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Some Insights on Pythagorean Neutrosophic Graphs

Murugappan Mullai*, Govindan Vetrivel, Grienggrai Rajchakit*, Meyyappan Sangavi and R. Surya

Abstract – Pythagorean neutrosophic graphs 
(PNeuGr) are a specialized extension of the 
neutrosophic graphical idea, where the total sum range 
of memberships is adjusted by squaring each 
membership. This article is furnished to enhance the 
handling of uncertain events in a complex environment. 
The discussion encloses the irregular properties of the 
PNeuGr and its practical implications. 
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TABLE 1.  Abbreviations Used. 

 

Description Abbreviation 

Fuzzy Set FuS 

Fuzzy Graph FuG 

Intuitionistic Fuzzy Set IN-FuS 

Intuitionistic Fuzzy Graph IN-FuG 

Neutrosophic Set NeuS 

Neutrosophic Graphs NeuGr 

Pythagorean Neutrosophic Graphs PNeuGr 

Neighborly NeiG 

Neighborhood NEI 

Irregular Pythagorean Neutrosophic Graphs iPNeuGr 

Highly HiG 

Strongly Str 
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I. INTRODUCTION 

Graph theory has replaced other application-
oriented fields since it deals with the real picturization 
of events with the help of components such as vertices 
and edges. Euler sowed the seed for the evolution of 
graph theory and its structural discussions on real life 
through the famous bridge problem. Then, the crisp 
and integer-based graph theory helped the other 
researchers to imagine their problem with graphical 
properties. However, inaccurate information exists 
regarding the outcome. This problem was understood, 
and the development is intended to find the extensible 
set theory concept named “FuS” [1]. With this, the 
performance of the fuzzy graphical models is analyzed 
and portrayed [2]. Many insightful properties and 
developments in FuG theory have been flourished 
[3].    

From one point of view, the results are still 
inadequate and incomplete. The recognition and 
restructuring of the existing set theory concept 
happened by adding a non-membership element. This 
improved set-theoretical approach was named “IN-
FuS” [4]. This set theory acts as a base and 
implements a developed graphical structure with fuzzy 
value-based elements, which is declared in the name 
“IN-FuG” [5]. Further excavation of some essential 
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results and theories on IN-FuG is then executed and 
claimed [6].  

Later, an upgraded set concept evolved with an 
increased total sum range of memberships [7]. It is 
announced for a separate membership to organize the 
uncertain things of an event, and is named 
“indeterminacy.” Based on this indeterminacy, the set 
theory is called “NeuS” [8], a primary requirement for 
developing NeuGr.  Preliminary work on the NeuGr 
has been carried out by analyzing all basic 
terminologies and functions [9]. The reframed structure 
of this graph theory with restricted limits by 
implementing a standard interval range for each 
membership [10] is delivered and called “Single 
Valued NeuGr.” Some essential properties, such as 
degree, size, and order, are portrayed in this graph.  

Next to this, the Pythagorean fuzzy set [11] was 
introduced, and it replaced the IN-FuS since this allows 
a wide range of values for memberships as it is 
squared. The Pythagorean FuG [12] was coined based 
on this set concept. In the same way, Pythagorean 
NeuS [13] was used to expand the applicability of 
membership values; thereby, it is used to enforce the 
PNeuGr [14]. The generation of this graph type is used 
to learn the regularity properties of PNeuGr and its 
application [15]. Also, some PNeuGr operations with 
different products are carried out [16]. The NeiG edge 
irregularity property on interval-valued PNeuGr [17] is 
explored using other criteria. The product discussion 
was recently done on Pythagorean Co-NeuGr [18], 
and an application on brain network analysis was 
framed. The complement and anti-complement 
properties of Pythagorean Co-NeuGr [19] are listed 
with examples. At a glance at this research, the base 
works [20-21] are essential when applying the 
discussion in PNeuGr and its properties. 

This article encompasses some essential & basic 
definitions and results on PNeuGr. The irregularity and 
edge-irregular properties of PNeuGr are demonstrated 
in a wide range. The sectional highlights are listed in 
the following way: Section I captures the introductory 
works on the FuS and its extensional concepts. 
Section II covers the basic terminologies of the 
neutrosophic set and graph. Also, the definition of 
PNeuGr and related terms is noted. The irregularity 
and edge irregularity of PNeuGr are elaborated in 
Section III with some theorem results. Section IV 
consolidates the final work on PNeuGr and our team’s 
future work. An application regarding the proposed 
work is portrayed in Section V. Section VI encloses the 
concluding remarks and our future insight on PNeuGr. 

II. PRELIMINARY DEFINITIONS 

 
Definition 2.1. [7]  
 

Consider Z to be the universal set. A NeuS N̅ framed 

on Z is called as R̅ = {(t, Ʈ𝑁(t), ƗN̅(t), ӺN̅(t)): t ∈ X} , 
where ƮN̅(t): Z → [0,1] , ƗN̅(t): Z → [0,1] , ӺN̅(t): Z →
[0,1]  are said to be functions for truth(available), 
indeterminacy(unsure) and false(unavailable) 

membership of t on N̅ respectively and it satisfies the 
condition 0 ≤ ƮN̅ + ƗN̅ + ӺN̅ ≤ 3, ∀ t ∈ Z. 
 

Definition 2.2. [10]  
 

A NeuGr is mentioned as Ǥ = (ϔ, α, β) , where α =
(Ʈӓ, Ɨӓ, Ӻӓ) and β = (Ʈƀ, Ɨƀ, Ӻƀ) and holds the following 
conditions,   
 

(i) Let Ʈӓ: ϔ → [0,1] , Ɨӓ: ϔ → [0,1]  and Ӻӓ: ϔ → [0,1] 
denote the available, unsure, and unavailable 

memberships of the element ai ∈ ϔ, respectively and 

0 ≤ Ʈӓ(ai) + Ɨӓ(ai) + Ӻӓ(ai) ≤ 3, for all ai ∈ ϔ.   
 

(ii) The functions Ʈƀ: ε ⊆ ϔ × ϔ → [0,1], Ɨƀ: ε ⊆ ϔ × ϔ →
[0,1]  and Ӻƀ: ε ⊆ ϔ × ϔ → [0,1]  denote the available 
(1), unsure (2), and unavailable (3) memberships of 
the edge (ai, aj) respectively, such that  

 Ʈƀ(ai, aj) ≤ low[Ʈӓ(ai), Ʈӓ(aj)], ……………...  (1) 

 Ɨƀ(ai, aj) ≤ low[Ɨӓ(ai), Ɨӓ(aj)], ………………... (2) 

 Ӻƀ(ai, aj) ≤ high[Ӻӓ(ai), Ӻӓ(aj)]……………....  (3) 

and 0 ≤ Ʈƀ(ai, aj) + Ɨƀ(ai, aj) + Ӻƀ(ai, aj) ≤ 3,  

for every edge (ai, aj). 

 
Definition 2.3. [14] 
 

A PNeuGr is stated in the form Ǥ = (ϔ, α, β), where the 
following conditions hold:   
 

(i) Let Ʈӓ: ϔ → [0,1] , Ɨӓ: ϔ → [0,1]  and Ӻӓ: ϔ → [0,1] 
denote the available, unsure, and unavailable 

memberships of the element ϋi ∈ ϔ, respectively and 

0 ≤ (Ʈӓ(ai))2 + (Ɨӓ(ai))2 + (Ӻӓ(ai))2 ≤ 2, for all ai ∈ ϔ.   
 

(ii) The functions Ʈƀ: ε ⊆ ϔ × ϔ → [0,1], Ɨƀ: ε ⊆ ϔ × ϔ →
[0,1]  and Ӻƀ: ε ⊆ ϔ × ϔ → [0,1]  denote the available 
(4), unsure (5), and unavailable (6) memberships of 
the edge (ai, aj) respectively, such that  

 Ʈƀ(ai, aj) ≤ low[Ʈӓ(ai), Ʈӓ(aj)], ……………. (4) 

 Ɨƀ(ai, aj) ≤ low[Ɨӓ(ai), Ɨӓ(aj)], ……………… (5) 

 Ӻƀ(ai, aj) ≤ high[Ӻӓ(ai), Ӻӓ(aj)] …………….. (6) 

and 0 ≤ (Ʈƀ(ai))2 + (Ɨƀ(ai))2 + (Ӻƀ(ai))2 ≤ 2,  
for every edge (ϋi, ϋj). 

 

 
FIGURE 1.  A Pythagorean Neutrosophic Graph. 

 
Definition 2.4. 
 

Consider Ǥ = (ϔ, α, β),  as a PNeuGr. The degree 
(Ʈ, Ɨ, Ӻ) of a vertex ‘a’ (7) is the summing of values of 
each membership of edges (8), (9), (10) that joins ‘a’, 
and it is denoted as dǤ(a). 
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(i.e.), 𝑑Ǥ(a) = (𝑑Ʈ(a), 𝑑Ɨ(a), 𝑑Ӻ(a), …………. (7) 

where  
𝑑Ʈ(a) = ∑𝑏≠𝑎 Ʈƀ(a, 𝑏), ………………………  (8) 

𝑑Ɨ(a) = ∑𝑏≠𝑎 Ɨƀ(a, 𝑏)  ………………………..  (9) 

and 𝑑Ӻ(a) = ∑𝑏≠𝑎 Ӻƀ(a, 𝑏)…………………... (10) 

 
Definition 2.5. 
 

The min degree ( Ʈ, Ɨ, Ӻ ) of a PNeuGr Ǥ = (ϔ, α, β) , 

is  δ(Ǥ) = (δƮ(Ǥ), δ Ɨ(Ǥ), δӺ(Ǥ)), …………….. (11) 

where  
δƮ(Ǥ) = min{dƮ(b)/b ∈ B}, …………………. (12) 

δ Ɨ(Ǥ) = min{d Ɨ(b)/b ∈ B} ………………….. (13) 

and δӺ(Ǥ) = min{dӺ(b)/b ∈ B} ……………... (14) 

 
Equation (11) denote the min degree of a PNeuGr and 
(12), (13), (14) denotes the individual memberships of 
(11).  

   
Definition 2.6. 
 

The max degree (Ʈ, Ɨ, Ӻ)  of a PNeuGr Ǥ = (ϔ, α, β) is  
Δ(Ǥ) = (ΔƮ(Ǥ), ΔƗ(Ǥ), ΔӺ(Ǥ)), ……………….. (15) 

where 
ΔƮ(Ǥ) = max{𝑑Ʈ(𝑏)/𝑏 ∈ 𝐵}, ………………… (16) 

ΔƗ(Ǥ) = max{𝑑Ɨ(𝑏)/𝑏 ∈ 𝐵}  …………………. (17) 

and ΔӺ(Ǥ) = max{𝑑Ӻ(𝑏)/𝑏 ∈ 𝐵}…………….. (18) 

 
Equation (15) denote the max degree of a PNeuGr 
and (16), (17), (18) denotes the individual 
memberships of (15).  
 

III. IRREGULARITY ON PYTHAGOREAN NEUTROSOPHIC 

GRAPHS 

 
Definition 3.1.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β) . Then the vertex’s 
neighborhood (NEI) is mentioned as,  
 
NEI(a) = (NEIƮ(a), NEIƗ(a), NEIӺ(a)), ……………… (19) 

where  

NEIƮ(𝑎)= {b∈ ϔ: Ʈƀ(a, 𝑏) ≤ 𝑙𝑜𝑤[Ʈӓ(a), Ʈӓ(b)]}, …. (20) 

NEIƗ(𝑎)  = {b ∈ ϔ : Ɨƀ(a, 𝑏) ≤ 𝑙𝑜𝑤[Ɨӓ(a), Ɨӓ(b)] }…...... 
(21) 

NEIӺ(𝑎) = {b∈ ϔ: Ӻƀ(a, 𝑏) ≤ ℎ𝑖𝑔ℎ[Ӻӓ(a), Ӻӓ(b)]}…. (22) 

 
Equation (19) denote the vertex’s NEI and (20), (21), 
(22) denotes the individual memberships of (19).  
 
Definition 3.2.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β) . Then the vertex’s 
NEI degree is mentioned as  
deg(a) = (𝑑𝑒𝑔Ʈ(a), 𝑑𝑒𝑔 Ɨ(a), 𝑑𝑒𝑔Ӻ(a)), ………....... (23) 

where 
𝑑𝑒𝑔Ʈ(a) = ∑ Ʈӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ʈ(𝑎) , ……………………… (24) 

𝑑𝑒𝑔Ɨ(a) = ∑ Ɨӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ɨ(𝑎) , ……………………….. (25) 

𝑑𝑒𝑔Ӻ(a) = ∑ Ӻӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ӻ(𝑎)  ………………………. (26) 

 

Equation (23) denote the vertex’s NEI degree and 
(24), (25), (26) denotes the individual memberships of 
(23).   
 
Definition 3.3.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β) . Then the vertex’s 
closed NEI degree is mentioned as  
deg[a] = (𝑑𝑒𝑔Ʈ[a], 𝑑𝑒𝑔 Ɨ[a], 𝑑𝑒𝑔Ӻ[a]), …………… (27) 

where 
𝑑𝑒𝑔Ʈ[a] = ∑ Ʈӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ʈ(𝑎)  + Ʈӓ(a), …………….  (28) 

𝑑𝑒𝑔Ɨ[a] = ∑ Ɨӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ʈ(𝑎)  + Ɨӓ(a), …….………… (29) 

𝑑𝑒𝑔Ӻ[a] = ∑ Ӻӓ(𝑏)𝑏∈ 𝑁𝐸𝐼Ӻ(𝑎)  + Ӻӓ(a) ……………… (30) 

 
Equation (27) denote the vertex’s closed NEI degree 
and (28), (29), (30) denotes the individual 
memberships of (27).   
 
Definition 3.4.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β) . Then the graph 
order Ord (Ǥ) is mentioned as  

Ord (Ǥ) = (𝑂𝑟𝑑Ʈ(Ǥ), 𝑂𝑟𝑑Ɨ(Ǥ), 𝑂𝑟𝑑Ӻ(Ǥ)), ……… (31) 

where 
𝑂𝑟𝑑Ʈ(Ǥ) =  ∑ Ʈӓ(a)𝑎∈ϔ , ………………………… (32) 

𝑂𝑟𝑑 Ɨ(Ǥ) =  ∑  Ɨӓ(a)𝑎∈ϔ , ………………………… (33) 

𝑂𝑟𝑑Ӻ(Ǥ) =  ∑ Ӻӓ(a)𝑎∈ϔ ………………………….. (34) 

 
Equation (31) denote the order of PNeuGr and (32), 
(33), (34) denote the individual memberships of (31).   
 
Definition 3.5.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β). Then the graph size 
Siz (Ǥ) is mentioned as  

Siz (Ǥ) = (𝑆𝑖𝑧Ʈ(Ǥ), 𝑆𝑖𝑧Ɨ(Ǥ), 𝑆𝑖𝑧Ӻ(Ǥ)), ……...….. (35) 

where 
SizƮ(Ǥ) =  ∑ Ʈƀ(a, 𝑏)𝑎∈ϔ , ………………………. (36) 

Siz Ɨ(Ǥ) =  ∑  Ɨƀ(a, 𝑏)𝑎∈ϔ , ………………………. (37) 

SizӺ(Ǥ) =  ∑ Ӻƀ(a, 𝑏)𝑎∈ϔ ………………………… (38) 

 
Equation (35) denote the size of PNeuGr and (36), 
(37), (38) denotes the individual memberships of (35).   
 
Definition 3.6.  
 

Let Ǥ = (ϔ, α, β)  be a PNeuGr. Then the graph is 
called regular if all vertices have the equal NEI degree. 
 

 
 

FIGURE 2.  Regular Pythagorean Neutrosophic Graph. 
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Definition 3.7.  
 

Let Ǥ = (ϔ, α, β) be a PNeuGr. Then Ǥ is said to be an 
iPNeuGr, if there available a vertex that is adjacent to 
vertices with different NEI degrees. 
 

 
 

FIGURE 3.  Irregular Pythagorean Neutrosophic Graph. 

 
Definition 3.8.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β). Then Ǥ is called a 
totally iPNeuGr if there available a vertex that is 
adjacent to vertices with different closed NEI degrees. 
 
Definition 3.9.  
 

Let Ǥ = (ϔ, α, β) be a connected PNeuGr. Then Ǥ  is 
called a NeiG iPNeuGr, if every vertex of a PNeuGr 
ends with distinct degrees. So, the two adjacent 
vertices of the graph also have distinct degree. 
 
Definition 3.10.  
 

Let Ǥ = (ϔ, α, β) be a PNeuGr. Then Ǥ is called a NeiG 
totally iPNeuGr, if every vertex of a PNeuGr ends with 
different total degree. So, the same result will be 
obtained for every two adjacent vertices. 
 
Definition 3.11.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β). Then Ǥ is 
known to be HiG iPNeuGr, if all vertex of a PNeuGr 
ends with distinct degrees. So, the adjacent vertices 
for every vertex will have distinct degree. 
 
Note 3.12. 
 

1. A HiG irregular PNeuGr may not be a NeiG 
iPNeuGr.  
 

2. A NeiG irregular PNeuGr may not be a HiG 
iPNeuGr.  
 

3. A NeiG irregular PNeuGr may not be a NeiG 
totally iPNeuGr. 
 

4. A NeiG totally irregular PNeuGr may not be a 
NeiG iPNeuGr.  
 

Proposition 3.13. 
  

A PNeuGr Ǥ = (ϔ, α, β) is HiG irregular PNeuGr and 
NeiG iPNeuGr if and only if all the vertex degrees are 
distinct. 

 
Proposition 3.14. 
 

Consider a PNeuGr Ǥ = (ϔ, α, β). If Ǥ = (ϔ, α, β) is a 
NeiG iPNeuGr and M is a constant function then 
PNeuGr is a NeiG totally iPNeuGr. 
 
Proposition 3.15.  
 

Consider a PNeuGr Ǥ = (ϔ, α, β). If Ǥ = (ϔ, α, β) is a 
NeiG totally iPNeuGr and M denotes a constant 
function then PNeuGr is a NeiG iPNeuGr. 
 
Proposition 3.16. 
 

Consider a a PNeuGr Ǥ = (ϔ, α, β). If PNeuGr is both 
NeiG iPNeuGr and NeiG totally iPNeuGr, then M need 
not be a constant function. 
 

IV. EDGE IRREGULARITY ON PYTHAGOREAN 

NEUTROSOPHIC GRAPHS 

Definition 4.1.  
 

Consider PNeuGr Ǥ = (ϔ, α, β)  to be a connected 

PNeuGr on Ǥ∗ = (ϔ′, α′, β′). Then Ǥ is known to be:  
 
(1) A NeiG edge iPNeuGr if all couple of adjacent 
edges have different degrees.  
 
(2) A NeiG edge totally iPNeuGr if all couple of 
adjacent edges have different total degrees. 
 
Theorem 4.2.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′)  and M: (Ʈƀ , Ɨƀ, Ӻƀ ) is a constant function. 
Then Ǥ is a NeiG edge iPNeuGr, iff Ǥ is a NeiG edge 
totally iPNeuGr. 
 
Proof:  
 
Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let β(ab) = K, 

∀ab in edge set, where K = (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) is constant. 

Consider ab and bc as the couple of adjacent edges 
in edge set, then we have 𝑑Ǥ(ab) ≠ 𝑑Ǥ(bc),   
 
↔ 𝑑Ǥ(ab) + K ≠ 𝑑Ǥ(bc) + K   
 
↔ ( 𝑑Ʈƀ

(ab), 𝑑Ɨƀ
(ab), 𝑑Ӻƀ

(ab))+( 𝐾Ʈ , 𝐾Ɨ , 𝐾Ӻ )  ≠

 (𝑑Ʈƀ
(bc),𝑑Ɨƀ

(bc),𝑑Ӻƀ
(bc)) + (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ)  

 
↔ ( 𝑑Ʈƀ

(ab)+ 𝐾Ʈ ,  𝑑Ɨƀ
(ab)+ 𝐾Ɨ ,  𝑑Ӻƀ

(ab)+ 𝐾Ӻ )  ≠

 (𝑑Ʈƀ
(bc)+𝐾Ʈ, 𝑑Ɨƀ

(bc)+𝐾Ɨ, 𝑑Ӻƀ
(bc)+𝐾Ӻ)   

 
↔ (𝑑Ʈƀ

(ab)+Ʈƀ(𝑎𝑏), 𝑑Ɨƀ
(ab)+Ɨƀ(𝑎𝑏), 𝑑Ӻƀ

(ab)+Ӻƀ(𝑎𝑏)) ≠  

(𝑑Ʈƀ
(bc)+Ʈƀ(𝑏𝑐), 𝑑Ɨƀ

(bc)+Ɨƀ(𝑏𝑐), 𝑑Ӻƀ
(bc)+Ӻƀ(𝑏𝑐)) 

 
↔ (𝑡𝑑Ʈƀ

(ab), 𝑡𝑑Ɨƀ
(ab), 𝑡𝑑Ӻƀ

(ab))≠  

(𝑡𝑑Ʈƀ
(bc), 𝑡𝑑Ɨƀ

(bc), 𝑡𝑑Ӻƀ
(bc)) 

 
↔  𝑡𝑑Ǥ(ab) ≠ 𝑡𝑑Ǥ(bc) ………………………… (39) 
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By (39), all couple of adjacent edges have different 
degrees iff have different total degrees. This implies 
that, Ǥ is a NeiG edge iPNeuGr iff PNeuGr is a NeiG 
edge totally iPNeuGr. 
 
Proposition 4.3. 

Consider PNeuGr Ǥ = (ϔ, α, β)  to be a connected 

PNeuGr on Ǥ∗ = (ϔ′, α′, β′) . If Ǥ  is both NeiG edge 
iPNeuGr and NeiG edge totally iPNeuGr, then M can’t 
be necessarily a constant function. 
 
Theorem 4.4.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′) and M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function. If Ǥ 
is a Str iPNeuGr, then Ǥ is a NeiG edge iPNeuGr. 
 
Proof: 
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′). Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let 

β(ab) = K, ∀ab in edge set, where K = (𝐾Ʈ,𝐾Ɨ,𝐾Ӻ) is 

constant. Consider ab and bc as the couple of 
adjacent edges in edge set. Suppose that Ǥ is a Str 

iPNeuGr. Then all couple of vertices in Ǥ have distinct 
degrees, which results in, 
 
𝑑Ǥ(a) ≠ 𝑑Ǥ(b) ≠ 𝑑Ǥ(c) 
 
→ (𝑑Ʈӓ

(a), 𝑑 Ɨӓ
(a), 𝑑Ӻӓ

(a)) ≠ (𝑑Ʈӓ
(b), 𝑑 Ɨӓ

(b), 𝑑Ӻӓ
(b)) ≠ 

(𝑑Ʈӓ
(c), 𝑑 Ɨӓ

(c), 𝑑Ӻӓ
(c))  

 
→  (𝑑Ʈӓ

(a), 𝑑 Ɨӓ
(a), 𝑑Ӻӓ

(a)) + (𝑑Ʈӓ
(b), 𝑑 Ɨӓ

(b), 𝑑Ӻӓ
(b)) - 

2(𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ)  ≠  

(𝑑Ʈӓ
(b), 𝑑 Ɨӓ

(b), 𝑑Ӻӓ
(b)) + (𝑑Ʈӓ

(c), 𝑑 Ɨӓ
(c), 𝑑Ӻӓ

(c)) –  

2(𝐾Ʈ, 𝐾Ɨ, 𝐾Ӻ) 

 
→ (𝑑Ʈƀ

(ab),  𝑑Ɨƀ
(𝑎𝑏), 𝑑Ӻƀ

(ab))  ≠  

(𝑑Ʈƀ
(bc),  𝑑Ɨƀ

(𝑏𝑐), 𝑑Ӻƀ
(bc))  

 
→ 𝑑Ǥ(𝑎𝑏) ≠ 𝑑Ǥ(𝑏𝑐)…………………………. (40) 
 
By (40), all couple of adjacent edges have different 
degrees, therefore Ǥ is a NeiG edge iPNeuGr. 
 
Theorem 4.5.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′) and M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function. If Ǥ 
is a HiG iPNeuGr, then Ǥ is a NeiG edge iPNeuGr. 
 
Proof: 
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′). Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let 
β(ab) = K, ∀ab in edge set, where K = (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) is 

constant. Consider ab and bc as the couple of 
adjacent edges in edge set. Suppose that Ǥ is a Str 

iPNeuGr. Then all couple of vertices in Ǥ  have 

different degrees, which results in, 𝑑Ǥ(a) ≠  𝑑Ǥ(c) 

 
→ (𝑑Ʈӓ

(a), 𝑑 Ɨӓ
(a), 𝑑Ӻӓ

(a)) ≠ (𝑑Ʈӓ
(c), 𝑑 Ɨӓ

(c), 𝑑Ӻӓ
(c))  

 
→  (𝑑Ʈӓ

(a), 𝑑 Ɨӓ
(a), 𝑑Ӻӓ

(a)) + (𝑑Ʈӓ
(b), 𝑑 Ɨӓ

(b), 𝑑Ӻӓ
(b)) - 

2(𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ)  ≠  

(𝑑Ʈӓ
(b), 𝑑 Ɨӓ

(b), 𝑑Ӻӓ
(b)) + (𝑑Ʈӓ

(c), 𝑑 Ɨӓ
(c), 𝑑Ӻӓ

(c)) –  

2(𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) 

 
→  (𝑑Ʈƀ

(ab),  𝑑Ɨƀ
(𝑎𝑏) , 𝑑Ӻƀ

(ab)) ≠  (𝑑Ʈƀ
(bc),  𝑑Ɨƀ

(𝑏𝑐) , 

𝑑Ӻƀ
(bc))  

 
→ 𝑑Ǥ(𝑎𝑏) ≠ 𝑑Ǥ(𝑏𝑐)…………………………. (41) 
 
By (41), all couple of adjacent edges have different 
degrees, iff all vertex adjacent to the vertices have 
different degrees. Therefore, Ǥ is a HiG iPNeuGr iff Ǥ 
is a NeiG edge iPNeuGr. 
 
Definition 4.6.  
 

Consider PNeuGr Ǥ = (ϔ, α, β)  to be a connected 

PNeuGr on Ǥ∗ = (ϔ′, α′, β′). Then Ǥ is known to be:  
 
(1) A Str edge iPNeuGr if all couple of edges have 
different degrees. 
 
(2)  A Str edge totally iPNeuGr if all couple of edges 
have different total degrees. 
 
Theorem 4.7.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′)  and M: (Ʈƀ , Ɨƀ, Ӻƀ ) is a constant function. 

Then Ǥ is a Str edge iPNeuGr, iff Ǥ is a Str edge totally 
iPNeuGr. 
 
Proof:  
 
Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let β(ab) = K, 

∀ab in edge set, where K = (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) is constant. 

Consider ab and bc as the couple of adjacent edges 
in edge set, then we have 𝑑Ǥ(ab) ≠ 𝑑Ǥ(cd),   
 
↔ 𝑑Ǥ(ab) + K ≠ 𝑑Ǥ(cd) + K   
 
↔ ( 𝑑Ʈƀ

(ab), 𝑑Ɨƀ
(ab), 𝑑Ӻƀ

(ab))+( 𝐾Ʈ , 𝐾Ɨ , 𝐾Ӻ )  ≠

 (𝑑Ʈƀ
(cd),𝑑Ɨƀ

(cd),𝑑Ӻƀ
(cd)) + (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ)  

 
↔ ( 𝑑Ʈƀ

(ab)+ 𝐾Ʈ ,  𝑑Ɨƀ
(ab)+ 𝐾Ɨ ,  𝑑Ӻƀ

(ab)+ 𝐾Ӻ )  ≠

 (𝑑Ʈƀ
(cd)+𝐾Ʈ, 𝑑Ɨƀ

(cd)+𝐾Ɨ, 𝑑Ӻƀ
(cd)+𝐾Ӻ)   

 
↔ (𝑑Ʈƀ

(ab)+Ʈƀ(𝑎𝑏), 𝑑Ɨƀ
(ab)+Ɨƀ(𝑎𝑏), 𝑑Ӻƀ

(ab)+Ӻƀ(𝑎𝑏)) ≠  

(𝑑Ʈƀ
(cd)+Ʈƀ(𝑐𝑑), 𝑑Ɨƀ

(cd)+Ɨƀ(𝑐𝑑), 𝑑Ӻƀ
(cd)+Ӻƀ(𝑐𝑑)) 

 
↔ (𝑡𝑑Ʈƀ

(ab), 𝑡𝑑Ɨƀ
(ab), 𝑡𝑑Ӻƀ

(ab))≠  

(𝑡𝑑Ʈƀ
(cd), 𝑡𝑑Ɨƀ

(cd), 𝑡𝑑Ӻƀ
(cd)) 

 
↔  𝑡𝑑Ǥ(ab) ≠ 𝑡𝑑Ǥ(cd) ……………………… (42) 
 
Therefore by (42), all couple of adjacent edges have 
different degrees iff have different total degrees. This 
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implies that, Ǥ is a Str edge iPNeuGr iff PNeuGr is a 
Str edge totally iPNeuGr. 
 
Proposition 4.8. 

Consider PNeuGr Ǥ = (ϔ, α, β)  to be a connected 

PNeuGr on Ǥ∗ = (ϔ′, α′, β′) . If Ǥ  is both Str edge 
iPNeuGr and Str edge totally iPNeuGr, then M can’t 
be necessarily a constant function. 
 
Theorem 4.9.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′) and M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function. If Ǥ 
is a Str edge iPNeuGr, then Ǥ is an iPNeuGr. 
 
Proof: 
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′). Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let 
β(ab) = K, ∀ab in edge set, where K = (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) is 

constant. Consider ab and bc as the couple of 
adjacent edges in edge set. Suppose that Ǥ is a Str 

iPNeuGr. Then all couple of vertices in Ǥ  have 

different degrees, which results in, 𝑑Ǥ(ab) ≠ 𝑑Ǥ(bc)  
 
→ (𝑑Ʈƀ

(ab),𝑑Ɨƀ
(ab),𝑑Ӻƀ

(ab)) ≠ (𝑑Ʈƀ
(bc),𝑑Ɨƀ

(bc),𝑑Ӻƀ
(bc)) 

 
→ (𝑑Ʈӓ

(a) + 𝑑Ʈӓ
(b) - 2Ʈƀ(ab), 𝑑Ɨӓ

(a) + 𝑑Ɨӓ
(b) - 2Ɨƀ(ab), 

𝑑Ӻӓ
(a) + 𝑑Ӻӓ

(b) - 2Ӻƀ(ab)) ≠  

(𝑑Ʈӓ
(b) +  𝑑Ʈӓ

(c) - 2Ʈƀ (bc), 𝑑Ɨӓ
(b) +  𝑑Ɨӓ

(c) - 2Ɨƀ (bc), 

𝑑Ӻӓ
(b) + 𝑑Ӻӓ

(c) - 2Ӻƀ(bc))  

 
→ 𝑑Ǥ(a) + 𝑑Ǥ(b) ≠ 𝑑Ǥ(b) + 𝑑Ǥ(c)  
 
→ 𝑑Ǥ(a)  ≠ 𝑑Ǥ(c) …………………..……… (43) 
 
By (43), there is a vertex b, which is adjacent to 
vertices a and c have different degrees. Therefore, Ǥ 
is an iPNeuGr.  
 
Theorem 4.10.  
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′) and M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function. If Ǥ 

is a Str edge iPNeuGr, then Ǥ is a HiG iPNeuGr. 
 
Proof: 
 

Consider a connected PNeuGr Ǥ = (ϔ, α, β) on Ǥ∗ =
(ϔ′, α′, β′). Let M: (Ʈƀ,Ɨƀ, Ӻƀ) is a constant function, let 
β(ab) = K, ∀ab in edge set, where K = (𝐾Ʈ, 𝐾Ɨ,𝐾Ӻ) is 

constant. Consider ab and bc as the couple of 
adjacent edges in edge set. Suppose that Ǥ is a Str 

iPNeuGr. Then all couple of vertices in Ǥ  have 
different degrees, which results in, 𝑑Ǥ(ab) ≠ 𝑑Ǥ(bc) ≠ 

𝑑Ǥ(bd)  
 
→ (𝑑Ʈƀ

(ab),𝑑Ɨƀ
(ab),𝑑Ӻƀ

(ab)) ≠ (𝑑Ʈƀ
(bc),𝑑Ɨƀ

(bc),𝑑Ӻƀ
(bc)) 

≠ (𝑑Ʈƀ
(bd),𝑑Ɨƀ

(bd),𝑑Ӻƀ
(bd))  

 

→ (𝑑Ʈӓ
(a) + 𝑑Ʈӓ

(b) - 2Ʈƀ(ab), 𝑑Ɨӓ
(a) + 𝑑Ɨӓ

(b) - 2Ɨƀ(ab), 

𝑑Ӻӓ
(a) + 𝑑Ӻӓ

(b) - 2Ӻƀ(ab)) ≠  

 
(𝑑Ʈӓ

(b) +  𝑑Ʈӓ
(c) - 2Ʈƀ (bc), 𝑑Ɨӓ

(b) +  𝑑Ɨӓ
(c) - 2Ɨƀ (bc), 

𝑑Ӻӓ
(b) + 𝑑Ӻӓ

(c) - 2Ӻƀ(bc)) ≠  

 
(𝑑Ʈӓ

(b) +  𝑑Ʈӓ
(d) - 2Ʈƀ (bd), 𝑑Ɨӓ

(b) +  𝑑Ɨӓ
(d) - 2Ɨƀ (bd), 

𝑑Ӻӓ
(b) + 𝑑Ӻӓ

(d) - 2Ӻƀ(bd)) 

 
→ 𝑑Ǥ(a) + 𝑑Ǥ(b) ≠ 𝑑Ǥ(b) + 𝑑Ǥ(c) ≠ 𝑑Ǥ(b) + 𝑑Ǥ(d) 
 
→ 𝑑Ǥ(a)  ≠  𝑑Ǥ(c) ≠  𝑑Ǥ(d)…………………. (44) 
 
By (44), the vertex b is adjacent to the vertices with 
different degrees. Therefore, Ǥ is a HiG iPNeuGr. 
 

V. APPLICATION 

     A PNeuGr is an advanced structure formed based 
on Pythagorean NeuS with graphs. It is used to model 
uncertain and inconsistent ideas in systems of 
numerous fields: 
 
(a) Decision Making: 
When hiring an employee, the manager or HR faces a 
critical problem in dealing with the conflicting choices 
involving inconsistency. In this case, the vertices 
represent the alternatives and the edges represent the 
pairwise comparisons. This approach incorporates 
hesitation that makes the decision stronger under 
uncertainty. 
 
(b)  Social Network: 
The uncertain relationships in modeling social media 
or communities are taken with the context of human 
relationships. Here, the individuals are assumed as 
vertices, and edge membership is allotted as trust, 
neutrality, and distrust. This benefits by analyzing the 
communities where connections are made with 
ambiguous behavior. 
 
(c) Risk Assessment: 
The cyber system is used to evaluate the uncertain 
threats in networks. The vertices are taken as server 
or database components, and the edges capture the 
risk likelihood, doubt, and improbability as 
membership. This model is more realistic for analyzing 
the risk in complex environments. 
 
(d) Transportation: 
Planning routes based on traffic and weather 
conditions is modeled using the neutrosophic vertex 
and edge membership values. Locations can be taken 
as vertices, and the edges are assumed to be the 
paths with unfixed travel times. This structure 
optimizes the plan routes for average time, reliability, 
and uncertainty. 
 
 
Practical role of irregularities on PNeuGr: 
A heterogeneous structure involves high irregularity, 
critical in designing a network and assessing threats. 
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The vertices with high irregularity are considered weak 
points in cybersecurity. The clusters in PNeuGr show 
low internal and high external irregularities, which 
helps segment recommendation systems. The profile 
of irregularity is implemented by comparing the 
different patient-symptom graphs for similar diseases. 
 

VI. CONCLUSION 

This manuscript encloses a detail discussion on 
some insights like irregular and edge irregular 
properties on PNeuGr. Various kinds are irregularities 
and edge irregularities are compared and attained 
through theorem results. In future, we planned to 
execute the PNeuGr with some other graphical 
schemes and properties. 
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