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First Zagreb Index and its Characteristics on Neutrosophic 
Graph

Govindan Vetrivel, Murugappan Mullai*, Grienggrai Rajchakit*, Meyyappan Sangavi and R. Surya

Abstract – Topological indices mark an irreplaceable 
place for applications in crisp and fuzzy graphs. These 
indices are extended to the neutrosophic graphical idea 
to rectify the imprecise values or information acquired 
before, since the uncertain cases are organized and 
allocated as a separate membership called 
"indeterminacy". We apply and explore the First zagreb 
index and its properties on the neutrosophic graphical 
system in the line of Wiener and Forgotten indices. This 
fills the gap between fuzzy and its graphical extensions 
on indices discussion, thereby extends the applicable 
areas. Also, an improvised and unique application is 
portrayed to observe the importance of First zagreb 
index in the neutrosophic theme of graphs. This 
contributes to the real life in a greater way than the fuzzy 

idea. 

Keywords—Topological Index, Zagreb Index of First Type, 

Neutrosophic Set, Neutrosophic Graph, Neutrosophic Zagreb 

Index of First Type, Neutrosophic Entire Zagreb Index of First 

Type. 

 
TABLE 1.  Abbreviations Used. 

 

Description Abbreviation 
Topological Indices ToIn 

Fuzzy Graphs FuGr 
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Intuitionistic Fuzzy Graph InFuGr 

Neutrosophic Set NeuS 

Neutrosophic Graph NeuGr 

First Zagreb Index Fi-ZaI 

Neutrosophic Subgraph NeuSG 

Partial Neutrosophic Subgraph PaNeuSG 

First Entire Zagreb Index FIENZag 

Membership Assignment Value MAV 

Minimal Spanning Tree MiST 

 

I. INTRODUCTION 

Graph theory is a significant area for dealing with 
world scenarios and applications. Major solutions for 
problems are attained using the structural and 
characteristic properties of graph theory and its 
variants. More work is being done on the labeling, 
domination, coloring, etc., in the background of crisp & 
fuzzy graph theory. The crisp set concept refinement 
by introducing fuzzy-based set theory [1] has occurred 
to improve the accuracy. This new set theory recreated 
graphs with fuzziness [2]. Later, the fuzzy-based 
graphical approach [3] is explored to attain basic and 
essential results. A new idea of implementing the ToIn 
in the fuzzy graphical setting [4] is then carried out. The 
accomplishment of ToIn in the bipolar perspective of 
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FuGr [5] is processed. Also, the Wiener absolute and 
Randic indexes in bipolar FuGr [6-7] are rendered. The 
process of executing the F-index [8-9] and edge F-
index [10] in the FuGr background was then put forth. 
In addition, the treatment of the FuGr with other indices 
like first & second Zagreb index [11-12], Hyper Wiener 
index [13], Hyper-Zagreb index [14], etc., continued to 
be explored. A clear discussion about the randic and 
harmonic index [15] of fuzzy type with brief results on 
bounds and based product operations has been done. 
This randic index is used further to determine a 
criminal with a more serious crime record. The First 
entire zagreb index in various FuGr [16] is learnt, and 
their isomorphic relations are investigated. This idea is 
used to enhance the effectiveness of internet systems. 
Also, the researchers recently introduced the Gutman 
index to the FuGr setting [17], where the relationship 
of this index with other FuGr types is analyzed, and a 
human trafficking application is provided. Further, a 
profound investigation of some properties of the F-
index in bipolar FuGr [18] and their relationship with 
other indices is conducted. An application to find a 
compatible life partner and gene elements is produced 
with clarity. Then, a comprehensive analysis with 
indices of crisp & fuzzy type using the formulae [19] is 
generated. The examination of various ToIn in fuzzy 
random graphs and the relation between the union and 
intersection operations of ToIn of fuzzy random graphs 
[20] is conducted.  

Due to incomplete result value, there is a need for 
an improved fuzzy set theory that has been introduced 
with the non-membership function. Also, it is named as 
“Intuitionistic Fuzzy Set” [21]. Later, the construction of 
the InFuGr [22], which segregates the importance of 
false events, was established. Some irreplaceable 
works exemplify the results and applications on InFuGr 
[23], which was worked on as a team, constituting a 
significant understanding and involvement of other 
researchers to participate in the fuzzy-based research. 
In terms of indices, the Wiener index on InFuGr [24] is 
demonstrated, and the same is true of the connectivity 
index. An application to ensure a good water supply 
through the pipeline is portrayed. The second Zagreb 
and somber index of the third & fourth versions in 
InFuGr structure [25] generate some essential 
outcomes. This study helps them to formulate an 
Internet routing application that increases the internet 
speed. The versions of somber indices in InFuGr [26] 
are derived with a framed formula. It is used to test the 
performance level of vaccination centers during the 
pandemic. An application on transport network flow by 
implying the Wiener index in InFuGr of rough type [27] 
is pointed out and explained.  

An observation is made on the uncertain conditions 
in the previous studies, and it helped to declare a new 
set theory concept called NeuS [28-29], that explicitly 
organizes the uncertain events from the application 
point of view. A graphical representation using this 
neutrosophic set is figured out, and known as a NeuGr 
[30]. This set-based theory postulation was refined and 
inaugurated in the new name: single-valued 
neutrosophic graphs [31]. A glimpse of ToIn types is 
elaborately listed, and the Wiener index in NeuGr [32] 
is established in detail. The presentation based on the 
degree & total degree indices in several NeuGr [33] is 
displayed. The forgotten index in the NeuGr 

environment [34] has flourished and is being applied to 
view among the households that efficiently use 
electricity. The connectivity indices idea is exposed to 
the NeuGr [35] background that supports applying it in 
computer and transport network systems. 

This manuscript encloses the investigation on Fi-
ZaI and Fi-ZaI of the entire type newly in the NeuGr 
setting. Some crucial findings related to subgraph and 
isomorphic properties are also analyzed with an 
appropriate application. 

The section I provides a brief introduction on graph 
theory and their extension to FuGrs. This section I also 
records the fuzzy and intuitionistic fuzzy based works 
on ToIn and our observation of other index types in 
NeuGr. Section II is given to list the definitions of NeuS 
and NeuGr, which is quite useful to apply ToIn on 
neutrosophic background. The foundation for Fi-ZaI on 
NeuGr is laid and some theoretical properties are 
discussed in the Section III. Section IV shows the 
algorithm to be followed to find the Fi-ZaI. A glance on 
FIENZag on NeuGr is illustrated in the Section V with 
the definition and theorems. Section VI elaborates the 
applicability and reliability of Fi-ZaI in the neutrosophic 
graphical setting. 

II. PRELIMINARIES 

 
This section encloses the basic terminologies and 

definitions to picturize our proposed model. 
 

Definition 2.1. [28]  

Consider the universe Z. A NeuS N̅ framed on Z is 

called R̅ = {(t, Ʈ𝑁(t), ƗN̅(t), ӺN̅(t)): t ∈ X}, where 

ƮN̅(t): Z → [0,1], ƗN̅(t): Z → [0,1], ӺN̅(t): Z → [0,1] are 

said to be functions for truth(available), 

indeterminacy(unsure) and false(unavailable) 

membership of t on N̅ respectively and it satisfies the 

condition 0 ≤ ƮN̅ + ƗN̅ + ӺN̅ ≤ 3, ∀ t ∈ Z. 

 

Definition 2.2. [31] 

A NeuGr is mentioned as Ǥ = (ϔ, α, β), where α =

(Ʈӓ, Ɨӓ, Ӻӓ) and β = (Ʈƀ, Ɨƀ, Ӻƀ) and holds the following 

conditions,   

 

(i) Let Ʈӓ: ϔ → [0,1], Ɨӓ: ϔ → [0,1] &  Ӻӓ: ϔ → [0,1] 

denote the available, unsure, & unavailable 

memberships of the element ai ∈ ϔ, respectively and 

0 ≤ Ʈӓ(ai) + Ɨӓ(ai) + Ӻӓ(ai) ≤ 3, for all ai ∈ ϔ.   

 

(ii) Let Ʈƀ: ε ⊆ ϔ × ϔ → [0,1], Ɨƀ: ε ⊆ ϔ × ϔ → [0,1] and 

Ӻƀ: ε ⊆ ϔ × ϔ → [0,1] denote the available (1), unsure 

(2), and unavailable (3) memberships of (ϋi, ϋj) edge 

respectively, such that  
 Ʈƀ(ai, aj) ≤ low[Ʈӓ(ai), Ʈӓ(aj)]       (1) 

 Ɨƀ(ai, aj) ≤ low[Ɨӓ(ai), Ɨӓ(aj)]        (2) 

 Ӻƀ(ai, aj) ≤ high[Ӻӓ(ai), Ӻӓ(aj)]        (3) 

and 0 ≤ Ʈƀ(ai, aj) + Ɨƀ(ai, aj) + Ӻƀ(ai, aj) ≤ 3,  

for every edge (ai, aj). 
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III. FIRST ZAGREB INDEX AND ITS PROPERTIES ON 

NEUTROSOPHIC GRAPHS 

 

Definition 3.1.  

Consider Ǥ = (ϔ, α, β) as a NeuGr. A Fi-ZaI of the 

NeuGr Ǥ is represented by ZINGr1(Ǥ) (4) and is 

defined as,  

ZINGr1(Ǥ) = ∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a))(d2(a))  

= ∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a))(dƮӓ

2 (a), dƗӓ

2 (a), dӺӓ

2 (a))  

= ∑a∈ϔ (Ʈӓ(a)dƮӓ

2 (a) + Ɨӓ(a)dIӓ

2 (a) + Ӻӓ(a)dFӓ

2 (a))  

=∑a∈ϔ Ʈӓ(a)dƮӓ

2 (a) + ∑v∈Υ Ɨӓ(a)dƗӓ

2 (a) +

∑a∈ϔ Ӻӓ(a)dӺӓ

2 (a)                (4) 

 

(i.e.), ZINGr1(Ǥ)  = ƮZINeuGr1(Ǥ) + ƗZINGr1(Ǥ) +

 ӺZINGr1(Ǥ)  

 

Definition 3.2.  

Consider Ǥ = (ϔ, α, β) as a NeuGr. The modified 

First zagreb index of the NeuGr Ǥ is denoted by 

ZagNeuGr1(Ǥ) (5) and is defined by  

 

ZagNeuGr1(Ǥ) = ∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 

=∑ϋ∈ϔ [Ʈӓ(a)(dƮӓ
(a))]2 + ∑ϋ∈ϔ [Ɨӓ(a)(dƗӓ

(a))]2 +

∑ϋ∈ϔ [Ӻӓ(a)(dӺӓ
(a))]2             (5) 

 

 

 
 

FIGURE 1.  Neutrosophic graph with 𝐙𝐚𝐠𝐍𝐞𝐮𝐆𝐫𝟏(Ǥ) =7.507 

 

Theorem 3.3.  

Consider Ǥ be a NeuGr with h vertices & g edges. 

Then 

(i) ZagNeuGr1(Ǥ) ≤ h2(է2 + ḭ2 + ẜ2)  

(ii) ZagNeuGr1(Ǥ) ≤ 12h2g2  

 

Proof:  

(i) By the conditions Ʈӓ(𝑎) ≤ 1, Ɨӓ(𝑎) ≤ 1, Ӻӓ(𝑎) ≤ 1, 

the following outcome is received: 

 

ZagNeuGr1(Ǥ)

= [∑

𝑎∈Υ

[Ʈӓ(𝑎)(𝑑𝑇1
(𝑎))]2 + ∑

𝑣∈Υ

[Ɨӓ(𝑎)(𝑑Ɨӓ
(𝑎))]2

+ ∑

𝑎∈Υ

[Ӻӓ(a)(𝑑Ӻӓ
(𝑎))]2] 

  

≤ [[∑

𝑎∈Υ

Ʈӓ(𝑎)]2[∑

𝑎∈Υ

(𝑑Ʈӓ
(𝑎))]2

+ [∑

𝑎∈Υ

Ɨӓ(𝑎)]2[∑

𝑎∈Υ

(𝑑Ɨӓ
(𝑎))]2 

     

 +[∑

𝑎∈Υ

Ӻӓ(𝑎)]2[∑

𝑎∈Υ

(𝑑Ӻӓ
(𝑎))]2] 

 

≤ ℎ2(է2 + ḭ2 + ẜ2) 

 

(ii) By subdivision (i) and the result (է, ḭ, ẜ)(Ǥ) =

(2 ∑ Ʈ2, 2 ∑ Ɨ2, 2 ∑ Ӻ2) ≤ (2𝑔, 2𝑔, 2𝑔). The required 

inequality is as follows, 

 ZagNeuGr1(Ǥ) ≤ ℎ2(է2 + ḭ2 + ẜ2) ≤ ℎ2[(2𝑔)2 +

(2𝑔)2 + (2𝑔)2]  ≤ 12ℎ2𝑔2. 

  

Definition 3.4.  

Consider Ǥ = (ϔ, α, β) be a NeuGr and a ∈ ϔ. Then 

the ZagNeuGr1(Ǥ) at the vertex a of the NeuGr Ǥ is 

denoted by ZagNeuGr1(a) (6):  

 

ZagNeuGr1(a) = [ZagNeuGr1(Ǥ) − ZagNeuGr1(Ǥa)]  (6) 

 

Proposition 3.5.  

Consider Ҥ=(ϔ′, α′, β′) be a PaNeuSG of a NeuGr Ǥ =

(ϔ, α, β). Then, ZagNeuGr1(Ҥ) ≤ ZagNeuGr1(Ǥ) 

 

Proof:  

As Ҥ is a PaNeuSG of Ǥ, we say α′(𝑎) ≤  α(a) and 

β′(𝑎𝑏) ≤ β(ab) for any a,b ∈ ϔ′. This implies, 𝑑Ҥ(a)= 

∑ β′(𝑎𝑏)𝑏∈ϔ′ ≤ ∑ β(𝑎𝑏) =𝑏∈ϔ  𝑑Ǥ(a).  

 

Therefore,  

ZagNeuGr1(Ҥ) =  ∑

a∈ϔ′

(Ʈ′ӓ(a), Ɨ′ӓ(a), Ӻ′ӓ(a)) d(a))2 ≤ 

∑

a∈ϔ

(Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 =  ZagNeuGr1(Ǥ) 

 

It shows that, ZagNeuGr1(Ҥ) ≤ ZagNeuGr1(Ǥ) 

 

Corollary 3.6. 

 

Consider Ҥ=(ϔ′, α′, β′) as a NeuSG of a NeuGr Ǥ =

(ϔ, α, β). Then, ZagNeuGr1(Ҥ) ≤ ZagNeuGr1(Ǥ) 

 

Theorem 3.7.  

 

Consider a NeuGr Ǥ and take 0 ≤  𝑠1 ≤  𝑠2 ≤ 1. 

Then,  

ZagNeuGr1(Ǥ𝑠2) ≤ ZagNeuGr1(Ǥ𝑠1). 

 

Proof: 

Since Ǥ𝑠2 is a PaNeuSG of Ǥ𝑠1, then by proposition 

3.6, the result ZagNeuGr1(Ǥ𝑠2) ≤ ZagNeuGr1(Ǥ𝑠1) is 

true. 
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Corollary 3.8. 

 

Consider a NeuGr Ǥ and take 0 ≤  𝑠1 ≤  𝑠2 … ≤  𝑠𝑛 ≤

1. This implies that, ZagNeuGr1(Ǥ𝑠𝑛) ≤

ZagNeuGr1(Ǥ𝑠𝑛−1) ≤ ⋯ ≤  ZagNeuGr1(Ǥ𝑠2) ≤

 ZagNeuGr1(Ǥ𝑠1). 

 

Theorem 3.9. 

 

Consider Ǥ = (ϔ, α, β) be a NeuGr. Then 

ZagNeuGr1(Ǥ) ≤ ZagNeuGr1(C[Ǥ]), where C[Ǥ] 

denotes the completion NeuGr. 

 

Proof: 

Since C[Ǥ] is a completion NeuGr of Ǥ, β(ab) ≤ 

βC(ab), for any ab belongs to the edge set. This 

implies, Ǥ is a PaNeuSG of C[Ǥ]. Therefore, the result 

follows by the proposition 3.6. 

 

Corollory 3.10. 

 

ZagNeuGr1(Ǥ) = d(d − 1)2, for any vertex d of NeuGr 

Ǥ. 

 

Theorem 3.11. 

 

Consider the NeuGrs Ǥ1 and Ǥ2 to be isomorphic. 

Therefore, ZagNeuGr1(Ǥ1) = ZagNeuGr1(Ǥ2) 

 

Proof: 

Since the graphs Ǥ1 & Ǥ2 are isomorphic NeuGrs, 

there exist a bijection θ from ϔ1 to ϔ2 and 𝛼1(𝑎) =

𝛼2(θ(a)) & 𝛽1(𝑎𝑏) =  𝛽2(𝜃(𝑎), 𝜃(𝑏)), for all a, b ∈ ϔ1. 

 

Therefore, 
 𝑑Ǥ1

(𝑏) =

 ∑ 𝛽2(𝜃(𝑎), 𝜃(𝑏)) =𝑎∈ϔ1
 ∑ 𝛽2(𝜃(𝑎), 𝜃(𝑏))𝜃(𝑎)∈ϔ2

 

=  𝑑Ǥ2
(𝜃(𝑏)) 

 

Thus, 

 

 ZagNeuGr1(Ǥ1) =  ∑ [𝛼2(𝜃(𝑏)𝑑Ǥ2
(𝜃(𝑏))𝑏∈ϔ1

]2 

= ∑ [𝛼2(𝜃(𝑏)𝑑Ǥ2
(𝜃(𝑏))𝜃(𝑏)∈ϔ2

]2 =  ZagNeuGr1(Ǥ2) 

 
 

IV. ALGORITHM 

An algorithm is given in this section to understand 

the steps to calculate the first zagreb index of NeuGr. 

 

Step 1: Find the degree of all vertices in Ǥ using d(a)= 

∑  β(a, b)𝑏∈ϔ  

 

Step 2: Build the NeuSG  Ǥ𝑏 for each b∈ϔ.  

 

Step 3: Calculate the ZagNeuGr1 in a  neutrosophic 

graph by ZagNeuGr1 = ∑ϋ∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 

 

Step 4: The ZagNeuGr1 of a vertex a of the NeuGr is 

obtained by using, 

ZagNeuGr1(a) = [ZagNeuGr1(Ǥ) − ZagNeuGr1(Ǥa)] 
 
 

V. FIRST ENTIRE ZAGREB INDEX ON NEUTROSOPHIC 

GRAPHS 

 

Definition 5.1.  

 

Let Ǥ = (ϔ, α, β) notifies a NeuGr. Then the FIENZag 

of NeuGr Ǥ is represented by EZagNeuGr1(Ǥ) (7) and 

is given by  

 

EZagNeuGr1(Ǥ) = ∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 + 

∑e∈ϔxϔ (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)) d(e))2         (7) 

where the vertex is represented by ‘a’  and ‘b’ denotes 

the edge. 

 

Theorem 5.2. 

 

Consider a NeuGr Ǥ with h vertices and g edges. 

Then EZagNeuGr1 ≤ ℎ2𝑇𝑜𝑡𝑎
2(Ǥ) +  𝑔2𝑇𝑜𝑡𝑒

2(Ǥ), where 

𝑇𝑜𝑡𝑎
2(Ǥ) and 𝑇𝑜𝑡𝑒

2(Ǥ) denotes the total degree of 

vertices and total degree of edges respectively. 

 

Proof: 

The FIENZag of Ǥ is defined as, EZagNeuGr1 =

∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2+

∑e∈ϔxϔ (Ʈƀ(e), Ɨƀ(e), Ӻƀ(a)) d(e))2 

 

This implies that, 

≤ ∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a))2  ∑a∈ϔ (d(a))2+ 

∑e∈ϔxϔ (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e))2  ∑e∈ϔxϔ (d(e))2 

 

≤ (∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)))2(∑a∈ϔ d(a))2+ 

(∑e∈ϔxϔ (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)))2 (∑e∈ϔxϔ d(e))2 

 

≤ (∑a∈ϔ (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)))2 𝑇𝑜𝑡𝑎
2(Ǥ)+ 

(∑e∈ϔxϔ (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)))2 𝑇𝑜𝑡𝑒
2(Ǥ) 

 

Since each membership function of a vertex and 

edge of a NeuGr lies between 0 and 1, we have 

 

EZagNeuGr1 ≤ ℎ2𝑇𝑜𝑡𝑎
2(Ǥ) +  𝑔2𝑇𝑜𝑡𝑒

2(Ǥ) 

 

 

Definition 5.3.  

Consider Ǥ = (ϔ, α, β) as a NeuGr and a ∈ ϔ. Then 

the EZagNeuGr1(Ǥ) (8) at the vertex a of the NeuGr Ǥ 

is expressed as: 
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EZagNeuGr1(a) = [EZagNeuGr1(Ǥ) −

EZagNeuGr1(Ǥa)]                 (8) 

 

Theorem 5.4. 

 

Consider a NeuGr Ҥ by deleting an edge from Ǥ. 

Then EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Proof: 

Since Ҥ=(ϔ′, α′, β′) is a graph obtained by the 

removal of an edge from the NeuGr Ǥ = (ϔ, α, β), the 

vertex MAV is equal for both the graphs and also it is 

equal for edges if it bears both E and E’. 

 

Therefore, the relationship between the MAVs of 

graphs Ǥ & Ҥ is α(a) ≥ α′(𝑎) ∀ 𝑎 and β(e) ≥  β′(e) ∀e. 

 

Thus, the degree d(a) ≥ d’(a) ∀ 𝑎 and d(e) ≥ d’(e) 

∀e, where d & d’ denotes the degree of Ǥ & Ҥ  

respectively. 

 

We know that,  

 

EZagNeuGr1(Ǥ) = ∑a∈ϔ(Ǥ) (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 + 

∑e∈ϔxϔ(Ǥ) (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)) d(e))2 

 

≥ ∑a∈ϔ(Ǥ) (Ʈ′
ӓ(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ǥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

=∑a∈ϔ(Ҥ) (Ʈ′
ӓ(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ҥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

= EZagNeuGr1(Ҥ) 

 

This shows that, EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Theorem 5.5. 

 

Consider a NeuGr Ҥ by removing a vertex from Ǥ. 

Therefore, EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Proof: 

Since Ҥ=(ϔ′, α′, β′) is a graph obtained by the 

removal of a vertex from the NeuGr Ǥ = (ϔ, α, β), 

α(a) = α′(𝑎) if a ∈  ϔ ∩  ϔ′. If not, then α(a)  > α′(𝑎). 

Similarly for edges, β(e) =  β′(e) if e ∈ (ϔ ×  ϔ) ∩

(ϔ′ × ϔ′). If not, then β(a)  > β′(𝑎).  

 

Therefore, the relationship between the MAVs of 

graphs Ǥ and Ҥ is α(a) ≥ α′(𝑎) ∀ 𝑎 and β(e) ≥

 β′(e) ∀e. 

 

Thus, the degree d(a) ≥ d’(a) ∀ 𝑎 and d(e) ≥ d’(e) 

∀e, where d & d’ denotes the degree of Ǥ & Ҥ  

respectively. 

 

We know that,  

 

EZagNeuGr1(Ǥ) = ∑a∈ϔ(Ǥ) (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 + 

∑e∈ϔxϔ(Ǥ) (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)) d(e))2 

 

≥ ∑a∈ϔ(Ǥ) (Ʈ′
ӓ(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ǥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

=∑a∈ϔ(Ҥ) (Ʈ′
ӓ
(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ҥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

= EZagNeuGr1(Ҥ) 

 

This shows that, EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Theorem 5.6. 

 

Consider a NeuSG Ҥ of the NeuGr Ǥ. Then 

EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Proof: 

As Ҥ= (ϔ′, α′, β′) represents a subgraph obtained 

from the NeuGr Ǥ = (ϔ, α, β), therefore α(a) ≥ α′(𝑎) ∀ 𝑎 

and β(e) ≥  β′(e) ∀e. 

 

Thus, the degree d(a) ≥ d’(a) ∀ 𝑎 and d(e) ≥ d’(e) 

∀e, where d & d’ denotes the degree of Ǥ and Ҥ  

respectively. 

 

EZagNeuGr1(Ǥ) = ∑a∈ϔ(Ǥ) (Ʈӓ(a), Ɨӓ(a), Ӻӓ(a)) d(a))2 + 

∑e∈ϔxϔ(Ǥ) (Ʈƀ(e), Ɨƀ(e), Ӻƀ(e)) d(e))2 

 

≥ ∑a∈ϔ(Ǥ) (Ʈ′
ӓ(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ǥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

=∑a∈ϔ(Ҥ) (Ʈ′
ӓ(a), Ɨ′

ӓ(a), Ӻ′
ӓ
(a)) d′(a))

2
+  

∑e∈ϔxϔ(Ҥ) (Ʈ′ƀ(e), Ɨ′ƀ(e), Ӻ′ƀ(e)) d′(e))2 

 

= EZagNeuGr1(Ҥ) 

 

This shows that, EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Theorem 5.7. 

 

Consider a MiST Ҥ of the NeuGr Ǥ. Then 

EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ) 

 

Proof: 

Given: Ҥ is a MiST of NeuGr Ǥ. Then, Ҥ is a NeuSG 

of Ǥ. Therefore, from theorem 5.6, we say 

EZagNeuGr1(Ҥ) ≤ EZagNeuGr1(Ǥ). 

 

Theorem 5.8. 
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Consider the NeuGrs Ǥ1 & Ǥ2, that are isomorphic 

to one another. Then, EZagNeuGr1(Ǥ1) =

EZagNeuGr1(Ǥ2) 

 

Proof: 

The bijective map θ from ϔ1 to ϔ2 exist here, since 

NeuGrs Ǥ1 and Ǥ2 are isomorphic to each other. Then, 

∀𝑎, 𝑏 ∈ ϔ1, we have α1(b) =  α2(θ(b)) and 𝛽1(𝑎𝑏) =

 𝛽2(θ(𝑎)θ(𝑏)). 

 

Thus,  

𝑑Ǥ1
(𝑏) = ∑ 𝛽1(𝑎𝑏) = ∑ 𝛽2(θ(𝑎)θ(𝑏))θ(a)∈ϔ2𝑎∈ϔ1

= 

𝑑Ǥ2
(θ(𝑏))  

 

This implies that,  

 

EZagNeuGr1(Ǥ) = ∑b∈ϔ(Ǥ1) (Ʈӓ(b), Ɨӓ(b), Ӻӓ(b)) 𝑑Ǥ1
(b))

2
 

+ ∑ab∈ϔxϔ(Ǥ1) (Ʈƀ(ab), Ɨƀ(ab), Ӻƀ(ab)) 𝑑Ǥ1
(ab))

2
 

 

= 

∑b∈ϔ(Ǥ2) (Ʈӓ(θ(b)), Ɨӓ(θ(b)), Ӻӓ(θ(b))) 𝑑Ǥ2
(θ(b)))

2
 +  

∑

θ(a)θ(b)∈ϔxϔ(Ǥ2)

(

Ʈƀ(θ(a)θ(b)), Ɨƀ(θ(a)θ(b)),

Ӻƀ(θ(a)θ(b))) 
𝑑Ǥ2

(ab)

)

2

 

 
= EZagNeuGr2(Ǥ) 
 
Therefore,  
 
EZagNeuGr1(Ǥ) = EZagNeuGr2(Ǥ). 
 

VI. APPLICATION 

     The calculation is found to solve the decision-
making problems. With the alternatives and attributes, 
the best alternative is chosen by constructing the 
NeuGr with the set of vertices as the alternative set 
and the set of edges as the relationship between 
them. The parameter selection can be made with a 
clear representation in NeuGr compared to fuzzy 
graph theory, since the discussion is carried out in 3-
logic-based neutrosophic theory. Through the 
application presented in [11], the demonstration for in 
NeuGr is equipped by choosing the parameters with 
neutrosophic memberships. The following case study 
based on Multicriteria Decision-Making shows the 
applicability of our proposed model. Suppose a 
teacher wants to select the class leader from the set 
of students (alternatives) 𝑆1, 𝑆2, 𝑆3 and 𝑆4 based on 

the parameters (attributes) 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 and 𝑃6. 

The parameters are considered as 𝑃1 = Marks, 𝑃2= 
Hardwork, 𝑃3 = Extra Curricular Activity, 𝑃4 = 

Discipline, 𝑃5 = Obedient, and 𝑃6 = Helping mind. The 
above said parameter values will not be the same for 
all students, but a good leader can be selected under 
these circumstances. A development of NeuGrs by 
assigning each membership of vertices and edges is 
initially important. Corresponding to each parameter, 
the construction of NeuGrs will be carried out, where 

the vertex set components denote the students of the 
class and the edge between vertices represent the 
relation of influence. The score value of each student 
and the score value of influence between the students 
must be calculated first. Based on the score values 
and the weight of parameters, the NeuGrs should be 
constructed to find the Fi-ZaI of each student and their 
normalized score. Finally, the alternative’s order is 
arranged to observe the best student for leadership. 
 

VII. CONCLUSION  

 In this article, the zagreb index of first type and the 
entire zagreb index of first type are introduced in the 
NeuGr structure, and some comparable indices 
properties of MiST & isomorphism with normal 
subgraph are highlighted with some theorems in the 
neutrosophic setting. Our current work is used to 
establish the Fi-ZaI in the neutrosophic setting, thereby 
the results and application are achieved to compare 
the reliability with the past fuzzy works. Our future work 
is to explore the other ToIn in the neutrosophic 
environment and to illustrate their features and 
applications. 
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