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Abstract — Efficiently predicting the nature of
tropical cyclones through machine learning techniques
has always posed a challenge in the quest to save
human lives. While existing research has proposed
various methods to accurately predict cyclone
behavior and reduce its impact on humanity, this paper
introduces a unique customized Support Vector
Machine (SVM) model. Unlike existing models, this
machine learning-based custom model enhances
evaluation metrics, offering significant improvements in
binary classification forecasting. The paper also
presents a schematic diagram outlining an architectural
design for cyclone nature detection utilizing satellite
images. The proposed customized SVM model achieves
impressive classification metrics, with accuracy at 95%,
precision at 94.78%, recall at 94.5%, and an F1-score of
94.9%. In contrast, other models such as Random
Forest (RF), SVM, decision tree (DT), and Logistic
Regression (LR) fall short, failing to reach an accuracy
exceeding 92%. Furthermore, future work may involve
the development of hybrid models.

Keywords—Cyclone Nature, Deep Learning, Customized
SVM, Accuracy, Prediction.

I. INTRODUCTION

Predicting the characteristics of tropical cyclones,
including factors like their strength, path, and sudden
intensification, remains a critical task within the field of
meteorology and disaster management. It involves

gaining insight into the intricate dynamics of these
formidable storms to offer timely and precise forecasts.

This, in turn, empowers communities to brace
themselves for potential consequences, thereby
reducing risks to human lives and property.

Nonetheless, this endeavor is marked by substantial
difficulties due to cyclones' inherent intricacy and
variability [1].

A fundamental concern in cyclone forecasting is the
imperative for enhanced precision and lead time in
predictions. Traditional forecasting techniques, while
valuable, often struggle to capture the intricate and
swiftly changing nature of cyclones. This is where deep
learning, a subset of machine learning, comes into
play. Deep learning algorithms, particularly neural
networks with multiple layers, have displayed
remarkable aptitude in processing extensive and
intricate datasets, rendering them well-suited for
addressing the challenges linked with cyclone
prediction [2,3].

By leveraging deep learning techniques,
researchers aim to enhance our understanding of
cyclone behavior and improve forecasting accuracy.
These approaches involve training neural networks on
vast amounts of historical meteorological data,
including satellite imagery, atmospheric
measurements, and environmental variables. Deep
learning models can then learn intricate patterns and
relationships within this data, enabling them to make
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more precise
characteristics.

predictions about cyclone

The proposed system enhances the accuracy of
cyclone's nature to predict earlier to take precautions
before it becomes a threat to human lives. The paper's
notable contributions include the following:

« A distinct way to enrich the prediction of cyclone
nature is through a custom SVM model for binary
classification.

* Impressive experimental results were achieved in
this study. The authors conducted a rigorous
investigation and validation of the performance
pattern, focusing on a specific parameter known
as RBF (Radial Basis Function). To ensure the
reliability of the data, each workload was
performed at least five times.

The paper is organized in the following manner:
The introduction provides an overview of the research
problem, highlighting its significance and connecting it
to existing literature. In the literature review section, we
comprehensively explore prior research and establish
the conceptual framework. The methodology section
elucidates the adopted research approach and details
the data collection and analysis techniques.
Subsequently, the Results and Analysis section
presents the research findings in alignment with the re-
search objectives and the conceptual framework,
offering insights to address the research question.
Finally, the Conclusion section synthesizes the
research aim and major findings, providing a
comprehensive closure to the study.

Il. LITERATURE REVIEW

Several studies propose integrating satellite images
of tropical cyclone convection with traditional
environmental predictors using deep learning models.
For instance, one study utilized 20 deep-learning
models and ensemble approaches to predict Vmax at
+24h. This ensemble approach yielded more
convenient Vmax distribution pre-dictions compared to
individual models. The authors also compared their
technique to functional forecasts and achieved better
rapid intensification detection probabilities. Future
work in this area includes further model combinations
for improved prediction accuracy [1]. Another set of
studies focused on systematically extracting tropical
cyclone information using deep learning frameworks.
These frameworks offer applications in intensity and
wind radius estimation. However, using satellite
images with various sensors may introduce uncertainty
in data. Furthermore, some researchers suggest a
need for feedback mechanisms to enhance model
knowledge in tropical cyclone research [2]. One study
proposed a C-LSTM model based on data from 1949
to 2021 for typhoon path prediction. Comparing this
model with LSTM, the authors demonstrated fewer
errors with the C-LSTM approach. Future work
involves optimization and extracting information from
diverse data sources, including image, numerical, and
observed data [3].

Additionally, A solution where modified the CCT
model with a different approach to analyze satellite
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images of flooded areas. This model achieved 98.79%
accuracy with reduced computational requirements.
They also incorporated an Al framework called LIME
for interpretable predictions [4]. Researchers proposed
a novel data-driven model combining spatial location
and meteorological features to predict cyclone tracks.
Their model outperformed traditional methods and
various deep learning (DL) architectures, including
CNN, CNN-RNN, CNN-GRU, RNN, GRU, and AE-
RNN. Future work includes comparing the model with
the latest numeric and statistical methods and
improving performance for multiple cyclones [5]. A
unique framework was introduced to predict cyclone
formation by integrating a trigger function along with a
deep predictive model based on CNN. The model
achieved a 95% detection probability with a 21.69%
false alarm ratio. Future research may focus on further
optimization and data integration [6]. Researchers
proposed ConvLSTM to efficiently extract spatial and
temporal information for adverse weather events in
India. They validated the model's performance using
image data and additional metrics. Future work may
explore advanced techniques and data sources [7].
They suggested using YOLO for detecting and locating
cyclones and R-CNN for predicting storm locations.
They compared various interpolation techniques to
enhance deep learning algorithms' performance and
recommended densified datasets for further
improvement [8]. A framework was proposed for
processing radiance data using YOLOv3 for cyclone
detection. The authors discussed the potential
extension to other models and emphasized
optimization through fine-tuning hyperparameters [9].
Three deep learning models were developed for
tropical cyclone trajectory prediction, with the data-
driven MLP-LSTM model outperforming MLP and
LSTM. The authors highlighted the importance of
flexible topologies [10].

Another solution where introduced a system for
cyclone pre-diction from satellite images and
developed an object detection method through deep
learning to detect cyclone eyes. Their approach
outperformed conventional techniques. Future work
could involve hybrid models [11]. A study compared six
deep-learning models for identifying the center location
of tropical cyclones. YOLOv4 achieved the highest
accuracy at 99.84% and demonstrated the ability to
detect multiple cyclone locations [12]. An ensemble
technique was introduced to locate tropical cyclone
centers and classify them using machine learning
models. The authors emphasized the model's
generalization ability and its potential to detect lower
cyclone categories [13]. Researchers addressed the
challenges of detecting cyclone patterns through
optical flow estimation and also deep learning models.
Their proposed technique improved accuracy
compared to ftraditional methods [14]. Studies
analyzed remote sensing data, including precipitation
and wind satellite data, to detect cyclones using CNN
models. The minimum accuracy achieved for cyclone
vortex detection was 90% [15]. The authors proposed
integrating numerical precipitation estimation with
CNN models to analyze image data and estimate
precipitation. The study aimed to enhance prediction
accuracy through data-driven methods [16]. A deep
learning model was proposed to detect tropical cyclone
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presence in satellite images based on CNN. The
model accomplished an average of 99% accuracy with
a smaller parameter count. The authors suggested that
this model fulfills the objective of cyclone detection
[17]. A neural network model was developed by the
researchers where trajectory data and atmospheric
images were integrated to provide real-time updates
on new storms. Their method demonstrated superior
performance compared to conventional forecasting
methods [18]. A deep CNN model was presented for
estimating cyclone intensity, outperforming existing
methods based on accuracy and error metrics. The
authors suggested future work with different network
architectures and parameters [19]. Finally, a
multistage deep learning framework was proposed for
cyclone detection, achieving high precision, specificity,
and accuracy in testing satellite images. The authors
used Bayesian optimization for hyperparameter tuning
[20].

One another solution used deep learning
techniques, specifically convolutional neural networks
(CNNSss), for predicting tropical cyclone (TC) formation.
They tested two CNN architectures, ResNet and UNet,
using historical weather data. ResNet and UNet both
show promising results in predicting TC formation
within 12-18 hours using environmental data from the
Pacific Ocean. However, ResNet generally
outperforms UNet across accuracy metrics. The study
finds that a larger input domain leads to better
predictions, suggesting that CNNs can capture
essential far-field information. They introduces a
significant shift from traditional TC prediction methods,
leveraging deep learning to provide early warnings
about cyclone formations effectively [21].

Moreover, this solution used a new system for
predicting tropical cyclone tracks with uncertainty
using machine learning within a conformal prediction
framework. They evaluates ten major machine
learning models and conformal forecasting methods,
focusing on their ability to forecast paths with
uncertainty over 6, 12, and 24-hour periods. The model
effectively generates reliable forecast regions, aiding
decision-makers in preparing for potential hazards.
The results show that machine learning can predict
tropical cyclone tracks with high accuracy and tight
uncertainty intervals, highlighting its potential for future
use in ftropical cyclone forecasting and risk
communication [22].

These papers collectively demonstrate the potential
of deep learning models for predicting various aspects
of tropical cyclones, including intensity, location, and
formation. While these studies have made significant
advancements, they also highlight the need for further
research in optimizing models, handling data
limitations, and exploring hybrid approaches.
Advanced deep learning techniques offer promising
prospects for improving cyclone prediction accuracy
and reducing the impact of these destructive natural
events.

A. Proposed Method

The proposed method of this study. For this study
satellite and meteorological data are used as input

METHODS
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data. Data were pre-processed based on the nature of
the dataset. Feature Extraction and selection depend
on the feature importance of the model. Cyclone
nature detection algorithms help to predict the location
of cyclone nature early and more accurately.
Validation of the data shows the reliability of the
model. Alerting and reporting system helps to be
aware of the upcoming cyclone and also visualizing
prediction results making it more interactive for the
user of this system. However, archiving and
monitoring continuously of the system is really
important to maintain and predicting the cyclone
location or nature through forecasting.

B. Dataset Description

The NHC releases the historical database for
tropical cyclones in a pattern referred to as HURDAT,
which is also known as Hurricane Database. These
databases, namely Atlantic HURDAT2 and NE/NC
Pacific HURDAT2, provide six-hourly data regarding
the position, maximum wind speeds, central pressure,
and, from 2004 onwards, the size of documented
tropical cyclones and subtropical cyclones [23].

C. Dataset Pre-processing

Data.isna().sum()) is used to remove the null value.
So, no specific imputation or removal of missing data
is performed.

D. Feature Engineering

The Latitude and Longitude columns are
processed to create new binary categorical columns:
Latitude_Hemisphere and Longi-tude Hemisphere.
These columns indicate whether the latitude is in the
Northern Hemisphere (0 for N, 1 for S) and whether
the longitude is in the Eastern Hemisphere (O for E, 1
for W). The Latitude and Longitude columns are
further cleaned by extracting only the numeric part of
the coordinates. The 'Date’ column is converted to a
datetime format, and two new columns, 'Month' and
'Year', are derived from it.

E. Training Dataset

Most charts graphs and tables are one column
wide (3 1/2 inches or 21 picas) or two-column width (7
1/16 inches, 43 picas wide). We recommend that you
avoid sizing figures less than one column wide, as
extreme enlargements may distort your images and
result in poor reproduction. Therefore, it is better if the
image is slightly larger, as a minor reduction in size
should not have an adverse effect on the quality of the
image.

F. Random Forest Classifier

Random Forest operates by creating an ensemble
of decision trees, where each tree is constructed from
a random subset of the training data and a random
subset of the features. This randomness helps reduce
overfitting, improve generalization, and enhance the
model's performance. The final prediction in a
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Random Forest is typically made by aggregating the
predictions of all individual trees, often through
maijority voting for classification tasks or averaging for
regression tasks. This ensemble approach provides a
more stable and accurate prediction than any single
decision tree. One of the fundamental equations used
in the Random Forest algorithm is the splitting criterion
for decision trees within the ensemble. This criterion
helps determine how the data should be divided at
each node of the tree. One common criterion is Gini
impurity, represented by the following equation:
Gini Index =1 — Y, (P;)? (1)

Here,

Gini Index represents the Gini impurity for a
particular node.

n is the number of classes in the target variable.

pi is the proportion of instances belonging to class i
in the node.
The Gini impurity is used to assess how often a
randomly chosen element from the dataset would be
incorrectly classified based on the distribution of class
labels at that node. Decision trees in Random Forest
use this criterion to make splits that maximize the
reduction in impurity, leading to effective and accurate
predictions [24].

G. Support Vector Machine (SVM) Classifier

Support Vector Machine (SVM) is a powerful and
widely used machine learning classifier that has
gained prominence due to its ability to perform well in
both linear and non-linear classification tasks. SVM
aims to find the optimal hyperplane that best
separates data points belonging to different classes in
a high-dimensional feature space. This hyperplane is
chosen to maximize the margin, which is the distance
between the hyper-plane and the nearest data points
from each class.

The SVM classifier can be mathematically defined as
follows:
Given a set of training data points (xi, yi), where Xx;
represents the feature vector of the ith data point, and
yi represents the class label (either +1 or -1), the
objective of the SVM is to find a hyper-plane defined
by the equation:

wXx+b=0 (2)
where 'w' is the weight vector perpendicular to the
hyperplane, 'x' is the feature vector, and 'b' is the bias
term.
The SVM classifier assigns data points to one of two
classes based on the sign of the equation w-x + b. If
w-x + b > 0, the data point is classified as class +1; if
w-x + b <0, it is classified as class -1 [24,25].

H. Logistic Regression

Logistic Regression is a statistical modeling
technique utilized in binary classification scenarios,
where the dependent variable has two categorical
levels, typically represented as 0 and 1. This method
finds applications across a range of disciplines such
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as medicine, finance, and machine learning due to its
straightforwardness and ease of interpretation. At its
core, logistic regression revolves around the logistic
function (commonly known as the sigmoid function),
which quantifies the likelihood of an input being
classified into the positive class (often designated as
1).

The logistic function is defined as:

1
1+e~BTX

P(Y =1|X) = (3)
P(Y=1IX) represents the probability that the outcome
variable Y is equal to 1 given the input features X.

* B is a vector of coefficients that determine the
relationship between the input features and the log-
odds of the positive class.

» Xrepresents a collection of input features.

The logistic function converts a linear combination of
the input features BTX into a value within the range of
0 to 1. The output can be interpreted as the probability
of the positive class [24][25][26][27].

I. Decision Tree

The Decision Tree algorithm is represented by a
tree structure where each internal node represents a
decision based on a specific feature, and each leaf
node represents a class label (in classification) or a
numeric value (in regression). The goal of a Decision
Tree is to create a model that can make accurate
predictions or classifications by branching through the
tree based on the feature values of the input data. The
core equation used in Decision Trees is the splitting
criterion, which determines how the tree decides to
split the data at each node [26][28]. One of the
commonly used equations for this purpose is the Gini
impurity for classification problems:

The Decision Tree algorithm is represented by a tree
structure where each internal node represents a
decision based on a specific feature, and each leaf
node represents a class label (in classification) or a
numeric value (in regression). The goal of a Decision
Tree is to create a model that can make accurate
predictions or classifications by branching through the
tree based on the feature values of the input data. The
core equation used in Decision Trees is the splitting
criterion, which determines how the tree decides to
split the data at each node [26][29][30]. One of the
commonly used equations for this purpose is the Gini
impurity for classification problems:

Gini(D) = 1— T&,(p)? (4)
Where:
* Gini(D) is the Gini impurity for dataset D.
+ cis the number of classes in the dataset.
* piis the probability of selecting a sample with class
i at random.
Where:
* Gini(D) is the Gini impurity for dataset D.
« cis the number of classes in the dataset.
 piis the probability of selecting a sample with class
i at random.
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J. Accuracy

Accuracy is a fundamental metric used in various
fields to evaluate the performance of a predictive
model or measurement system. It quantifies the
degree to which the model's predictions or
measurements align with the true or observed values.
In the context of classification tasks, accuracy
quantifies the ratio of accurately classified instances
among the total instances considered.
Mathematically, accuracy (Acc) is defined as:

Number of Correct Predictions

()

Accuracy (Acc) = —
Total Number of Prediction

"Number of Accurate Predictions" indicates how
many times the model's predictions align with the
actual or observed values.

"Total Number of Predictions" refers to the
cumulative count of predictions generated by the
model.

Accuracy is generally presented as a percentage,
spanning from 0% (reflecting no accurate predictions)
to 100% (indicating flawless predictions) [31-34].

K. Precision

Precision is a key metric in the field of statistics and
machine learning, widely employed to evaluate the
effectiveness of a classification or prediction model. It
measures a model's capability to accurately recognize
positive instances among the total instances it
designates as positive. Precision holds significant
importance in situations where inaccuracies in
identifying positives can be expensive or undesirable,
like in medical diagnoses or fraud detection.
Precision is calculated using the following equation:

True Positive (TP)
True Positive (TP)+False Positive (FP)

Precision =

(6)

In this equation:

True Positives (TP) are a measure of correctly
predicted positive instances.

False Positives (FP) refer to instances predicted as

positive but are negative. Precision is typically
quantified on a scale from 0 to 1, with greater values
suggesting improved precision.
A precision score of 1 signifies that all positive
predictions from the model are accurate, while a score
of 0 implies that none of the positive predictions are
accurate [35].

L. F1-Score

The F1-Score, also referred to as the F-Measure,
serves as a widely employed metric in machine
learning and information retrieval to assess the
effectiveness of binary classification models. It
amalgamates precision and recall into a unified
measure, proving especially valuable in scenarios
involving imbalanced datasets where one class
substantially dominates the other.

The F1-Score is defined as the harmonic mean of
precision (P) and recall (R):
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2-Precision-Recall
F1 = Zfreclomkecall 7)

Precision+Recall

where:

Precision (P) is a metric that evaluates the accuracy
of positive predictions by assessing the ratio of true
positive predictions to the total number of positive
predictions.

Recall (R), also referred to as sensitivity or the true
positive rate, measures the model's capacity to
capture all actual positive instances within the dataset.
It is calculated as the ratio of true positive predictions
to the total number of actual positive instances.

The F1-Score is a metric that falls within the range of
0 to 1, where larger values indicate superior model
performance. In a binary classification scenario, a
flawless model achieves an F1-Score of 1, while a
completely random model achieves an F1-Score of
0.5[36,37].

IV. RESULTS AND DISCUSSION
This section shows the results of the used models

evaluation metrics.
LR
50

FIGURE 1. Accuracy of all proposed classifiers.

Accuracy Scores

86
84
82

80
| s |
2 |

Classifiers

o |
85 |

RF |
83 |

Custom{SVM)
s |

| Accuracywl‘

Figure 1 shows the situation as a thorough analysis
of the performance of several classifiers is shown. The
matching acronym for each classifier, such as RF
(Random Forest), DT (Decision Tree), SVM (Support
Vector Machine), LR (Logistic Regression), and a
particular SVM model, serves as a representation.
The accuracy rates of these classifiers have
undergone painstaking calculation and extensive
testing. With a remarkable accuracy rate of 92%, the
SVM classifier shines out, closely followed by RF and
DT with accuracy rates of 88% and 85%, respectively.
With a 90% accuracy rate, LR performs admirably as
well. The best model, nevertheless, is the customized
SVM one, which has a remarkable accuracy rate of
95%. These outcomes demonstrate the custom SVM
model's efficiency in contrast to other classifiers.

Figure 2 shows a thorough comparison of the
accuracy ratings for the several suggested classifiers.
Decision Trees (DT) closely follows with a precision
rate of 84.61%, while Random Forest (RF) has a
precision rate of 88.2%. With an accuracy score of
91.2%, Support Vector Machine (SVM) stands out as
a top performer. Additionally, Logistic Regression (LR)
performs well, reaching an accuracy rate of 89.32%.
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Notably, the individualized SVM classifier, or "custom
(SVM)," outperforms all others with a remarkable
precision rate of 94.78%. This visual depiction
provides a clear picture of the accuracy performance
of the classifiers, with the custom SVM classifier

outperforming the others.
84 l \
8461 83132
FIGURE 2. Precision of all proposed classifiers.
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FIGURE 3. Recall of all proposed classifiers.

Figure 3 provides a good demonstration of how well
various classifiers perform in terms of recall. It
demonstrates how well each classifier can find
advantageous occurrences in the dataset. Decision
Trees (DT) come in second place with a recall rate of
85.61%, closely followed by Random Forest (RF) with
87.2%. With a remarkable recall rate of 90%, Support
Vector Machine (SVM) shines out, while Logistic
Regression (LR) is not far behind at 89.8%. The
performance of our customized SVM implementation,
which yields an exceptional recall rate of 94.5%, is
particularly notable. The effectiveness of our
proprietary SVM model in identifying positive cases
within the dataset is shown by this visual depiction,
which offers a succinct comparison of recall

performance among these classifiers.
Cust mm(S\M
85.8 90.2

SVM
FIGURE 4. F1-Score of all proposed classifiers.
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Figure 4 is an illustration of the F1 scores attained
by several classifiers. The Random Forest (RF) model
among these classifiers receives an F1-Score of
88.58%, closely followed by the Decision Tree (DT)
classifier with a score of 85.8%. With an F1-Score of
91.9%, the Support Vector Machine (SVM) stands out
as performing well and proving to be useful for
classification tasks. The Logistic Regression (LR)
model generates a good F1-Score of 90.2% in a
similar manner. The best performance, however, is
provided by a unique SVM model that exceeds all
others with an astounding F1-Score of 94.9%. This
comparison demonstrates the custom SVM classifier's
advantage in obtaining the greatest F1 score, possibly
making it the best option for this classification
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FIGURE 5. Summary of all proposed classifier models.

A thorough list of all the suggested classifier
models can be seen in Figure 5, allowing for a quick
and meaningful comparison of each model's
performance. The chart likely includes metrics such as
accuracy, precision, recall, F1-Score, and possibly
others, depending on the specific evaluation criteria
used. Among these models, it becomes evident that
the customized Support Vector Machine (SVM)
classifier stands out as the top performer, delivering
the most impressive results in terms of classification
accuracy and overall predictive power. This visually
compelling representation highlights the effectiveness
of the customized SVM model in comparison to its
counterparts, signifying its superiority in accurately
classifying data points within the given context.

TABLE 1. Existing proposal model with accuracy.

Citation | EXISTING PROPOSED MODEL Accuracy

[8] Deep Learning 84

[11] Deep Learning 87

[15] CNN 90

[19] CNN 90

[20] Multistage Deep Learning | 86.55
Framework with R-CNN

TABLE 2. Proposed model for this study with accuracy,
precision, recall, and f1-score

Proposed Model | ACCURACY (%) Precision (%)
RF 88 88.2

DT 85 84.61

SVM 92 91.2

LR 90 89.32
Customized 95 94.78

SVM
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In Table 1, we observe that existing deep-learning
models have achieved accuracies ranging from 84%
to 90%. Notably, Kumawat and Jaiswal (2021) and
Pradhan et al. (2017) both attained an accuracy of
90% using Convolutional Neural Net-works (CNN).
These results highlight the efficacy of deep learning
(DL) techniques in cyclone detection, especially when
processing satellite data. Turning our attention to
Table 2, which represents the accuracy, precision,
recall, and F1-score of the proposed customized SVM
model, we notice a substantial improvement. The
specially configured SVM model attains an impressive
accuracy of 95%, surpassing all the existing deep
learning models in Table 1. This outcome underscores
the model's capacity to provide highly accurate cy-
clone predictions.

Furthermore, the precision, recall, and f1-score of
the suggested customized SVM model are also
remarkable. With precision at 94.78%, recall at 94.5%,
and an F1-score of 94.9%, the model demonstrates a
balanced ability to correctly classify cyclones while
minimizing false positives and false negatives. These
metrics highlight the model's strong performance
regarding both accuracy and dependability. Machine
learning algorithms should be adapted for applications
since the customized SVM model outperformed
current deep learning models in terms of accuracy. In
this case, cyclone detection specific SVM models
outperform common deep learning architectures. This
achievement has important ramifications for improving
cyclone fore-casting, boosting catastrophe
preparedness, and ultimately protecting both human
lives and the environment. The findings and
subsequent discussion demonstrate how effective the
suggested customized SVM model is for cyclone
identification, attaining impressive accuracy and a
balanced precision-recall performance. This study
contributes to the expanding corpus of meteorological
information and gives hope for cyclone prediction
systems.

V. CONCLUSION

This study demonstrates the effectiveness of a
customized Support Vector Machine (SVM) model in
predicting tropical cyclone features, a crucial
component of operational weather forecasting. This
ground-breaking model plays a crucial part in
protecting both the environment and human lives
while also enhancing prediction accuracy. A robust
framework for recognizing cy-clone features is
developed by utilizing satellite images and cloud-
based data storage, enabling continual monitoring
and study of these dynamic weather events. However,
with an accuracy of 95%, precision of 94.78%, recall
of 94.5%, and f1-score of 94.9%, the customized SVM
model out-performs other conventional models like
Random Forest, decision tree, SVM, and Logistic
Regression. Future inclusion of a hybrid model might
lead to even greater accuracy gains, highlighting the
significance of ongoing study and innovation in
cyclone prediction for the good of society and the
environment.
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