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Cyclone Nature Prediction with the help of a Customized SVM 
Model

Md. Jakir Hossen, Fariya Sultana Prity, Rasel Ahmed and Md. Sharifuzzaman 

Abstract – Efficiently predicting the nature of 
tropical cyclones through machine learning techniques 
has always posed a challenge in the quest to save 
human lives. While existing research has proposed 
various methods to  accurately predict cyclone 
behavior and reduce its impact on humanity, this paper 
introduces a unique customized Support Vector 
Machine (SVM) model. Unlike existing models, this 
machine learning-based custom model enhances 
evaluation metrics, offering significant improvements in 
binary classification forecasting. The paper also 
presents a schematic diagram outlining an architectural 
design for cyclone nature detection utilizing satellite 
images. The proposed customized SVM model achieves 
impressive classification metrics, with accuracy at 95%, 
precision at 94.78%, recall at 94.5%, and an F1-score of 
94.9%. In contrast, other models such as Random 
Forest (RF), SVM, decision tree (DT), and Logistic 
Regression (LR) fall short, failing to reach an accuracy 
exceeding 92%. Furthermore, future work may involve 

the development of hybrid models.  

Keywords—Cyclone Nature, Deep Learning, Customized 

SVM, Accuracy, Prediction. 

 

I. INTRODUCTION 

Predicting the characteristics of tropical cyclones, 
including factors like their strength, path, and sudden 
intensification, remains a critical task within the field of 
meteorology and disaster management. It involves 
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gaining insight into the intricate dynamics of these 
formidable storms to offer timely and precise forecasts. 
This, in turn, empowers communities to brace 
themselves for potential consequences, thereby 
reducing risks to human lives and property. 
Nonetheless, this endeavor is marked by substantial 
difficulties due to cyclones' inherent intricacy and 
variability [1]. 

A fundamental concern in cyclone forecasting is the 
imperative for enhanced precision and lead time in 
predictions. Traditional forecasting techniques, while 
valuable, often struggle to capture the intricate and 
swiftly changing nature of cyclones. This is where deep 
learning, a subset of machine learning, comes into 
play. Deep learning algorithms, particularly neural 
networks with multiple layers, have displayed 
remarkable aptitude in processing extensive and 
intricate datasets, rendering them well-suited for 
addressing the challenges linked with cyclone 
prediction [2,3]. 

By leveraging deep learning techniques, 
researchers aim to enhance our understanding of 
cyclone behavior and improve forecasting accuracy. 
These approaches involve training neural networks on 
vast amounts of historical meteorological data, 
including satellite imagery, atmospheric 
measurements, and environmental variables. Deep 
learning models can then learn intricate patterns and 
relationships within this data, enabling them to make 
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more precise predictions about cyclone 
characteristics. 

The proposed system enhances the accuracy of 
cyclone's nature to predict earlier to take precautions 
before it becomes a threat to human lives. The paper's 
notable contributions include the following: 

• A distinct way to enrich the prediction of cyclone 
nature is through a custom SVM model for binary 
classification. 

• Impressive experimental results were achieved in 
this study. The authors conducted a rigorous 
investigation and validation of the performance 
pattern, focusing on a specific parameter known 
as RBF (Radial Basis Function). To ensure the 
reliability of the data, each workload was 
performed at least five times. 

The paper is organized in the following manner: 
The introduction provides an overview of the research 
problem, highlighting its significance and connecting it 
to existing literature. In the literature review section, we 
comprehensively explore prior research and establish 
the conceptual framework. The methodology section 
elucidates the adopted research approach and details 
the data collection and analysis techniques. 
Subsequently, the Results and Analysis section 
presents the research findings in alignment with the re-
search objectives and the conceptual framework, 
offering insights to address the research question. 
Finally, the Conclusion section synthesizes the 
research aim and major findings, providing a 
comprehensive closure to the study. 

II. LITERATURE REVIEW 

    Several studies propose integrating satellite images 
of tropical cyclone convection with traditional 
environmental predictors using deep learning models. 
For instance, one study utilized 20 deep-learning 
models and ensemble approaches to predict Vmax at 
+24h. This ensemble approach yielded more 
convenient Vmax distribution pre-dictions compared to 
individual models. The authors also compared their 
technique to functional forecasts and achieved better 
rapid intensification detection probabilities. Future 
work in this area includes further model combinations 
for improved prediction accuracy [1]. Another set of 
studies focused on systematically extracting tropical 
cyclone information using deep learning frameworks. 
These frameworks offer applications in intensity and 
wind radius estimation. However, using satellite 
images with various sensors may introduce uncertainty 
in data. Furthermore, some researchers suggest a 
need for feedback mechanisms to enhance model 
knowledge in tropical cyclone research [2]. One study 
proposed a C-LSTM model based on data from 1949 
to 2021 for typhoon path prediction. Comparing this 
model with LSTM, the authors demonstrated fewer 
errors with the C-LSTM approach. Future work 
involves optimization and extracting information from 
diverse data sources, including image, numerical, and 
observed data [3]. 

Additionally, A solution where modified the CCT 
model with a different approach to analyze satellite 

images of flooded areas. This model achieved 98.79% 
accuracy with reduced computational requirements. 
They also incorporated an AI framework called LIME 
for interpretable predictions [4]. Researchers proposed 
a novel data-driven model combining spatial location 
and meteorological features to predict cyclone tracks. 
Their model outperformed traditional methods and 
various deep learning (DL) architectures, including 
CNN, CNN-RNN, CNN-GRU, RNN, GRU, and AE-
RNN. Future work includes comparing the model with 
the latest numeric and statistical methods and 
improving performance for multiple cyclones [5]. A 
unique framework was introduced to predict cyclone 
formation by integrating a trigger function along with a 
deep predictive model based on CNN. The model 
achieved a 95% detection probability with a 21.69% 
false alarm ratio. Future research may focus on further 
optimization and data integration [6]. Researchers 
proposed ConvLSTM to efficiently extract spatial and 
temporal information for adverse weather events in 
India. They validated the model's performance using 
image data and additional metrics. Future work may 
explore advanced techniques and data sources [7]. 
They suggested using YOLO for detecting and locating 
cyclones and R-CNN for predicting storm locations. 
They compared various interpolation techniques to 
enhance deep learning algorithms' performance and 
recommended densified datasets for further 
improvement [8]. A framework was proposed for 
processing radiance data using YOLOv3 for cyclone 
detection. The authors discussed the potential 
extension to other models and emphasized 
optimization through fine-tuning hyperparameters [9]. 
Three deep learning models were developed for 
tropical cyclone trajectory prediction, with the data-
driven MLP-LSTM model outperforming MLP and 
LSTM. The authors highlighted the importance of 
flexible topologies [10]. 

Another solution where introduced a system for 
cyclone pre-diction from satellite images and 
developed an object detection method through deep 
learning to detect cyclone eyes. Their approach 
outperformed conventional techniques. Future work 
could involve hybrid models [11]. A study compared six 
deep-learning models for identifying the center location 
of tropical cyclones. YOLOv4 achieved the highest 
accuracy at 99.84% and demonstrated the ability to 
detect multiple cyclone locations [12]. An ensemble 
technique was introduced to locate tropical cyclone 
centers and classify them using machine learning 
models. The authors emphasized the model's 
generalization ability and its potential to detect lower 
cyclone categories [13]. Researchers addressed the 
challenges of detecting cyclone patterns through 
optical flow estimation and also deep learning models. 
Their proposed technique improved accuracy 
compared to traditional methods [14]. Studies 
analyzed remote sensing data, including precipitation 
and wind satellite data, to detect cyclones using CNN 
models. The minimum accuracy achieved for cyclone 
vortex detection was 90% [15]. The authors proposed 
integrating numerical precipitation estimation with 
CNN models to analyze image data and estimate 
precipitation. The study aimed to enhance prediction 
accuracy through data-driven methods [16]. A deep 
learning model was proposed to detect tropical cyclone 
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presence in satellite images based on CNN. The 
model accomplished an average of 99% accuracy with 
a smaller parameter count. The authors suggested that 
this model fulfills the objective of cyclone detection 
[17]. A neural network model was developed by the 
researchers where trajectory data and atmospheric 
images were integrated to provide real-time updates 
on new storms. Their method demonstrated superior 
performance compared to conventional forecasting 
methods [18]. A deep CNN model was presented for 
estimating cyclone intensity, outperforming existing 
methods based on accuracy and error metrics. The 
authors suggested future work with different network 
architectures and parameters [19]. Finally, a 
multistage deep learning framework was proposed for 
cyclone detection, achieving high precision, specificity, 
and accuracy in testing satellite images. The authors 
used Bayesian optimization for hyperparameter tuning 
[20]. 

One another solution used deep learning 
techniques, specifically convolutional neural networks 
(CNNs), for predicting tropical cyclone (TC) formation. 
They tested two CNN architectures, ResNet and UNet, 
using historical weather data. ResNet and UNet both 
show promising results in predicting TC formation 
within 12-18 hours using environmental data from the 
Pacific Ocean. However, ResNet generally 
outperforms UNet across accuracy metrics. The study 
finds that a larger input domain leads to better 
predictions, suggesting that CNNs can capture 
essential far-field information. They introduces a 
significant shift from traditional TC prediction methods, 
leveraging deep learning to provide early warnings 
about cyclone formations effectively [21]. 

Moreover, this solution used a new system for 
predicting tropical cyclone tracks with uncertainty 
using machine learning within a conformal prediction 
framework. They evaluates ten major machine 
learning models and conformal forecasting methods, 
focusing on their ability to forecast paths with 
uncertainty over 6, 12, and 24-hour periods. The model 
effectively generates reliable forecast regions, aiding 
decision-makers in preparing for potential hazards. 
The results show that machine learning can predict 
tropical cyclone tracks with high accuracy and tight 
uncertainty intervals, highlighting its potential for future 
use in tropical cyclone forecasting and risk 
communication [22]. 

These papers collectively demonstrate the potential 
of deep learning models for predicting various aspects 
of tropical cyclones, including intensity, location, and 
formation. While these studies have made significant 
advancements, they also highlight the need for further 
research in optimizing models, handling data 
limitations, and exploring hybrid approaches. 
Advanced deep learning techniques offer promising 
prospects for improving cyclone prediction accuracy 
and reducing the impact of these destructive natural 
events. 

III. METHODS 

A. Proposed Method  

      The proposed method of this study. For this study 
satellite and meteorological data are used as input 

data. Data were pre-processed based on the nature of 
the dataset. Feature Extraction and selection depend 
on the feature importance of the model. Cyclone 
nature detection algorithms help to predict the location 
of cyclone nature early and more accurately.  
Validation of the data shows the reliability of the 
model. Alerting and reporting system helps to be 
aware of the upcoming cyclone and also visualizing 
prediction results making it more interactive for the 
user of this system. However, archiving and 
monitoring continuously of the system is really 
important to maintain and predicting the cyclone 
location or nature through forecasting. 

B. Dataset Description 

 The NHC releases the historical database for 

tropical cyclones in a pattern referred to as HURDAT, 

which is also known as Hurricane Database. These 

databases, namely Atlantic HURDAT2 and NE/NC 

Pacific HURDAT2, provide six-hourly data regarding 

the position, maximum wind speeds, central pressure, 

and, from 2004 onwards, the size of documented 

tropical cyclones and subtropical cyclones [23]. 

C. Dataset Pre-processing 

     Data.isna().sum()) is used to remove the null value. 

So, no specific imputation or removal of missing data 

is performed. 

D. Feature Engineering 

     The Latitude and Longitude columns are 

processed to create new binary categorical columns: 

Latitude_Hemisphere and Longi-tude_Hemisphere. 

These columns indicate whether the latitude is in the 

Northern Hemisphere (0 for N, 1 for S) and whether 

the longitude is in the Eastern Hemisphere (0 for E, 1 

for W). The Latitude and Longitude columns are 

further cleaned by extracting only the numeric part of 

the coordinates. The 'Date' column is converted to a 

datetime format, and two new columns, 'Month' and 

'Year', are derived from it. 

E. Training Dataset 

     Most charts graphs and tables are one column 

wide (3 1/2 inches or 21 picas) or two-column width (7 

1/16 inches, 43 picas wide). We recommend that you 

avoid sizing figures less than one column wide, as 

extreme enlargements may distort your images and 

result in poor reproduction. Therefore, it is better if the 

image is slightly larger, as a minor reduction in size 

should not have an adverse effect on the quality of the 

image.  

F. Random Forest Classifier 

Random Forest operates by creating an ensemble 
of decision trees, where each tree is constructed from 
a random subset of the training data and a random 
subset of the features. This randomness helps reduce 
overfitting, improve generalization, and enhance the 
model's performance. The final prediction in a 
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Random Forest is typically made by aggregating the 
predictions of all individual trees, often through 
majority voting for classification tasks or averaging for 
regression tasks. This ensemble approach provides a 
more stable and accurate prediction than any single 
decision tree. One of the fundamental equations used 
in the Random Forest algorithm is the splitting criterion 
for decision trees within the ensemble. This criterion 
helps determine how the data should be divided at 
each node of the tree. One common criterion is Gini 
impurity, represented by the following equation: 

 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑ (𝑃ᵢ)2𝑛
𝑖=1                              (1) 

 
Here, 
 Gini Index represents the Gini impurity for a 
particular node. 
 n is the number of classes in the target variable. 
   pi is the proportion of instances belonging to class i 
in the node. 
The Gini impurity is used to assess how often a 
randomly chosen element from the dataset would be 
incorrectly classified based on the distribution of class 
labels at that node. Decision trees in Random Forest 
use this criterion to make splits that maximize the 
reduction in impurity, leading to effective and accurate 
predictions [24]. 

G. Support Vector Machine (SVM) Classifier 

    Support Vector Machine (SVM) is a powerful and 
widely used machine learning classifier that has 
gained prominence due to its ability to perform well in 
both linear and non-linear classification tasks. SVM 
aims to find the optimal hyperplane that best 
separates data points belonging to different classes in 
a high-dimensional feature space. This hyperplane is 
chosen to maximize the margin, which is the distance 
between the hyper-plane and the nearest data points 
from each class. 
The SVM classifier can be mathematically defined as 
follows: 
Given a set of training data points (xᵢ, yᵢ), where xᵢ 
represents the feature vector of the ith data point, and 
yᵢ represents the class label (either +1 or -1), the 
objective of the SVM is to find a hyper-plane defined 
by the equation: 
 

w⋅x + b = 0          (2) 
 

where 'w' is the weight vector perpendicular to the 
hyperplane, 'x' is the feature vector, and 'b' is the bias 
term. 
The SVM classifier assigns data points to one of two 
classes based on the sign of the equation w⋅x + b. If 
w⋅x + b > 0, the data point is classified as class +1; if 

w⋅x + b < 0, it is classified as class -1 [24,25]. 

H. Logistic Regression 

    Logistic Regression is a statistical modeling 
technique utilized in binary classification scenarios, 
where the dependent variable has two categorical 
levels, typically represented as 0 and 1. This method 
finds applications across a range of disciplines such 

as medicine, finance, and machine learning due to its 
straightforwardness and ease of interpretation. At its 
core, logistic regression revolves around the logistic 
function (commonly known as the sigmoid function), 
which quantifies the likelihood of an input being 
classified into the positive class (often designated as 
1). 
The logistic function is defined as: 
 

𝑃(𝑌 = 1|𝑋) =  
1

1+𝑒−𝛽𝑇 𝑋                              (3) 

 
P(Y=1∣X) represents the probability that the outcome 
variable Y is equal to 1 given the input features X. 
• β is a vector of coefficients that determine the 
relationship between the input features and the log-
odds of the positive class. 
• X represents a collection of input features. 
The logistic function converts a linear combination of 
the input features βTX into a value within the range of 
0 to 1. The output can be interpreted as the probability 
of the positive class [24][25][26][27]. 

I. Decision Tree 

    The Decision Tree algorithm is represented by a 
tree structure where each internal node represents a 
decision based on a specific feature, and each leaf 
node represents a class label (in classification) or a 
numeric value (in regression). The goal of a Decision 
Tree is to create a model that can make accurate 
predictions or classifications by branching through the 
tree based on the feature values of the input data. The 
core equation used in Decision Trees is the splitting 
criterion, which determines how the tree decides to 
split the data at each node [26][28]. One of the 
commonly used equations for this purpose is the Gini 
impurity for classification problems: 
The Decision Tree algorithm is represented by a tree 
structure where each internal node represents a 
decision based on a specific feature, and each leaf 
node represents a class label (in classification) or a 
numeric value (in regression). The goal of a Decision 
Tree is to create a model that can make accurate 
predictions or classifications by branching through the 
tree based on the feature values of the input data. The 
core equation used in Decision Trees is the splitting 
criterion, which determines how the tree decides to 
split the data at each node [26][29][30]. One of the 
commonly used equations for this purpose is the Gini 
impurity for classification problems: 
 

𝐺𝑖𝑛𝑖(𝐷) = 1 −  ∑ (𝑝ᵢ)2𝑐
𝑖=1                                 (4) 

 
Where: 
• Gini(D) is the Gini impurity for dataset D. 
• c is the number of classes in the dataset. 
• pi is the probability of selecting a sample with class 
i at random. 
Where: 
• Gini(D) is the Gini impurity for dataset D. 
• c is the number of classes in the dataset. 
• pi is the probability of selecting a sample with class 
i at random. 
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J. Accuracy 

   Accuracy is a fundamental metric used in various 
fields to evaluate the performance of a predictive 
model or measurement system. It quantifies the 
degree to which the model's predictions or 
measurements align with the true or observed values. 
In the context of classification tasks, accuracy 
quantifies the ratio of accurately classified instances 
among the total instances considered. 
Mathematically, accuracy (Acc) is defined as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
     (5) 

 
 "Number of Accurate Predictions" indicates how 
many times the model's predictions align with the 
actual or observed values. 
 "Total Number of Predictions" refers to the 
cumulative count of predictions generated by the 
model.  
Accuracy is generally presented as a percentage, 
spanning from 0% (reflecting no accurate predictions) 
to 100% (indicating flawless predictions) [31-34]. 

K. Precision 

    Precision is a key metric in the field of statistics and 
machine learning, widely employed to evaluate the 
effectiveness of a classification or prediction model. It 
measures a model's capability to accurately recognize 
positive instances among the total instances it 
designates as positive. Precision holds significant 
importance in situations where inaccuracies in 
identifying positives can be expensive or undesirable, 
like in medical diagnoses or fraud detection. 
Precision is calculated using the following equation: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)  
        (6) 

 
 In this equation: 
 True Positives (TP) are a measure of correctly 
predicted positive instances.  
  False Positives (FP) refer to instances predicted as 
positive but are negative. Precision is typically 
quantified on a scale from 0 to 1, with greater values 
suggesting improved precision. 
A precision score of 1 signifies that all positive 
predictions from the model are accurate, while a score 
of 0 implies that none of the positive predictions are 
accurate [35]. 

L. F1-Score 

    The F1-Score, also referred to as the F-Measure, 
serves as a widely employed metric in machine 
learning and information retrieval to assess the 
effectiveness of binary classification models. It 
amalgamates precision and recall into a unified 
measure, proving especially valuable in scenarios 
involving imbalanced datasets where one class 
substantially dominates the other. 
The F1-Score is defined as the harmonic mean of 
precision (P) and recall (R): 

 

𝐹1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (7) 

 
where: 
 Precision (P) is a metric that evaluates the accuracy 
of positive predictions by assessing the ratio of true 
positive predictions to the total number of positive 
predictions.  
  Recall (R), also referred to as sensitivity or the true 
positive rate, measures the model's capacity to 
capture all actual positive instances within the dataset. 
It is calculated as the ratio of true positive predictions 
to the total number of actual positive instances. 
 
The F1-Score is a metric that falls within the range of 
0 to 1, where larger values indicate superior model 
performance. In a binary classification scenario, a 
flawless model achieves an F1-Score of 1, while a 
completely random model achieves an F1-Score of 
0.5 [36,37]. 

IV. RESULTS AND DISCUSSION 

     This section shows the results of the used models 
evaluation metrics. 
 

 
FIGURE 1. Accuracy of all proposed classifiers. 

 
Figure 1 shows the situation as a thorough analysis 

of the performance of several classifiers is shown. The 
matching acronym for each classifier, such as RF 
(Random Forest), DT (Decision Tree), SVM (Support 
Vector Machine), LR (Logistic Regression), and a 
particular SVM model, serves as a representation. 
The accuracy rates of these classifiers have 
undergone painstaking calculation and extensive 
testing. With a remarkable accuracy rate of 92%, the 
SVM classifier shines out, closely followed by RF and 
DT with accuracy rates of 88% and 85%, respectively. 
With a 90% accuracy rate, LR performs admirably as 
well. The best model, nevertheless, is the customized 
SVM one, which has a remarkable accuracy rate of 
95%. These outcomes demonstrate the custom SVM 
model's efficiency in contrast to other classifiers. 

Figure 2 shows a thorough comparison of the 
accuracy ratings for the several suggested classifiers. 
Decision Trees (DT) closely follows with a precision 
rate of 84.61%, while Random Forest (RF) has a 
precision rate of 88.2%. With an accuracy score of 
91.2%, Support Vector Machine (SVM) stands out as 
a top performer. Additionally, Logistic Regression (LR) 
performs well, reaching an accuracy rate of 89.32%. 



Vol 7 No 3 (2025)  E-ISSN: 2682-860X 

72 
 

Notably, the individualized SVM classifier, or "custom 
(SVM)," outperforms all others with a remarkable 
precision rate of 94.78%. This visual depiction 
provides a clear picture of the accuracy performance 
of the classifiers, with the custom SVM classifier 
outperforming the others. 

 

 
FIGURE 2. Precision of all proposed classifiers. 

 

 
FIGURE 3. Recall of all proposed classifiers. 

 
   Figure 3 provides a good demonstration of how well 
various classifiers perform in terms of recall. It 
demonstrates how well each classifier can find 
advantageous occurrences in the dataset. Decision 
Trees (DT) come in second place with a recall rate of 
85.61%, closely followed by Random Forest (RF) with 
87.2%. With a remarkable recall rate of 90%, Support 
Vector Machine (SVM) shines out, while Logistic 
Regression (LR) is not far behind at 89.8%. The 
performance of our customized SVM implementation, 
which yields an exceptional recall rate of 94.5%, is 
particularly notable. The effectiveness of our 
proprietary SVM model in identifying positive cases 
within the dataset is shown by this visual depiction, 
which offers a succinct comparison of recall 
performance among these classifiers.  
 

 
FIGURE 4. F1-Score of all proposed classifiers. 

 

    Figure 4 is an illustration of the F1 scores attained 
by several classifiers. The Random Forest (RF) model 
among these classifiers receives an F1-Score of 
88.58%, closely followed by the Decision Tree (DT) 
classifier with a score of 85.8%. With an F1-Score of 
91.9%, the Support Vector Machine (SVM) stands out 
as performing well and proving to be useful for 
classification tasks. The Logistic Regression (LR) 
model generates a good F1-Score of 90.2% in a 
similar manner. The best performance, however, is 
provided by a unique SVM model that exceeds all 
others with an astounding F1-Score of 94.9%. This 
comparison demonstrates the custom SVM classifier's 
advantage in obtaining the greatest F1 score, possibly 
making it the best option for this classification 
problem.  
 

 
FIGURE 5. Summary of all proposed classifier models. 

 
     A thorough list of all the suggested classifier 
models can be seen in Figure 5, allowing for a quick 
and meaningful comparison of each model's 
performance. The chart likely includes metrics such as 
accuracy, precision, recall, F1-Score, and possibly 
others, depending on the specific evaluation criteria 
used. Among these models, it becomes evident that 
the customized Support Vector Machine (SVM) 
classifier stands out as the top performer, delivering 
the most impressive results in terms of classification 
accuracy and overall predictive power. This visually 
compelling representation highlights the effectiveness 
of the customized SVM model in comparison to its 
counterparts, signifying its superiority in accurately 
classifying data points within the given context. 
 

TABLE 1.  Existing proposal model with accuracy. 
Citation EXISTING PROPOSED MODEL Accuracy 

[8] Deep Learning 84 

[11] Deep Learning 87 

[15] CNN 90 

[19] CNN 90 

[20] Multistage Deep Learning 
Framework with R-CNN 

86.55 

 
TABLE 2.  Proposed model for this study with accuracy, 

precision, recall, and f1-score 
Proposed Model ACCURACY (%) Precision (%) 

RF 88 88.2 

DT 85 84.61 

SVM 92 91.2 

LR 90 89.32 

Customized 
SVM 

95 94.78 
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      In Table 1, we observe that existing deep-learning 
models have achieved accuracies ranging from 84% 
to 90%. Notably, Kumawat and Jaiswal (2021) and 
Pradhan et al. (2017) both attained an accuracy of 
90% using Convolutional Neural Net-works (CNN). 
These results highlight the efficacy of deep learning 
(DL) techniques in cyclone detection, especially when 
processing satellite data. Turning our attention to 
Table 2, which represents the accuracy, precision, 
recall, and F1-score of the proposed customized SVM 
model, we notice a substantial improvement. The 
specially configured SVM model attains an impressive 
accuracy of 95%, surpassing all the existing deep 
learning models in Table 1. This outcome underscores 
the model's capacity to provide highly accurate cy-
clone predictions. 
    Furthermore, the precision, recall, and f1-score of 
the suggested customized SVM model are also 
remarkable. With precision at 94.78%, recall at 94.5%, 
and an F1-score of 94.9%, the model demonstrates a 
balanced ability to correctly classify cyclones while 
minimizing false positives and false negatives. These 
metrics highlight the model's strong performance 
regarding both accuracy and dependability. Machine 
learning algorithms should be adapted for applications 
since the customized SVM model outperformed 
current deep learning models in terms of accuracy. In 
this case, cyclone detection specific SVM models 
outperform common deep learning architectures. This 
achievement has important ramifications for improving 
cyclone fore-casting, boosting catastrophe 
preparedness, and ultimately protecting both human 
lives and the environment. The findings and 
subsequent discussion demonstrate how effective the 
suggested customized SVM model is for cyclone 
identification, attaining impressive accuracy and a 
balanced precision-recall performance. This study 
contributes to the expanding corpus of meteorological 
information and gives hope for cyclone prediction 
systems. 

V. CONCLUSION  

    This study demonstrates the effectiveness of a 
customized Support Vector Machine (SVM) model in 
predicting tropical cyclone features, a crucial 
component of operational weather forecasting. This 
ground-breaking model plays a crucial part in 
protecting both the environment and human lives 
while also enhancing prediction accuracy. A robust 
framework for recognizing cy-clone features is 
developed by utilizing satellite images and cloud-
based data storage, enabling continual monitoring 
and study of these dynamic weather events. However, 
with an accuracy of 95%, precision of 94.78%, recall 
of 94.5%, and f1-score of 94.9%, the customized SVM 
model out-performs other conventional models like 
Random Forest, decision tree, SVM, and Logistic 
Regression. Future inclusion of a hybrid model might 
lead to even greater accuracy gains, highlighting the 
significance of ongoing study and innovation in 
cyclone prediction for the good of society and the 
environment. 
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