura@uthm.edu.my, ORCID: 0000-0001-6732-9749  
Hui Shan Tai is with Department of Mathematics and Statistics, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, Muar, Johor, 

Malaysia (e-mail: aw210214@student.uthm.edu.my) 
Srimazzura Basri is with Department of Mathematics and Statistics, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, Muar, Johor, 

Malaysia (e-mail: mazzura@uthm.edu.my) 
 
 

I. INTRODUCTION 

Nonlinear ordinary differential equations (ODEs) 
are a common mathematical model for representing 
real-world problems, as an ODE model represents a 
rate of change [1]. They are an extension of the 
derivatives in calculus, and the anti-derivative is called 
an integral [2]. ODEs have been well-studied in a wide 
range of applications, from engineering sciences to 
financial business, either as initial value problems, 
boundary value problems, or dynamical systems.  

In a nonlinear ODE, the dependent variable and its 
derivatives appear nonlinearly. Hence, nonlinear 
ODEs have a complex structure, and closed-form 
solutions are generally unavailable [3]. An initial value 
problem, which consists of an ODE and an initial 
condition [4] is the common mathematical model used 
to represent real-world problems. Al-Mazmumy [5] has 
proposed a modified Adomian decomposition method 
to solve nonlinear initial value problems for ODEs. 
Koroche [6] used the fourth-order Adams predictor-
corrector method to approximate the exact solution of 
the proposed first-order initial value problem.  

There are many existing solution methods, such as 
Euler and Runge-Kutta fourth order (RK4), for solving 
nonlinear ODEs. Sharma [7] proposed using the finite 
difference method and Runge-Kutta (4,5) to solve the 
nonlinear problem. Capuano [8] developed the 
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Backward Euler method with the Newton-Raphson 
method to replace the Runge-Kutta methods in solving 
nonlinear ordinary differential equations. The 
numerical methods embed the definition of derivative 
into the nonlinear ODE and convert it to a discrete form 
to simplify the calculation procedure in a digital 
computer to give an approximate solution of a 
nonlinear ODE [9].  

In recent years, machine learning approaches have 
been employed in solving differential equations. 
Televnoy [10] proposed embedding a modified Runge-
Kutta method into the neural ODE to minimize the 
fading gradients issue, and the results are compared 
with standard machine learning methods. Viana [11] 
proposed to implement specific numerical integration 
methods, such as the Euler and Runge-Kutta methods, 
on prescribed recurrent neural network cells to reduce 
the gap between predictions and observations of 
systems described by ODEs. Jaradat [12] developed 
an adaptive time-stepping control algorithm based on 
the control theory approach for solving the PROTEUS-
NODAL code, which is an ODE initial value problem. 
Similarly, Ratchagit [13] demonstrated the applications 
of machine learning techniques, such as artificial 
neural network (ANN), long short-term memory 
network (LSTM), and convolutional neural network 
(CNN) to predict the concentration of PM2.5 particles 
in Chiang Mai. This study shares a common goal of 
minimizing prediction error through optimization-based 
iterative methods, even though the research field 
differs.  

However, direct integration methods based on 
quadrature rules are generally less popular in solving 
nonlinear ODEs due to the difficulty and time-
consuming in integrating complex nonlinear functions 
explicitly, even when they are well studied and applied 
in specific classes of problems, such as collocation-
based solvers. Furthermore, using the Riemann sum 
theorem supports the Euler approximation method. 
Besides, the analytical solution of nonlinear ODE is 
also not easy to find since the structure of the equation 
is nonlinear and complex. The direct integration 
technique cannot be applied to obtain the exact 
solution of a nonlinear ODE since many functions in 
nonlinear ODE have unknown derivatives. In addition, 
some non-autonomous and nonlinear ODEs, which 
have an explicit function of time, will burden the 
calculation procedure and be costly.  

Therefore, three objectives of the study are 
established. First, to approximate the solution of 
nonlinear ordinary differential equations using a 
numerical integration approach of a linear model. 
Second, to predict the solution of growth models with 
the numerical integration approach of a linear model. 
Third, to verify the efficiency of the numerical 
integration approach of a linear model in solving 
nonlinear ordinary differential equations. For 
illustration, a nonlinear growth model is studied.  

II. METHODOLOGY 

Consider a general nonlinear ordinary differential 
equation (ODE) model in growth modelling given 

 ( )
dx

f t
dt

= , (1) 

where x is a state vector, f is the dynamic function and 

/dx dt is the rate of change of the state with respect to 

time t  [14]. By integrating both sides of (1), the solution 

is given by 

 



= +  ( ) ( ) ( )

t

t
x t x t f d  , (2) 

with


( )x t is the initial value and  is a dummy variable 

for integration. The ODE model (1) has a nonlinear and 
complex structure, which makes it difficult and 
expensive to solve the integral (2) directly using 
standard mathematical methods. However, the 
following numerical integration approaches can be 
used for solving the integral in (2).  

(a) The Simpson’s Rule 

 


 



− + 
  +  + 
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(b) The Gaussian Quadrature Rule 
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+ +   
      

t t t t t t
f . (4) 

Notice that (3) is an adaptive quadrature, while (4) 
is a non-adaptive quadrature. Gauss quadrature and 
adaptive Simpson’s rule are highly accurate for 
smooth and nonlinear integrands and have low 
computational cost. Thus, they are suitable for 
handling the smooth behavior of the nonlinear ODE.  

Now, we assume that the solution from (2) is 
measurable by the output equation, 

 =( ) ( )y t x t  (5) 

without knowing the ODE model (1). Also, consider a 
general linear model, 

 = 
dx

a t
dt

, (6) 

where a  is the model parameter known as the growth 

rate. The solution of the linear model is given by 

 



= + ( ) ( )

t

t
x t x t a d  . (7) 

After handling the integral part, the solution of (7) is 
expressed by  

  

 


= +   −


( ) ( ) ( )x t x t a t t . (8) 

The transformation substitutes the solution model 
into the nonlinear ODE so that the rate of change 
depends only on time. This enables a direct and 
unique relationship between the model parameters 
and the output data by expressing the solution through 
a linear parameterized structure. In this way, 
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parameter identifiability is preserved under the 
transformation.  

Notice that the solution of the linear model in (6) 
will not give the solution to the nonlinear ODE in (2) 
due to the different structures of the models (1) and 
(6). Thus, the solution of the linear model in (6) is 
unable to predict the solution of nonlinear ODE in (2).  

Nevertheless, we propose a least squares 
optimization problem,  

 



= − −

 
ΤMinimize ( ( ) ( )) ( ( ) ( )) 

t

t
J y x y x d     , (9) 

where J  is the objective function representing the 

differences between the nonlinear ODE model and the 

linear model and T is the transpose operator. The 
objective function (9) is convex, as it has a quadratic 
form with respect to the model parameter a , and its 

Hessian matrix is positive definite. With this problem, 
we aim to estimate the model parameter a  through 

the observation of the output ( )y t  such that the 

objective function J  is minimized, and the solution of 

the linear model is updated as closely as possible to 
the output ( )y t . On this basis, the solution of the 

nonlinear ODE can be predicted using the linear 
model. This problem is regarded as a prediction of a 
nonlinear ODE through a numerical integral method of 
a linear model.  

 From the objective function (9), the gradient is 
derived by  

 
T( ( ) ( )) ( )

J
y t x t t t

a

 



 
= −   −

 
, (10)  

and the model parameter a  is updated by the 

recursion equation,  

 

( )

( ) ( )

i

i i J
a a

a
+  

= −   
 

, (11) 

where   is the step size and i  is the iteration number. 

The recursion equation in (11) is known as the 
steepest gradient descent method [15] [16]. During the 
iterative procedure, the step size   and the initial 

value of the model parameter ( )a  are required to start 

the iteration. Due to the convexity and smoothness of 
the objective function, the gradient descent method 
(11) is guaranteed to converge to a global minimum 
under appropriate step size selection. A small step 
size is chosen for the gradient descent method to 
prevent overshooting during the iterative process. The 
first-order necessary condition [17]  

 
J

a


= 


 (12) 

is satisfied, and the model parameter 

 ( ) ( )i ia a+   (13) 

is expressed when the linear model converges toward 
the nonlinear solution. This implies that two model 
parameters have an almost equivalent value within an 
accepted tolerance  , which is mathematically written 

by  

 
( ) ( )i ia a + −  . (14) 

 Hence, we denote the model parameter obtained 

from (13) as â , and the predictive model is given by 

 
ˆ

ˆ
dx

a t
dt

=   (15) 

while the prediction solution in the discrete time is 
represented by  

 ˆˆ ( )k k k kx x a t t 

+ +


= +   −


, (16) 

where 

 ˆ ˆ( )k k k kx x y x= + −  (17) 

is a line search equation that satisfies the first-order 

necessary condition /J x  =  , and  is the step size 

for the line search equation, for the time step 

, , ..., k n=   . Here, the term 
ky is the discrete time 

of the output ( )y t . As a result, the solution (16) will 

approximate the solution of the nonlinear ODE in (1).  

III. RESULTS 

In this section, we consider the hyperbolic growth 
model, as expressed by 

 
dx x

r
dt x





= , (18) 

with the initial population ( )x t x
 

=  at time t t


= , 

where r  is the growth rate and x  is the population at 

time t . While /dx dt  is the rate of change of 

population growth x  over time t . By using the 

separable variable method and integrating both sides, 
the solution of (18) is presented as follows. 

 ( )
( )

x
x t

r t t





=
− −

. (19) 

Then, we consider a hyperbolic growth model [18],  

 
.

.

dx
x

dt

 
=

 
, (20) 

with the initial condition .x


=    for t   

months. The exact solution of (20) is given by 

 
.

( )
.

x t
t

 
=

−  
, (21) 

where t


=  . Figure 1 shows the exact solution curve 

of the model (20), and it is then further used as the 
observed data. The points in the figure are generated 
from (21), and they show a hyperbolic growth curve.  
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FIGURE 1. Exact solution curve of hyperbolic growth 
model    

Substituting (21) into (20), the nonlinear hyperbolic 
growth model is expressed by 

 
( . )( . )

( . )

dx

dt t 

   
=

−  
, (22) 

and we use the Gauss quadrature in (4) and 
Simpson’s rule in (3) to approximate the solutions of 
(22). Notice that the approximate solution to (22) is 
similar to the exact solution of (21), as shown in Figure 
2 and 3.  

 

FIGURE 2. Solution curve of hyperbolic growth model by 
Gauss quadrature  

 

FIGURE 3. Solution curve of hyperbolic growth model by 
Simpson’s rule  

The numerical solution curves seem to be very 
close to the exact solution curve. Their accuracy is 
supported by numerical errors that are shown in 
Figures 4 and 5. Both figures are identical, as the 
mean square error values obtained from using the 
integration methods are the same.  

FIGURE 4. Numerical error of hyperbolic growth model by 
Gauss quadrature  

FIGURE 5. Numerical error of hyperbolic growth model by 
Simpson’s rule  
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Now, referring to (6), we consider two linear models, 
given as follows,  

 .
dx

t
dt

=     (23) 

 .
dx

t
dt

= −    (24) 

with the initial condition .x


=    for t   

months. These models with the respective model 
parameters .a =    and .a = −   are chosen and 

known as the initial predictive models to begin the 
iterative procedure. After handling the integral part, 
the discrete-time models of (23) and (24) are given by 

 . ( )k k k kx x t t 

+ +
= +   − , (25) 

 . ( )k k k kx x t t 

+ +
= −   − . (26) 

Figures 6 and 7 show the solution curves for the 
initial models (23) and (24), respectively, where the 
first solution curve is an exponential growth, and the 
second solution curve is a decay growth.  

FIGURE 6. Exponential solution growth curve for linear 
model  

FIGURE 7. Decay solution growth curve for linear model  

By using the algorithm proposed in the previous 
section, the predicted solution to the hyperbolic growth 
model in (22) is obtained and shown in Figure 8.  

FIGURE 8. Final solution curve for hyperbolic growth 
model  

The solution curve closely approximates the 
solution curve of the hyperbolic growth in (22), and the 
prediction error, which is very small error values, is 
shown in Figure 9.  

FIGURE 9. Prediction error for hyperbolic growth model  

The prediction error curve shows a steady linear 
increase over time because the linear model cannot 
keep up with the steep, accelerating growth of the 
nonlinear hyperbolic model. This mismatch occurs 
because the hyperbolic model grows increasingly 
faster as it approaches the singularity, while the linear 
model assumes a constant or slowly changing rate of 
growth. As a result, the small difference between the 
two models at earlier time steps accumulates and is 
amplified at later time steps, leading to the observed 
increase in prediction error. Despite the prediction 
error showing a slight increase, the predictive model 
method is proven to be more efficient with a small 
magnitude of error.  

Figure 10 shows the parameter estimation for the 
hyperbolic growth model.  
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FIGURE 10. Parameter estimation for hyperbolic growth 
model  

It shows an inverted bell-shaped curve, where the 
parameter initially moves further negative at the 
beginning of the iterations due to the steepness of the 
nonlinear hyperbolic curve requiring a highly negative 
adjustment. As iterations proceed, the predictive 
modelling method adjusts the parameter toward a 
stable value until the local minimum value is obtained, 
when the error is unable to be further reduced or equal 
to 0.  

For using the predictive modelling method, the 

tolerance is set to − , the maximum iteration 

number is 10000, while the step size for the gradient 
descent method, . =    and the step size for the 

line search equation, . =   . Therefore, the final 

predictive models of the hyperbolic growth model, 
which use the initial models (23) and (24), are 
provided below.  

 
ˆ

.
dx

t
dt

−= −   (27) 

 
ˆ

.
dx

t
dt

−= −   (28) 

with the line search equation 

 ˆ ˆ. ( )x x y x= +   −  (29) 

where y represents the actual solution of the 

hyperbolic growth model.  

Table 1 shows the simulation results of the 
prediction solution of the hyperbolic growth model 
(22).  

 
TABLE 1. Simulation results for hyperbolic growth model. 

 
Model Iteration 

number 
Mean square 

error 
Elapsed 

time (sec)  
Proposed methoda 621 . −   0.048868 

Proposed methodb 615 . −   0.039363 

Gauss quadrature - . −   0.217478 

Simpson’s rule - . −   0.217478 

 a. using the growth model as the initial model  
       b. using the decay model as the initial model 

 

In Table 1, the mean square error values for the 
proposed method, Gauss quadrature, and Simpson’s 
rule are compared. The efficiency of the proposed 
method is highly demonstrated since the mean square 
error values are smaller compared to the standard 
integration solvers. The proposed method updates the 
model parameter during the iteration process to 
minimize the difference between the prediction and 
actual data, while the standard integration solvers only 
approximate the integral using the given function 
without adjusting the model to fit the actual data.  

In summary, a linear model in terms of time was 
proposed and integrated since the integrand might not 
often be straightforward to reform in its independent 
variable. The outcome of integrating the linear model 
provided us with a quadratic term. Then, a least 
square optimization problem was introduced to predict 
the nonlinear growth model, and the optimization 
problem was solved using the steepest descent 
method. The model parameter was estimated by 
observing the nonlinear growth solution curves, while 
the prediction solutions were obtained by integrating 
the linear model.  

A mean square error presented the performance of 
using a numerical integration approach and 
integrating a linear model to solve the nonlinear ODEs 
of the growth models. The numerical integration 
approaches showed a very small mean square error 
value, while integrating a linear model indicated a 
satisfactory mean square error value. The solution 
curves of the integrating linear model, which best fit 
the growth models’ solution, expressed a useful 
prediction model for managing the nonlinear ODE of 
the growth models.  

IV. DISCUSSION 

In this study, the major strength of the proposed 
method is the ability to obtain the numerical solution 
of a nonlinear ODE without knowing its complexity and 
structure. The complexity of solving the nonlinear 
ODE is significantly reduced by introducing a simple 
linear model. The model parameter in the linear model 
is then optimized so that the predicted solution best 
fits the observed data. This approach bypasses the 
difficulties related to nonlinear model formulation, 
analytical solution derivation, and direct numerical 
integration of complex dynamics.  

While the method significantly simplifies solving 
nonlinear ODEs, the accuracy of the approximation 
depends heavily on the appropriateness of the linear 
model chosen to fit the observed data. A simple linear 
model may not be sufficient to capture the complex 
dynamics of highly nonlinear or chaotic systems. 
Since the method assumes that the system’s solution 
is smooth and continuous, the method may also 
perform poorly for dynamics that exhibit sharp 
transitions or nonsmooth behavior. 

The formulation of the method based on least 
squares optimization and the gradient descent 
method may allow for a straightforward extension to 
higher-dimensional problems, such as nonlinear 
partial differential equations (PDEs). By appropriately 
redefining the model and optimization objective, the 
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technique may offer a flexible and powerful tool to 
approximate complex dynamic systems in PDE 
contexts.  

V. CONCLUSION 

This study considered a general nonlinear ODE, 
and its solution was expressed in an integral form. 
Reforming the integrand in the independent variable, 
that is, time, would allow us to find the numerical 
solution of the integral using a numerical integration 
method. For illustration, a hyperbolic growth model is 
studied. The exact solution of the growth model was 
substituted into the respective ODE model, and 
numerical integration methods, which are Gauss 
quadrature and Simpson’s rule, were applied to give 
the solution of the ODE by obtaining the solution of the 
integral. In conclusion, this study verified and 
compared the efficiency of these approaches in 
handling an integral in the nonlinear ODE. Integrating 
an implicit linear ODE to capture the solution of an 
integral in an implicit nonlinear ODE and using more 
advanced optimization, such as conjugate gradient 
methods, for solving more complex nonlinear ODEs 
with higher dimensions is recommended to be studied.  
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