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Fuzzy Frontiers in Rift Valley Fever Virus Control: Exploring 
the Dynamics of Transmission and Treatment 

 

Meyyappan Sangavi, M. Vidhya Lakshmi, Murugappan Mullai*, Grienggrai Rajchakit* and Govindan 
Vetrivel 

Abstract -  Rift Valley Fever (RVF) is a mosquito-
borne zoonotic viral disease that poses significant 
health threats to both human and animal populations 
across Africa and parts of the Middle East. Traditional 
epidemiological models often assume precise 
parameter values, which may not accurately reflect the 
inherent uncertainty in real-world disease transmission. 
To address this, we propose a novel stochastic and 
fuzzy logic-based Susceptible-Infected-Susceptible 
(SIS) model to analyze the spread of RVF under 
uncertain conditions. The model incorporates fuzziness 
in transmission and recovery rates using fuzzy set 
theory. Equilibrium points are analytically derived, and 
stability analysis is performed to explore the long-term 
dynamics of the disease. We compute and compare the 
fuzzy expectation of infected individuals with the 
classical expectation to assess the effect of parameter 

uncertainty. The basic reproduction number 𝑹𝟎 is 

calculated for both strictly increasing and strictly 
decreasing transmission functions, and their impacts 
on transcritical and backward bifurcations are 
thoroughly investigated. Furthermore, we incorporate 
optimal control strategies, including vaccination and 
vector control, within the fuzzy framework and evaluate 
how uncertainty influences their effectiveness. 
Numerical simulations validate the analytical results 
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and illustrate the temporal progression of the disease. 
Our findings emphasize that integrating fuzzy logic with 
stochastic modeling provides a more realistic and 
robust approach to understanding and controlling RVF 
than conventional deterministic models, offering 
valuable insights for public health intervention planning 
under uncertainty. 

Keywords—Rift Valley Fever, Fuzzy SIS model, 

Equilibria, Stability, Numerical Simulation. 

 

I. INTRODUCTION 

Contemporary global health faces an escalating 
burden from infectious pathologies, which now 
demand urgent scholarly and political attention. These 
morbid entities bear profound responsibility for the 
rising incidence of physiological impairments and 
mortality within Homo sapiens populations. The 
confluence of climatic perturbations, intensified global 
mobility, and antimicrobial resistance has precipitated 
recurrent epidemics of virulent pathogens including 
H1N1 influenza, Zika virus, and hemorrhagic fevers. 
use another word for pathogen mortality incidence 
[18,40,1,15,16,36,19,9]. Murray [29] expounded upon 
various theoretical aspects of epidemiology in his 
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seminal work. The pioneering efforts in quantitative 
analysis of disease spread can be attributed to 
Kermack and McKendrick [6], who first conceptualized 
the simplistic yet foundational SIR model. Since their 
groundbreaking contribution, theoretical epidemiology 
has undergone substantial evolution, witnessing the 
introduction of myriad refinements and sophisticated 
methodologies. Diverse strategies have been 
integrated into epidemic models to mitigate disease 
spread. Among these, immunization, medical 
intervention, quarantine[17], and insecticide 
application [16] stand as prominent control measures 
actively employed within society. Numerous scholars 
have extensively explored immunization as a 
containment strategy, including Arino et al. [4], 
Makinde [24], Jana et al. [16], and Thomasey and 
Martcheva [34]. Conversely, therapeutic approaches 
have been examined by scientists, such as Gunel and 
Moghadas [12], Qiu and Feng [25], Hu et al. [14], and 
Zhou and Fan [41]. A subset of studies, including 
those by Kar and Jana [18,16], Brauer [7], Okosun et 
al. [30], and Laarabi et al. [22], has delved into the 
combined efficacy of both immunization and 
therapeutic interventions. The propagation patterns of 
infectious diseases are governed by various 
parameters that dictate the pace at which an infected 
individual transmits the disease to vulnerable hosts. 
Classical epidemic models, as outlined by Hethcote 
[13], predominantly incorporate bilinear and standard 
incidence levels. In 1973, Capasso and Serio [8] gave 
a saturating incidence function 𝑔(𝐼)𝑆, wherein 𝑔(𝐼) 
asymptotically approaches a saturation threshold as 
the affected group expands. Mathematically, this is 

expressed as 𝑔(𝐼) =
𝑘𝐼

1+𝛼𝐼
, where 𝑘𝐼 denotes the 

infectious force, while 
𝐼

1+𝛼𝐼
 encapsulates the inhibitory 

influence stemming from behavioral adaptations of 
vulnerable individuals or the crowding effect of 
contagious individuals. Further advancements in 
modeling incidence functions were made by Ruan et 
al. [32], who analyzed epidemic dynamics under 
nonlinear incidence functions. A general incidence 

function 𝑔(𝐼)𝑆 =
𝐾𝐼𝑝𝑆

1+𝛼𝐼𝑞
, where 𝑝 > 0, 𝑞 > 0, was 

provided by Liu et al. [37] and by numerous other 
research people. Notably, in the majority of 
epidemiological studies, the disease transmission 
function is predominantly assumed to exhibit a linear 
dependence on the at-risk population. However, 
owing to the aforementioned factors—such as the 
inhibitory effect or the heightened vigilance among the 
at-risk demographic—the infection propagation rate 
does not invariably adhere to a linear dependency on 
𝑆. Consequently, we conceptualize it as an arbitrary 

formulation of 𝑆. Furthermore, given the 
interdependence between the susceptible cohort and 
the afflicted populace, the disease dissemination 
dynamics fluctuate accordingly. Thus, we define the 
transmission coefficient as the product of a linear 
dependency on the infected populace (𝐼) and an 
arbitrary functional representation of the susceptible 
demographic (𝑆). In scenarios where the count of 
individuals recuperating due to the efficacious 
execution of treatment protocols is considered, it is 

conventionally modeled as a linear dependency on the 
administered therapeutic intervention [1]. 
Nevertheless, Eckalbar and Eckalbar [10] as well as 
Zhang and Liu [40] employed a nonlinear therapeutic 
response function. In a contemporary study, Zhou et 
al. [42] devised an SIR model incorporating 
immunization strategies under constrained resource 
availability. In modern epidemiological modeling, the 
treatment response function is commonly understood 
to vary with both the infected cohort (I) and.the 
therapeutic modulation parameter (𝑢). For the sake of 
generalization, we define the mitigation-driven 
therapeutic function exclusively as a flexible 
formulation in terms of the regulatory parameter (𝑢). 
Given that both the infection virulence distribution 
function and the therapeutic response function are 
selected in an discretionary manner, our study 
employs the most rudimentary compartmental 
framework, namely the SIS model, as the basis for our 
analysis. 

Rift Valley fever (RVF) is a viral ailment impacting 
both anthropoid and ruminant species, manifesting in 
a spectrum of clinical severities from mild to life-
threatening. Mild manifestations include fever, 
myalgia, and cephalalgia, whereas severe 
complications may result in ocular impairment or 
encephalitic infections. The causative agent, the RVF 
virus, propagates through direct exposure to 
contaminated animal blood, inhalation of infected 
aerosolized particles, ingestion of unpasteurized dairy 
products, or bites from pathogen-carrying mosquitoes, 
predominantly afflicting bovines, ovines, caprines, and 
camelids. Interhuman transmission appears 
improbable. Diagnostic evaluation involves the 
identification of viral antigens or corresponding 
antibodies in the bloodstream. Mitigation strategies 
encompass prophylactic livestock immunization prior 
to epidemic onset, restriction of animal transit, and 
vector population suppression. While a human 
vaccine exists, its availability remains limited, and 
medical intervention is primarily symptomatic and 
supportive. RVF epizootics and epidemics 
predominantly transpire in African and Arabian 
regions, typically triggered by excessive precipitation, 
which escalatesmosquito proliferation. Initially 
documented in Kenya during the early 20th century, 
the virus was successfully isolated in 1931 amidst an 
ovine epidemic. The incubation duration spans 2 to 6 
days, with the majority of human cases exhibiting 
either asymptomatic profiles or mild, influenza-like 
syndromes. 

Fuzzy set theory, pioneered by Zadeh [44], 
provides a robust approach for integrating this 
uncertainty. Massad et al. [25] previous studies have 
employed fuzzy logic in epidemic modeling(FEM); 
notably, Mishra et al. [26] developed a FEM to capture 
worm transfer patterns in tech box networks, drawing 
an analogy to the dissemination of infectious 
diseases. Recent advancements in fuzzy epidemic 
modeling have sought to capture uncertainties in 
disease dynamics, but several limitations remain 
unaddressed. Subramanian et al. (2024)[35] 
developed a fuzzy fractional SIR model using Caputo 
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derivatives to account for memory effects in childhood 
diseases; however, their model did not consider 
vector-borne transmission or treatment mechanisms. 
Arif et al. (2024)[3] proposed a hybrid SIR-fuzzy model 
with numerical simulations to handle uncertain 
parameters, yet the model assumes a constant 
population and excludes reinfection, making it 
unsuitable for SIS-type diseases. Rashidian et al. 
(2024)[32] focused on exposure risk assessment 
using fuzzy logic within digital contact tracing 
frameworks, though their work does not address 
disease progression or therapeutic interventions. In 
another study, Arif et al. (2024)[2] constructed a fuzzy 
HIV/AIDS model with a nonlinear saturated incidence 
rate, but it is disease-specific and lacks 
generalizability to vector-borne infections like RVF. 
Kumar and Susan (2024)[21] introduced a hybrid time-
varying SIRD model combined with particle swarm 
optimization and deep learning to predict epidemic 
waves; however, they did not incorporate fuzzy logic 
or uncertainty modeling, which is central to realistic 
disease forecasting. Mpeshe (2022)[28] formulated a 
fuzzy SEIR model for amoebiasis that includes 
environmental considerations, but the model is not 
designed for mosquito-borne diseases or treatment 
dynamics. Finally, Azerigyik et al. (2025)[5] reviewed 
the temperature-dependent dynamics of RVF virus 
infection in mosquitoes, providing valuable insight into 
climate impacts but lacking a mathematical modeling 
framework. In contrast, our study formulates a fuzzy 
SIS model specifically tailored to Rift Valley Fever, 
integrating nonlinear incidence and treatment 
functions with flexible fuzzy parameters. This allows 
the model to more accurately reflect real-world 
uncertainty, reinfection dynamics, and intervention 
responses in the context of a vector-borne disease, 
filling a critical gap in existing literature.  Liu et al. 
(2023)[23] developed a fuzzy SEIRS model with 
stochastic noise to study COVID-19 transmission, 
including quarantine and vaccination, but did not 
consider vector-borne diseases or nonlinear 
treatment. Zhou and Wang (2022)[43] proposed a 
fuzzy fractional-order malaria model using Atangana-
Baleanu derivatives to capture memory effects in 
vector-host dynamics; however, their model assumes 
perfect treatment efficacy and lacks reinfection or 
fuzzy control policies. Singh et al. (2021)[34] 
introduced a fuzzy SEIR model with delay differential 
equations for dengue transmission, incorporating 
human movement and environmental factors, yet their 
model excludes treatment control and vector infection 
stages. Kumar and Chandra (2020)[20] presented a 
fuzzy multi-group epidemic model for tuberculosis with 
age-structured populations, which addresses 
transmission uncertainty but omits vector-borne 
dynamics and treatment saturation. Fernandes et al. 
(2020)[11] applied fuzzy logic to Zika virus 
transmission modeling by including climate-driven 
mosquito population dynamics, but did not incorporate 
nonlinear treatment functions or fuzzy control 
interventions. These studies highlight ongoing efforts 
in fuzzy epidemic modeling while underscoring the 
need for models like ours that integrate nonlinear 

incidence, treatment, and fuzzy parameters in vector-
borne disease contexts. 

While classical SIS models and their extensions 
have been extensively applied to model infectious 
disease dynamics under deterministic or stochastic 
frameworks, they often assume that epidemiological 
parameters are precisely known. However, real-world 
data—particularly in the context of emerging and 
neglected diseases such as Rift Valley Fever (RVF)—
are fraught with imprecision due to environmental 
variability, incomplete reporting, and diagnostic 
limitations. Although a few studies have incorporated 
fuzzy logic into epidemic models, they typically 
address generic diseases or theoretical constructs 
without focusing on region-specific vector-borne 
zoonotic infections like RVF. The novelty of this study 
lies in the formulation of a fuzzy SIS model that 
incorporates uncertain transmission and recovery 
rates as fuzzy parameters tailored specifically to RVF 
epidemiology. Unlike previous models, our approach 
integrates realistic fuzzy membership functions to 
represent the imprecision in disease spread and 
recovery dynamics. Additionally, we define general 
nonlinear forms for transmission and therapeutic 
functions within a fuzzy framework, enhancing the 
adaptability and predictive capacity of the model. This 
allows for a more robust and flexible understanding of 
RVF dynamics, offering actionable insights for public 
health planning and targeted intervention strategies 
under uncertainty. The proposed approach yields 
more compelling results by accounting for uncertainty 
and nonlinearity in a modular, computationally 
feasible framework. This makes it particularly suited 
for modeling vector-borne diseases like RVF, where 
precise data is often unavailable and control strategies 
are environment-dependent. 
 

II. DEVELOPMENT OF THE MODEL 

 
The fuzzy SIS model structurally differs from 

classical SIS models by incorporating fuzzy logic-
based membership functions to represent 
uncertainty in key epidemiological parameters—
such as transmission rates and recovery rates—which 
are often assumed to be precisely known in traditional 
models. In particular, this approach replaces crisp 
parameters with fuzzy-valued functions that capture 
gradual transitions and imprecise thresholds, 
such as viral load-dependent transmission or recovery 
effectiveness. This allows the model to better reflect 
real-world variability and expert knowledge in 
uncertain environments where exact data may be 
lacking or ambiguous. Furthermore, the model 
structure includes fuzzy rules and inference 
systems, which fundamentally alter the system's 
dynamics compared to deterministic or purely 
stochastic counterparts.  We rigorously evaluate a 
standard epidemiological model that classifies the 
population into 2 compartments: (i) the suspect cohort 
𝑆(𝑡) and (ii) the infect cohort 𝐼(𝑡), both explicitly time-
hinged upon. We presuppose that all Agents are 
introduced into the system as susceptible, and the 
total population remains conserved—a condition 
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contingent upon the equivalence of the hiring rate 𝜇 
and the rate of death 𝜇 at any instant 𝑡. 

Furthermore, we postulate that the pathogen 
disseminates via direct transmission among the non-
infected subpopulation. The incidence rate at which 
susceptibles acquire infection is denoted by the 
continuously differentiable function 𝑓(𝑆), while 
therapeutic modulation is governed by the treatment 
control function 𝜑(𝑢), likewise smooth in its argument 

𝑢. Crucially, we assume immunity is non-permanent; 
thus, recovered individuals revert to the susceptible 
state. The resulting dynamical system is formulated as 
follows:  

𝑑𝑆

𝑑𝑡
= 𝜇 − 𝑓(𝑆)𝐼 + 𝜙(𝑢)𝐼 − 𝜇𝑆                       (1) 

𝑑𝐼

𝑑𝑡
= 𝑓(𝑆) − 𝜙(𝑢)𝐼 − 𝜇𝐼 (1) 

 with init. condns.,  
 𝑆(0) ≥ 0,    𝐼(0) ≥ 0                       (2)

 (2) 
 In this paradigm where population states are 

characterized by normalized dimensionless measures 
given by:  

 𝑆(𝑡) + 𝐼(𝑡) = 1                              (3)  

 The mapping 𝑓:ℝ≥0 → ℝ≥0 is postulated to be 
differentiable, continuous and bijective, with the 
operator 𝜑:ℝ≥0 → ℝ≥0 satisfying identical regularity 
conditions. 
 

III.MODEL ASSUMPTIONS AND FUZZY 
MEMBERSHIP FUNCTION 

 
The fuzzy SIS model is built upon the following 

core assumptions and corresponding fuzzy 
membership structures: 
 

The transmission function f (S, 𝑣) and the 
treatment function 𝜙(𝑢, 𝑣) are described using 
triangular membership functions based on the viral 
load ν\nu. These functions represent the degree of 
belief regarding low, moderate, and high levels of 
transmission or treatment effectiveness. 

The viral load ν\nu within the host population is 
considered uncertain and not precisely measurable. 
This uncertainty is modeled using fuzzy sets for low, 
moderate, and high levels of viral load, denoted by 
𝜇𝐿(𝑣), 𝜇𝑀(𝑣), 𝑎𝑛𝑑 𝜇𝐻(𝑣) respectively. Each of these 
fuzzy sets is defined using triangular membership 
functions, and the key parameters such as the 
minimum infectious threshold (𝑣𝑚𝑖𝑛), peak infectivity 

(𝑣𝑀), and saturation level (𝑣𝑚𝑎𝑥) are chosen based on 
biological or clinical considerations. 

The treatment control function 𝜙(𝑢, 𝑣) incorporates 
uncertainty by being fuzzified to reflect variations in 
treatment efficacy due to differences in patient 
responses or drug resistance. It is guided by fuzzy 
rules, for instance: if the viral load is high, the 
treatment effect is low; and if the viral load is 
moderate, the treatment effect is moderate. 

A fuzzy inference system is used to apply a rule-
based logic that determines the system’s behaviour 
under uncertain inputs. The defuzzified result of this 
system influences how the model evolves over time in 
terms of the different epidemiological compartments. 

The parameters used in this study are not taken 
from actual epidemiological data but are selected from 
biologically plausible ranges to illustrate the qualitative 
behaviour of the fuzzy SIS model. This approach 
allows an exploration of structural dynamics, 
bifurcation behaviour, and potential control strategies 
in the presence of uncertainty, especially in contexts 
where clinical data may be limited or unavailable. 

To reflect general epidemic patterns and explore 
how sensitive the model is to different parameter 
values, these parameters are randomly varied within 
reasonable intervals. While these values are not 
empirical, they serve to demonstrate the theoretical 
potential of fuzzy modelling in uncertain or data-
scarce settings. 

In this context, generalized functions and fuzzy 
logic-based extensions are conceptually different. 
Generalized functions, also known as distributions, 
are mathematical tools that extend the concept of 
traditional functions to handle cases involving 
discontinuities or singularities, such as the Dirac delta 
function. These are often used in differential equations 
and integral transforms. On the other hand, fuzzy 
logic-based extensions introduce uncertainty directly 
into the model’s functions using fuzzy sets and 
linguistic rules. These methods address epistemic 
uncertainty in parameters and system behaviour by 
assigning degrees of membership to values like viral 
load or treatment efficacy and using fuzzy inference to 
govern the model’s dynamics. 

While both approaches generalize classical 
modeling, they differ in purpose: generalized functions 
extend analytical solvability, whereas fuzzy logic 
extends interpretability under imprecision. Our work 
strictly focuses on the latter—introducing fuzzy 
membership functions to account for vague thresholds 
and nonlinear behavior in epidemiological dynamics. 
 
IV.LIMIT STATES AND CONVERGENCE CRITERIA 
 

This segment endeavors to systematically derive 
all feasible equilibrium states of the system, 
subsequently examining their stability properties 
through rigorous analysis predicated upon the 
fundamental reproduction number (𝑅0)  
Theorem 3.1 The system (1) admits two biologically 
meaningful equilibria: a trivial Disease Free 
Equilibrium (DFE) at (0,1) and a non-trivial Endemic 
Equilibrium (EE) represented by (𝑆∗, 𝐼∗), where  

𝑆∗ = 𝑓−1(𝜑(𝑢) + 𝜇), 𝐼∗ = 1 − 𝑓−1(𝜑(𝑢) + 𝜇). 
Alternatively, these can be rewritten as  

𝑆∗ = 𝑓−1 (
𝑓(1)

𝑅1
) , 𝐼∗ = 1 − 𝑓−1 (

𝑓(1)

𝑅1
),             (4) 

where 𝑓(1) signifies the pathogen's transmissibility 
metric evaluated under disease-free conditions. The  
reprod. no. is given by  

𝑅1 =
𝑓(1)

𝜑(𝑢)+𝜇
                                                    (5) 

The EE arises whenever 𝑅1 > 1, provided that the 
disease transmission fn.(DTF) 𝑓(𝑆) is strictly 

increasing with respect to 𝑆.  
 

Proof. We can have the equi. Pts. using  
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 𝑑𝑆

𝑑𝑡
= 0   and 

𝑑𝐼

𝑑𝑡
= 0  

                                                                                (6)                                                        
 Then, we have DFE (1,0) and EE (𝑆∗, 𝐼∗) where,  
 

𝑆∗ = 𝑓−1(𝜙(𝑢) + 𝜇) 
and  

𝐼∗ = 1 − 𝑓−1(𝜙(𝑢) + 𝜇) 
 

 i.e.𝑆∗ = 𝑓−1(
𝑓(𝑆∗)

𝑅1
) and 𝐼∗ = 1 − 𝑓−1(

𝑓(𝑆∗)

𝑅1
)              (7) 

 where,𝑅1 =
𝑓(𝑆∗)

𝜙(𝑢)+𝜇
.                                                 (8)     

The EE exists, when 𝑅1 > 1 
Stability properties at both trivial and non-trivial 
equilibria are characterized under the structural 
assumption that the DTF f(S) is strictly monotonically 
rising in the susceptible population S. 
Theorem 3.2 While the DTF f(S) is strictly rising, the 

DFE (1,0) is stable while 𝑅1 < 1 and unstable for 

𝑅1 > 1, where 𝑅1 =
𝑓(1)

𝜙(𝑢)+𝜇
.  

Proof. The Jacobian matrix(JM) of (0.1) is  
 

𝐽 = (
−𝑓′(𝑆)𝐼 − 𝜇 −𝑓(𝑆) + 𝜙(𝑢)

𝑓′(𝑆)𝐼 𝑓(𝑆) − 𝜙(𝑢) − 𝜇
)       (9) 

 
 To find the stability at the DFE point, we solve J 

at(1,0) is  
 

𝐽 = (
−𝜇 −𝑓(1) + 𝜙(𝑢)
0 𝑓(1) − 𝜙(𝑢) − 𝜇

)                     (10) 

 
 The eigenvalues are  

𝜆1 = −𝜇    and𝜆2 = 𝑓(1) − 𝜙(𝑢) − 𝜇.        (11) 
Since 𝜆1 is negative, stability depends on 𝜆2. The DFE 

is asymptot. stable if 𝑅1 < 1 (i.e., 𝜆2 < 0) and unstable 

if 𝑅1 > 1 (as det𝐽 < 0).  
Theorem 3.3 The DFE is globally asymptotically 
stable if 𝑅1 < 1, provided 𝑓(𝑆) is strictly increasing.  
Proof. From the 2nd eqn. of (0.1) we can have  

 𝑑𝐼

𝑑𝑡
≤ (𝑓(𝑆) − 𝑓(1))𝐼 

                                                                              (12)                                                                                                                                                                                                           
As, 𝑓(𝑆) − 𝑓(1) < 0,if 𝑅1 < 1,which implies 𝐼(𝑡) → 0 
as t → ∞.Therefore ,S(t)+I(t) = 1 gives 𝑆(𝑡) → 1.  

Theorem 3.4 The EE is asymptotically stable if 𝑅1 >
1, given that 𝑓(𝑆) is strictly increasing.  
Proof. The JM at the EE (𝑆∗, 𝐼∗)is  

 

𝐽 = (
−𝑓′(𝑆∗)𝐼∗ − 𝜇 −𝜇

𝑓′(𝑆∗)𝐼∗ 0
)                          (13) 

 
The trace and det. of the JM  𝐽 are   

Tr(𝐽) = −𝑓′(𝑆∗)𝐼∗ − 𝜇, Det(𝐽) = 𝜇𝑓′(𝑆∗)𝐼∗, 
respectively. Given that 𝑓(𝑆) is strictly monotonically 
increasing, it follows that  

Tr(𝐽) < 0, Det(𝐽) > 0, 
ensuring local asymptotic stability. The EE is 
biologically feasible and remains stable if and only if 
the reproduction threshold satisfies  

𝑅1 > 1. 

Theorem 3.5 If 𝑓(𝑆) is strictly decreasing, system (1) 
has a DFE at (1,0) and a unique EE  (𝑆∗∗, 𝐼∗∗) that 

exists only if 𝑅0 < 1. The equilibrium values become  

𝑆∗∗ = 𝑓−1 (
𝑓(𝑆∗∗)

𝑅0
) , 𝐼∗∗ = 1 − 𝑆∗∗, 

where the basic reprod. no. is defined as  

𝑅0 =
𝑓(𝑆∗∗)

𝜑(𝑢)+𝜇
.                                              (14) 

 
Proof. We can get the equilibrium point using  

𝑑𝑆

𝑑𝑡
= 0 and 

𝑑𝐼

𝑑𝑡
= 0 

Also, we can have, the DFE (1,0) and EE (𝑆∗∗, 𝐼∗∗) 
where,𝑆∗∗ = 𝑓−1(𝜙(𝑢) + 𝜇) and 𝐼∗∗ = 1 − 𝑓−1(𝜙(𝑢) +

𝜇) i.e.𝑆∗∗ = 𝑓−1(
𝑓(𝑆∗∗)

𝑅0
), 

𝐼∗∗ = 1 − 𝑓−1(
𝑓(𝑆∗∗)

𝑅0
) where 𝑅0 =

𝑓(𝑆∗∗)

𝜙(𝑢)+𝜇
.    (15) 

The EE exists when 𝑅1 < 1 

With 𝑓 strictly decreasing, 𝑅0 > 𝑅1, so the EE exists if 

𝑅0 < 1. By Theorem 3, the following result holds.  
Theorem 3.6 A strictly decreasing f(S) ensures that 
the DFE is stable and unstable when R0<1 and R0>1.  

 
Theorem 3.7 For a strictly decreasing transmission 
function (f'(S) < 0,  ∀ S ∈ (0,S₀)), the EE point is 

unstable.  

Proof. The JM at the EE (𝑆∗∗, 𝐼∗∗)is  
 

𝐽 = (
−𝑓′(𝑆∗∗)𝐼∗∗ − 𝜇 −𝜇

𝑓′(𝑆∗∗)𝐼∗∗ 0
)                        (16) 

 
Here, 𝑇𝑟(𝐽) = −𝑓′(𝑆∗∗)𝐼∗∗ − 𝜇 and 𝐷𝑒𝑡(𝐽) =
𝜇𝑓′(𝑆∗∗)𝐼∗∗ < 0.As f is a strict. Dec.fn. of S. 

Remark 1:  For a strictly increasing transmission 

function (f'(S) > 0 ∀ S > 0): 

o DFE is glob.asymp. stable if R1 < 1 
o DFE becomes unstable if R1 > 1 
o An endemic equilibrium emerges and gains 

stability for R1 > 1 
o When R1 = 1, the system is in transcritical 

bifurcation. 

Remark 2: For a strictly decreasing transmission 

function (f'(S) < 0 ∀ S ∈ (0,1)): 

o DFE exhibits: 

a. Local asymptotic stability when R0 < 1 
b. Instability when R0 > 1 

o The EE is unstable whenever it exists 
o The system demonstrates a backward 

bifurcation at R0 = 1 

 From system (1),we have the no. of infect. individuals 
at time t using (1.1) is 

 ∫
𝐼

𝐼0

𝑑𝐼

𝐼(𝑓(1−𝐼)−𝜙(𝑢)−𝜇
= ∫

𝑡

0
𝑑𝑡            (17)

 (4)11 
 where 𝐼0 is the initial value of I(t).   
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V.EXAMINATION OF FUZZY-BASED SYSTEM 

Viral load-dependent dynamics are incorporated 
by modeling disease transmission 𝑓(𝑆, 𝜈) and 

treatment efficacy 𝜑(𝑢, 𝜈) as fuzzy functions. 
Transmission occurs only if the viral load surpasses a 
minimum threshold 𝜈min, peaks at 𝜈𝑀, and saturates 
at 𝜈max, while treatment effectiveness varies with viral 
concentration. These relationships are mathematically 
represented through fuzzy membership functions (Eq. 
5, Fig. 1), capturing the nonlinear increase in 
transmission risk with rising viral load and its impact 
on therapy.  

Based on clinical estimations and prior literature, 
we assume: 

• 𝑣𝑚𝑖𝑛= 0.2: Minimum viral load below which 
transmission and treatment are negligible. 

• 𝑣𝑀   = 0.6: Moderate viral load at which 
transmission and treatment start to become 
effective. 

•  𝑣𝑚𝑎𝑥 =1.0:Saturated viral load where 
transmission reaches its maximum and 
treatment is capped. 

For the treatment response function 𝜙(𝑢, 𝑣), we 
introduce a capping factor ( 𝛿 = 0.1 ), representing 
limitations in healthcare capacity or incomplete 
intervention. Hence, treatment effectiveness is 
bounded above by ( 1 - 𝛿 = 0.9 ). 

 
The fuzzy classification of viral load (𝜌(𝑣)) is 

represented as a triangular membership function 

defined by the central value (𝑣𝐶  =0.6) and the spread 

(𝜆 = 0.2). This allows the model to flexibly categorize 
viral intensity into linguistic levels such as low, 
moderate, and high, capturing the uncertain gradation 
of infection severity in the host population.These 
parameters are illustrated in Fig. 1 and form the basis 
for computing fuzzy transitions and intervention levels 
in the model simulations. 

 
 

 
        FIGURE 1. Membership Function of f (S, 𝒗) and 𝝓(𝒖, 𝒗). 

 
(5) 

𝑓(𝑆, 𝜈) = 

{
 
 

 
 
0, 𝑖𝑓𝜈 < 𝜈min,

𝑓(𝑆,𝜈)−𝑓(𝑆,𝜈min)

𝑓(𝑆,𝜈𝑀)−𝑓(𝑆,𝜈𝑚𝑖𝑛)
, 𝑖𝑓𝜈𝑚𝑖𝑛 ≤ 𝜈 ≤𝑀,

1, 𝑖𝑓𝜈𝑀 < 𝜈 < 𝜈𝑚𝑎𝑥 .

   

                                                                 (18) 
  

Treatment efficacy is highly dependent on disease 
severity, motivating the use of a fuzzy logic approach. 
When the viral load is below the threshold 𝜈min, no 

intervention is necessary. As the viral load increases 
within the range 𝜈min ≤ 𝜈 ≤ 𝜈max, optimal treatment 
should ideally be administered. However, practical 
constraints such as cost limitations and medication 
shortages often hinder full implementation. To 
account for these real-world challenges, the treatment 
function is capped at 1 − 𝛿. This relationship is 
formally expressed through the membership function 
𝜑(𝑢) in Eq. (6). 

 

𝜙(𝑢, 𝜈)= 

{
 
 

 
 
0, if  𝜈 < 𝜈𝑚𝑖𝑛 ,

𝜙(𝑢,𝜈)−𝜙(𝑢,𝜈𝑚𝑖𝑛)

𝜙(𝑢,𝜈𝑀)−𝜙(𝑢,𝜈𝑚𝑖𝑛)
(1 − 𝛿), 𝑖𝑓  𝜈𝑚𝑖𝑛 < 𝜈 ≤ 𝜈𝑀 ,

1 − 𝛿, if𝜈𝑀 < 𝜈 < 𝜈𝑚𝑎𝑥   𝑎𝑛𝑑  𝛿 ≥ 0

 

 
                                                                         (19) 
 
Building upon prior work, we have characterized 

both transmission dynamics and therapeutic 
interventions as fuzzy mappings dependent on viral 
burden (V), accounting for natural variations in 
infectious particle density across hosts. The viral 
quantity represents a qualitative linguistic parameter, 
whose categorical divisions are determined via clinical 
expertise. These graded classifications adopt 
triangular fuzzy set representations, mathematically 
specified in Eq. (7) and graphically illustrated in Fig. 2.  
The fuzzy classification of viral load (𝜌(𝑣)) is modeled 
using a triangular membership function that 
represents the degree of moderate viral intensity in the 
host population. This membership function is centered 

at the core viral load level (𝑣𝐶=0.6), where the 
membership reaches its peak value of 1, indicating 
maximum classification as moderate.  

 
The function linearly decreases on both sides, 

reaching zero at ( 𝑣𝐶  - 𝜆 = 0.4) and ( 𝑣𝐶  + 𝜆 = 0.8), 
where ( 𝜆 = 0.2) is the spread parameter. This design 
captures the imprecise boundary between viral load 
categories, allowing the model to flexibly express 
transitions between low, moderate, and high levels of 
infection severity.  

 
The shape and parameters of (𝜌(𝑣)) are illustrated 

in Fig.~2, and play a key role in modulating fuzzy rule-
based transmission and intervention effects in the 
model. 

𝜌(𝜈)= 

{
 
 
 

 
 
 
0, if  𝜈 < 𝜈𝑐 − 𝜆,

𝜈−𝜈𝑐+𝜆

𝜆
, 𝑖𝑓  𝜈𝑐 − 𝜆 ≤ 𝜈 ≤ 𝜈𝑐 ,

−
𝜈−𝜈𝑐−𝜆

𝜆
, 𝑖𝑓  𝜈𝑐 < 𝜈 ≤ 𝜈𝑐 + 𝜆,

1, 𝑖𝑓  𝜈 > 𝜈𝑐 + 𝜆.

 

(20) 
  

where,𝜈𝑐  and 𝜆 are the central and and dispersion 
values of every fuzzy set assumed by V. 
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VI. EXPLORATION OF A FUZZY SIS-BASED 
APPROACH TO MODELLING RIFT VALLEY FEVER 

VIRUS 
If we consider f (S) = 𝑓(𝑆, 𝜈)𝑎𝑛𝑑𝜙(𝑢) =

𝜙(𝑢, 𝜈), then we can have the solution by solving  
 

(8) 
 

∫
𝐼

𝐼0

𝑑𝐼

𝐼(𝑓(1−𝐼,𝜈)−𝜙(𝑢,𝜈)−𝜇
 =∫

𝑡

0
𝑑𝑡  

                                                                             (21) 
  

The system generates a set of solutions 𝐼(𝜈, 𝑡), 
representing time-dependent infected population 
density resulting from susceptible-infected 
interactions at a given viral concentration 𝜈. For any 
fixed 𝑡, the function 𝐼(𝜈, 𝑡) is a fuzzy number 

constrained within the interval [0,1] (see Eq.3 ). 

Applying defuzzification to 𝐼(𝜈, 𝑡) provides a 
deterministic estimate of infection prevalence at each 
time point.  

 
VII.PROJECTED NUMBER OF RIFT VALLEY 
FEVER VIRUS CASES USING FUZZY LOGIC 

 
Here, we ascertain the mathematical expectation 

of the count of infected subjects, expressed as 𝐼(𝜈, 𝑡). 

 
  

                       FIGURE 2. Membership Function of 𝝆(𝒗). 

 
 

 

 
            FIGURE3. Classification of linguistic variable V. 

 
 

𝐹𝐸𝑉[𝐼] = sup0≤𝜃≤1inf[𝜃, 𝜁{𝐼 ≥ 𝜃}]                                
                                                                 (22) 
 

  The term 𝜁{𝐼 ≥ 𝜃} quantifies the probability 
measure associated with the event where infection 
levels exceed threshold 𝜃. The FEV[𝐼] metric serves 

as an estimator for the standard expected value 𝐸(𝐼) 

of the infected population, offering computational 
efficiency by eliminating the need for integration. 

Let Ω(𝜃) = 𝜁{𝐼 ≥ 𝜃} for any 𝑡 > 0. By definition, 

Ω(0) = 1 (certainty of infection presence) and Ω(1) =
0 (impossibility of complete infection). For 

intermediate thresholds 0 < 𝜃 < 1, the inequalities 
 
𝑓(𝑆, 𝜈) ≥ Ψ(𝜃, 𝑡)                                       (23)  

and 
 
𝜙(𝑢, 𝜈) ≥ Ψ(𝜃, 𝑡)                                       (24)  

  
emerge as necessary conditions when 

 
𝐼(𝜈, 𝑡) ≥ 𝜃. 

 

Ω(𝜃)= 

{
 
 
 
 

 
 
 
 
𝜁{𝐼(𝜈, 𝑡) ≥ 𝜃},

𝜁{𝜈: 𝑓(𝑆, 𝜈), 𝜙(𝑢, 𝜈) ≥ 𝜓(𝜃, 𝑡)},

1, 𝑖𝑓𝜓(𝜃, 𝑡) ≤ 0,

𝜁[𝜒, 𝜈𝑚𝑎𝑥], 𝑖𝑓0 < 𝜓(𝜃, 𝑡) ≤ 1,

0, 𝑖𝑓𝜓(𝜃, 𝑡) > 1.

 

 
                                                                 (25)  

i.e.  

Ω(𝜃)= 

{
 
 

 
 
1,0 ≤ 𝜃 ≤ 𝐼0

𝜁[𝜒, 𝜈𝑚𝑎𝑥], 𝐼0 < 𝜃 ≤ 𝐼1,

0, 𝐼1 < 𝜃 ≤ 1.

 

                                                                            (26)    

 
                                   FIGURE 4. Graph of 𝜴. 

 
 

 We establish the parameter 𝜒 through the relation 
 
𝜒 = 𝜈min + (𝜈𝑀 − 𝜈min)𝜓(𝜃, 𝑡),                  (26) 

 
with 𝐼1 being determined by optimizing the 

functions 𝑓(𝑆, 𝜈) and 𝜙(𝑢, 𝜈) at their respective 

maxima (unity and 1 − 𝛿) within the framework of 
equation (8). The parameter 𝜒 is bounded such that 

 
𝜈min < 𝜒 ≤ 𝜈𝑀 .                                          (27) 

 
The fuzzy measure 𝜁(𝐴) for any measurable 

subset 𝐴 ⊂ ℝ is formally expressed as: 
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𝜁(𝐴) =
1

𝜆
∫
𝐴

𝜌(𝜈)𝑑𝜈, 

                                                                 (28) 
 

where the normalized function 𝜌(𝜈)/𝜆 constitutes a 
proper probability density, thereby rendering 𝜁(𝐴) a 
well-defined probability measure on the real line. 

For the estimation of FEV[𝐼(𝜈, 𝑡)], we employ a 
tripartite fuzzy classification system for the parameter 
𝜈: 

 
    • Diminished range (𝜈𝑙)  
    • Intermediate range (𝜈𝑚)  
    • Elevated range (𝜈ℎ)  
 

These classifications are mathematically 
characterized through the boundary parameters 
𝜈min, 𝜈𝑀 , and 𝜈max, with their graphical representation 
illustrated in Figure 3. The fuzzy sets corresponding to 
these classifications exhibit standard membership 
function properties while maintaining computational 
tractability for epidemiological modeling purposes. 

 
Subthreshold Case (𝝂𝒍): When viral load remains 

below critical levels (𝜈𝑐 + 𝜆 < 𝜈min), containment 

measures render 𝜁[𝜒, 𝜈max] = 0. The binary Ω(𝜃) 
transitions sharply at 𝜃 = 𝐼0, yielding 

 
FEV[𝐼(𝜈, 𝑡)] = 𝐼0, 

                                                                 (29) 
 

confirming disease suppression. 
Moderate Case (𝝂𝒎): For intermediate viral loads 

(𝜈𝑐 − 𝜆 > 𝜈min, 𝜈
𝑐 + 𝜆 < 𝜈𝑚), Ω(𝜃) displays smooth 

quadratic decay, ensuring a unique equilibrium 
 

FEV[𝐼(𝜈, 𝑡)] = 𝐼(𝜈𝑐 , 𝑡) 
                                                                 (30) 

 
at the endemic balance point 𝐼(𝜈𝑐 , 𝑡) = 0.5. 

Suprathreshold Case (𝝂𝒉): At high concentrations 
(𝜈𝑐 − 𝜆 ≥ 𝜈𝑚, 𝜈

𝑐 + 𝜆 ≤ 𝜈max), 𝜁[𝜒, 𝜈max] saturates, 

producing a step-function Ω(𝜃). FEV[𝐼(𝜈, 𝑡)] 
converges to the classical solution under maximal 
transmission (𝑓 = 1) and reduced treatment efficacy 

(𝜙 = 1 − 𝛿). 
The medium case particularly demonstrates 

equilibrium where FEV matches the infection 
function’s fixed point, representing stable endemic 
conditions.  

𝐹𝐸𝑉[𝐼(𝜈, 𝑡)] < 𝐼(𝜈𝑐 , 𝑡), 𝑖𝑓𝐼(𝜈𝑐 , 𝑡) >
1

2
 

                                                                              (31) 

𝐹𝐸𝑉[𝐼(𝜈, 𝑡)] > 𝐼(𝜈𝑐 , 𝑡), 𝑖𝑓𝐼(𝜈𝑐 , 𝑡) >
1

2
 

                                                                              (32) 
 

 The FEV[𝐼(𝜈, 𝑡)] is derivable for arbitrary fuzzy 
measures 𝜉. Specifically, if 𝜉 represents possibility, we 
obtain 

 
FEV[𝐼(𝜈, 𝑡)] = sup[𝜉(𝜈) ∧ 𝐼(𝜈, 𝑡)]. 

                                                                 (33) 

 
𝜉(𝑋) = sup𝜌(𝜈), 𝜈 ∈ 𝑋, 𝑋 ⊂ 𝑅 

So,we have, 

Ω(𝜃)= 

{
 
 
 

 
 
 
1, 𝑖𝑓0 ≤ 𝜃 ≤ 𝐼0,

sup
𝜈∈[𝜒,𝜈𝑚𝑎𝑥]

𝜌(𝜈), 𝑖𝑓𝐼0 < 𝜃 ≤ 𝐼1,

0, 𝑖𝑓𝐼1 < 𝜃 ≤ 1.

 

                                                                             (34) 
 

and 𝐹𝐸𝑉[𝐼(𝜈, 𝑡)] is the fixed point of Ω(𝜃). 
The expectation 𝐸[𝐼(𝜈, 𝑡)] for the no. of infected 

individuals is now computed for the three key cases: 
𝜈min, 𝜈𝑀, and 𝜈max, according to the previous 
definitions. 

 
 
 

 
                         FIGURE 5. Curve of transcritical bifurcation. 

 
VIII.CONVENTIONAL ASSESSMENT OF RIFT 
VALLEY FEVER VIRUS INFECTION COUNT 

 
The expected no. of infected individuals at time t 

under random parameter ν is  

𝐸[𝐼(𝜈, 𝑡)] = ∫
+∞

−∞

𝐼(𝜈, 𝑡)
𝜌(𝜈)

𝜆
𝑑𝜈 

 =
1

𝜆
∫
𝜈𝑐+𝜆

𝜈𝑐−𝜆
𝐼(𝜈, 𝑡)𝜌(𝜈)𝑑𝜈. 

                                                   (35) 
 

 In the low-virus scenario (𝜈𝑙), where 𝜈𝑐 + 𝜆 < 𝜈min, 
the disease transmission function 𝑓(𝑆, 𝜈) is entirely 
suppressed for all infected individuals, resulting in an 
expectation 

 
𝐸[𝐼(𝜈, 𝑡)] = 𝐼0. 

                                                                 (36) 
 

In the intermediate-virus case (𝜈𝑚), where 𝜈𝑐 − 𝜆 >
𝜈min and 𝜈𝑐 + 𝜆 < 𝜈𝑀, 𝑓(𝑆, 𝜈) exhibits variability, and 
𝐸[𝐼(𝜈, 𝑡)] is derived through integration, contingent 
upon the knowledge of all relevant parameters. 

Conversely, in the high-virus condition (𝜈ℎ), where 

𝜈𝑐 − 𝜆 ≥ 𝜈𝑀 and 𝜈𝑐 + 𝜆 ≤ 𝜈max, the transmission 
function 𝑓(𝑆, 𝜈) attains its upper bound of 1, signifying 
maximal contagion among infected individuals.  
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Hence, we have  

𝐸[𝐼(𝜈, 𝑡)] =
1

𝜆
∫
𝜈𝑐−𝜆

𝜈𝑐−𝜆

𝜌(𝜈)𝐼(𝜈, 𝑡)𝑑𝜈 = 𝐼1 

                                                                              (37) 
IX.INFLUENCE OF AN EXPANDING 

TRANSMISSION FUNCTION ON RIFT VALLEY 
FEVER EQUILIBRIA AND BIFURCATION 

 
The basic reprodn.no.R1 works as a fundamental 

epidemic threshold parameter. It assesses the 
expected no. of secondary infections created by an  
infected individual in a suspected population. 
Epidemic expansion occurs when 𝑅1 > 1, while 𝑅1 <
1 signifies disease extinction. 
For this system, the reproduction number (RN) is 
given by 

 

𝑅1 =
𝑓(1)

𝜑(𝑢) + 𝜇
 

                                                               (38) 
 

which governs a transcritical bifurcation at 𝑅1 = 1, 
where the DFE loses stability, giving rise to an 
endemic state. Interestingly, the EE remains stable 
even below this threshold when 

 

𝐼∗ > −
𝜇

𝑓′(𝑆∗)
. 

                                                                 (39) 
 

Viral load dependence introduces a critical 
concentration 𝜈∗, satisfying 

 
𝑓(1, 𝜈∗) = 𝜑(𝑢, 𝜈∗) + 𝜇, 

                                                                 (40) 
 

which triggers the bifurcation within the interval 
[𝜈min, 𝜈𝑀], as illustrated in Fig. 5. The bifurcation 
structure illustrated in Fig.~5 depicts a transcritical 
bifurcation, which is a typical feature of classical 
epidemic models. The figure plots the infected 
population I* against the basic reproduction number 
𝑅1, providing insight into the stability of disease 
equilibria as transmission conditions change. 
 

At the critical threshold 𝑅1 = 1, a stability exchange 
occurs between the disease-free equilibrium (DFE) 
and the endemic equilibrium (EE): 
 

 When 𝑅1 < 1, I*=0 the DFE at  is stable, meaning 
that the disease cannot invade the population and will 
eventually die out. 
     

 As 𝑅1 crosses 1 and becomes greater than 1, the 
DFE becomes unstable, and a stable endemic 
equilibrium emerges where I*>0, signifying persistent 
infection in the population. 
     

 The two equilibria intersect at the bifurcation point  
(𝑅1, I*) = (1, 0), where the transition from the disease-
free to the endemic state occurs. 
 

 
This transcritical bifurcation indicates that 

controlling the reproduction number 𝑅1 below 1 is both 
necessary and sufficient for disease eradication. 
Unlike backward bifurcation, no multiple stable 
endemic states exist when 𝑅1<1, making intervention 
strategies more straightforward in this case.The 
behavior illustrated in Fig. 5 is representative of 
models with linear or monotonic incidence rates 
and without saturation or fuzzy uncertainty in key 
parameters. It serves as a baseline case in comparing 
more complex bifurcation structures arising in fuzzy or 
stochastic systems. 
This virus-driven model necessitates the use of a 
fuzzy RN to accurately describe the uncertainties 
associated with transmission dynamics.  

𝑅1
𝑓
=

1

1 − 𝛿 + 𝜇
𝐹𝐸𝑉[(1 − 𝛿 + 𝜇)𝑅1(𝜈)] 

                                                                 (41)  

 where 𝑅1(𝜈) =
𝑓(1,𝜈)

𝜙(𝑢,𝜈)+𝜇
. It is found that 𝑅1(𝜈) 

may be greater than 1, but [(1 − 𝛿 + 𝜇)𝑅1(𝜈)] is 

always a +ive fract. with highest value 1. To get 

FEV[(1 − 𝛿 + 𝜇)𝑅1(𝜈)], we use the likelihood 

assessment 𝜓(𝑋) as  

𝜓(𝑋) = sup𝜌(𝜈), 𝜈 ∈ 𝑋 ⊂ 𝑅                       (42) 

The group infectivity index is defined by the 
maximal individual infectivity within the group, 
representing a worst-case transmission scenario.We 
compute the fuzzy basic reproduction number Rf

1 by 
incorporating viral load levels (low, medium, high) 
through their associated membership functions ρ(ν). 
The analysis considers the following cases: 

(a) low if 𝜈𝑐 + 𝜆 < 𝑣𝑚𝑖𝑛 

(b) medium if 𝜈𝑐 − 𝜆 > 𝜈𝑚𝑖𝑛 and 𝜈𝑐 + 𝜆 ≤ 𝜈𝑀  

(c) high if 𝜈𝑐 − 𝜆 > 𝜈𝑀. 
 

In the scenario where viral load is minimal (Case 
a), it is self-evident that the fuzzy basic reproduction 

number satisfies 𝑅1
𝑓
< 1. To ascertain 𝑅1

𝑓
 for the 

subsequent cases (b) and (c), we leverage the strictly 
monotonous nature of 𝑅1(𝜈), yielding the relation 

 
Ω(𝜃) = 𝜙[𝜈, 𝜈max] = sup𝜌(𝜈),    𝜈′ ≤ 𝜈 ≤ 𝜈max, 

where 𝜈′ is the soln. to the eqn. 
 

(1 − 𝛿 + 𝜇)
𝑓(1, 𝜈)

𝜙(𝑢, 𝜈) + 𝜇
= 𝜃. 

                                                                 (43) 
 

Through analytical derivation in Case (b), the 
function Ω(𝜃) assumes a segmented form, 
substantiating that the fuzzy expected value 

 

𝐹𝐸𝑉[(1 − 𝛿 + 𝜇)
𝑓(1, 𝜈)

𝜙(𝑢, 𝜈) + 𝜇
] 

                                                                 (44) 
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coincides with the fixed point of Ω, thereby satisfying 
the inequality 

 

𝑅1(𝜈
𝑐) < 𝑅1

𝑓
< 𝑅1(𝜈

𝑐 + 𝜆). 
                                                                 (45) 

 
Extending this result to Case (c), we deduce the 

bound 
 

1

𝜙(𝑢, 𝜈𝑐)
< 𝑅1

𝑓
<

1

𝜙(𝑢, 𝜈𝑐 + 𝜆) + 𝜇
, 

                                                                (46) 
signifying that the disease will establish itself if 

 

𝑅1
𝑓
>

1

𝜙(𝑢, 𝜈𝑐)
> 1. 

                                                                 (47) 
 

 
                   FIGURE 6. Curve of Backward Bifurcation. 

 
X.FUZZY EPIDEMIC INTERVENTIONS FOR RIFT 

VALLEY FEVER WITH AN INTENSIFYING 
TRANSMISSION FUNCTION 

 
Disease dynamics in this framework are 

significantly influenced by viral load 𝜈, transmission 

efficiency 𝑓(𝑆), and treatment efficacy 𝜑(𝑢). The fuzzy 
formulation of system (0.1) generates a continuum of 
viral-dependent models, which can be effectively 
approximated by a single characteristic system at an 
optimal viral concentration 𝜈∗. 

 

A. Viral Load Scenarios 

 
1) Subthreshold Viral Levels (𝝂 < 𝝂𝒎𝒊𝒏) 

 
    •The RN: 𝑅1(𝜈) = 0 (< 1) 
    • Disease elimination occurs inevitably  

 
2) Moderate Viral Loads (𝝂𝒎𝒊𝒏 ≤ 𝝂 ≤ 𝝂𝑴) 

 
Three distinct epidemiological outcomes emerge:   

    1.  𝜈∗ < 𝜈: 𝑅1(𝜈) < 1 → Disease-free state  

    2.  𝜈∗ = 𝜈: 𝑅1(𝜈) = 1 → Transcritical 
bifurcation occurs  

    3.  𝜈∗ > 𝜈: 𝑅1(𝜈) > 1 → Endemic 
establishment  

 

3) High Viral Concentrations (𝝂 ∈ [𝝂𝒎𝒊𝒏, 𝝂𝑴]) 
 

Disease spread is governed by the treatment 
parameter 𝛿: 

 
    1.  𝛿 < 𝜇: 𝑅1(𝜈

∗) < 1 → Pathogen 
clearance  

    2.  𝛿 > 𝜇: 𝑅1(𝜈
∗) > 1 → Epidemic 

propagation  
    3.  𝛿 = 𝜇: Bifurcation induces oscillatory 

dynamics near the DFE  
 

XI.BASIC REPRODUCTION NUMBER AND 
NONLINEAR DYNAMICS IN RIFT VALLEY FEVER 

WITH A DECLINING DISEASE TRANSMISSION 
FUNCTION 

 
The epidemic threshold is determined by:  

𝑅0 =
𝑓(𝑆∗∗)

𝜑(𝜈) + 𝜇
 

                                                                 (48) 
 

with stability reversal occurring at 𝑅0 = 1. At this 
critical point, the DFE transitions from stability to 
instability, indicating a backward bifurcation (Fig. 6). 
The condition:  

𝑓(𝑆, 𝜈) = 𝜑(𝑢, 𝜈) + 𝜇 
                                                                 (49) 

 
identifies a specific viral concentration 𝜈∗∗ (where 

𝜈min < 𝜈∗∗ < 𝜈𝑀) that initiates this bifurcation. 
The bifurcation curve shown in Fig.~6 illustrates the 
dynamics of the infected population I as a function of 
the basic reproduction number 𝑅0, highlighting the 
presence of backward bifurcation in the system. 
Unlike classical models where the disease-free 
equilibrium (DFE) is globally stable for ( 𝑅0 < 1), this 
model exhibits a critical threshold below 1, at which 
multiple equilibria coexist. 
 

Specifically, for values of 𝑅0 just below 1, two 
endemic equilibria (EE)—one stable and one 
unstable—emerge alongside a stable DFE. This 
implies that disease eradication is not guaranteed 
even if 𝑅0 < 1, due to the existence of a stable 
endemic equilibrium. The turning point on the 
bifurcation curve denotes the critical value of 𝑅0 where 
the bifurcation occurs. 
 

This behavior is characteristic of models with 
imperfect treatment, nonlinear incidence, or fuzzy 
parameter dependencies, such as those arising in 
viral load-dependent transmission. The presence of 
backward bifurcation in this model underscores the 
importance of maintaining intervention efforts even 
when 𝑅0 appears to fall below unity, as infection can 
persist due to residual endemic stability. 
 

These features are vital for understanding control 
thresholds and treatment saturation effects, 
particularly in fuzzy or uncertain environments 
modeled using fuzzy logic or stochastic frameworks. 
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A.Fuzzy Reproduction Number 
 

The fuzzy RN is formulated as:  

𝑅0
𝑓
=

1

1 − 𝛿 + 𝜇
FEV[(1 − 𝛿 + 𝜇)𝑅0(𝜈)], 

                                                                 (49) 
where:  

𝑅0(𝜈) =
𝑓(𝑆∗∗, 𝜈)

𝜑(𝑢, 𝜈) + 𝜇
. 

                                                                (50) 
Notably, (1 − 𝛿 + 𝜇)𝑅0(𝜈) remains bounded within 

(0,1]. 
 

B. Viral Load Classification & System Behavior 

 
 

1) Low Viral Load (𝝂𝒄 + 𝝀 < 𝝂𝒎𝒊𝒏) 
 

 Ensures 𝑅0
𝑓
< 1, preventing disease persistence.  

 
2) Medium Viral Load (𝝂𝒄 − 𝝀 > 𝝂𝒎𝒊𝒏 and 𝝂𝒄 +
𝝀 ≤ 𝝂𝑴) 

 
The fuzzy expectation Ω(𝜃) follows a piecewise 

structure:  

Ω(𝜃) = {

1, 𝜃 ≤ (1 − 𝛿 + 𝜇)𝑅0(𝜈𝑐),

𝜌(𝜈′′), forintermediate𝜃,

0, 𝜃 > (1 − 𝛿 + 𝜇)𝑅0(𝜈𝑐 + 𝜆).

 

                                                                (51) 

Here, 𝑅0(𝜈𝑐) < 𝑅0
𝑓
< 𝑅0(𝜈𝑐 + 𝜆). 

 
3) High Viral Load (𝝂𝒄 − 𝝀 > 𝝂𝑴) 

 
Disease invasion requires:  

𝑅0
𝑓
>

1

𝜑(𝑢, 𝜈𝑐)
> 1, 

                                                                 (52) 
 

highlighting the critical role of treatment efficacy 𝛿 in 
controlling outbreaks.  
 

XII.FUZZY EPIDEMIC-BASED CONTROL 
STRATEGIES FOR RIFT VALLEY FEVER UNDER 

A DECLINING DISEASE TRANSMISSION 
FUNCTION RELATIVE TO THE SUSCEPTIBLE 

GROUP 

The disease control dynamics in this system 
depend critically on three factors: viral load (𝜈), 

disease transmission function 𝑓(𝑆), and treatment 
efficacy 𝜑(𝑢). The fuzzy formulation generates a 

continuum of systems parameterized by 𝜈, which can 
be reduced to an equivalent single system at an 
optimal viral concentration 𝜈∗∗. 

 
Viral Load Scenarios 

 
1. Subthreshold Viral Levels (𝝂∗∗ < 𝝂𝒎𝒊𝒏) 

 

 The basic reproduction number becomes 
negligible (𝑅1 < 1), leading to disease elimination.  
 

2. Moderate Viral Loads (𝝂𝒎𝒊𝒏 ≤ 𝝂∗∗ ≤ 𝝂𝑴) 
 

Three distinct epidemiological outcomes emerge:   
a.  If 𝜈∗∗ < 𝜈∗∗, the system remains disease-free 

(𝑅1 < 1).  

b.  At the critical threshold 𝜈∗∗ = 𝜈∗∗, a transcritical 
bifurcation occurs (𝑅1 = 1).  

c.  For 𝜈∗∗ > 𝜈∗∗, the disease becomes endemic 

(𝑅1 > 1).  
 

3. High Viral Concentrations (𝝂∗∗ ∈ [𝝂𝒎𝒊𝒏, 𝝂𝑴]) 
 

The epidemic outcome depends crucially on the 
treatment parameter 𝛿:   

    • If 𝛿 < 𝜇, the disease dies out (𝑅1 < 1).  
    • If 𝛿 > 𝜇, the infection spreads (𝑅1 > 1).  

    • At the exact balance point 𝛿 = 𝜇, the system 
exhibits oscillatory behavior around the DFE. 
 

XIII.SIMULATED COMPUTATION 

Linear functional forms are adopted to characterize 
disease transmission and therapeutic intervention, 
expressed as: 

 
𝑓(𝑆) = 𝛽𝑆 

                                                                 (53) 
where 𝛽 represents the transmission rate, and 

 
𝜑(𝑢) = 𝑚 + 𝑏𝑢 

                                                                 (54) 
 

incorporating baseline recovery 𝑚 and treatment 

coefficient 𝑏.The system of DE governing the 
susceptible and infected populations is given by: 

 
𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝑆𝐼 + (𝑚 + 𝑏𝑢)𝐼 − 𝜇𝑆 

                                                                 (55) 
 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝑚 + 𝑏𝑢 + 𝜇)𝐼 

                                                                (56) 
 

𝛽 = 0.38, 𝜇 = 0.001, 𝑢 = 0.5, 𝑏 = 0.003,𝑚 = 0.01 
numerical analysis reveals asymptotic convergence to 
the endemic equilibrium (Fig. 7). Remarkably, this 
stability emerges even with a subthreshold 
reproduction number: 𝑅1 = 0.9971 and persists under 
strictly increasing transmission dynamics, 
underscoring the system’s capacity to sustain 
endemicity below conventional epidemic thresholds.  
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FIGURE 7. System is asymptoticaly stable at endemic     

equilibrium. 

 

XIV.CONCLUSION 

This study investigates an SIS (Susceptible-
Infected-Susceptible) contagion model in which the 
infection propagation rate and therapeutic intervention 
efficacy are modeled as generalized functions of the 
vulnerable subpopulation (S) and the treatment 
parameter (u), respectively. The analysis begins by 
evaluating the dynamic characteristics of the 
traditional (non-fuzzy) system, focusing on cases 
where the medical response function exhibits either a 
strictly escalating or diminishing relationship with S. 
Notably, a stable endemic state can emerge even 
when the basic reproduction threshold (𝑅0) is below 
one, particularly under a declining contagion rate. The 
system’s equilibrium behavior is analyzed in relation 
to 𝑅0 for both upward- and downward-sloping 
treatment functions. The study then advances to a 
fuzzy-logic-based extension, where both transmission 
dynamics and healthcare measures are expressed as 
functions of the prevailing pathogen load. Affiliation 
distributions for both pathogen dissemination and 
clinical intervention effectiveness are precisely 
characterized. The probabilistic projection of affected 
cases is established and stratified according to 
pathogen quantity (minimal, intermediate, 
substantial). Furthermore, a probabilistic proliferation 
index (a measure of the likelihood that an infection will 
spread within a population under uncertain conditions) 
is constructed and evaluated. A pivotal microorganism 
density benchmark (a critical threshold of 
microorganism concentration indicating when 
infection risk significantly rises) is discovered where 
the adapted probabilistic SIS framework 
demonstrates either transitional or reverse 
divergence, contingent on whether the infection 
dispersal escalates or diminishes relative to the 
vulnerable cohort (S). In forthcoming scholarly inquiry, 
we propose integrating supplementary parameters 
into the paradigm to augment its ecological 
verisimilitude. Established computational schemata, 
particularly the Receptive-Contagious- 

Receptive (RCR) disease propagation construct, 
are ubiquitously implemented to examine the diffusion 
of transmissible pathologies, including Rift Valley 
Fever (RVF). These theoretical representations 

enable simulation of outbreak progression patterns 
and optimize containment methodologies. 
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