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Abstract — Global waste generation is projected to
reach 3.40 billion tonnes by 2050, creating urgent
demands for automated waste classification systems
that can overcome the limitations of manual sorting
methods. Current deep-learning research on waste
classification lacks standardised evaluation protocols,
preventing meaningful architectural comparisons and
hindering the progress of reproducible research. This
paper establishes a reproducible benchmark framework
for lightweight neural network models designed
explicitly for trash classification research applications.
Lightweight models are designed for optmised
architecture and computation cost while maintain
accuracy. Four representative lightweight models,
including MobileNet V3 Large, Vision Transformer (ViT)
Small, EfficientFormer, and ShuffleNet V2, were
systematically evaluated on the TrashNet dataset using
identical training protocols. All models employed
AdamW optimisation with a learning rate of 1 x 10%,
weight decay of 1 x 10% and CosineAnnealingLR
scheduling through 5-fold stratified cross-validation on
RTX 2080 Ti hardware. Experimental results
demonstrate that ViT Small achieved the highest
classification accuracy at 0.815 but required 21.67M
parameters, while MobileNet V3 Large delivered
superior computational efficiency with 0.768 accuracy

and 0.72ms inference time using only 4.21M parameters.

Statistical analysis revealed significant performance
differences across models (p = 0.0002), with hardware-
aware architectural optimisations proving more critical
than raw parameter reduction for computational
performance on data centre GPU hardware. The

standardised evaluation framework and open-source
implementation provide rigorous baselines for
advancing automated waste classification research.

Keywords—Trash Classification, Lightweight Backbones,
AdamW Optimisation, Data Augmentation, Benchmarking
Trade-Offs, Deep Learning.

I. INTRODUCTION

Global waste generation is projected to increase
from 2.01 billion tonnes in 2016 to 3.40 billion tonnes
by 2050 [1]. This increase stems from rapid population
growth and changing consumption patterns,
exacerbating the environmental waste crisis. In 2016,
1.6 billion tonnes of carbon dioxide, equivalent to a
greenhouse gas, were produced during the process of
treating and disposing of waste, which accounts for 5
per cent of global emissions [2]. An effective waste
management system relies on accurate classification
and efficient sorting processes. These two can help
maximise recycling efficiency and avoid incorrect
waste in the wrong category [3].

Manual sorting of waste remains the standard
method in many facilities worldwide, creating
challenges that directly impact environmental and
economic outcomes. Workers face multiple hazards
during sorting due to exposure to toxic materials and
hazardous chemicals, which can result in
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musculoskeletal disorders and respiratory problems
[4]. Moreover, material recovery facilities reject waste
that exceeds the tolerable contamination threshold and
must send it to landfills [5]. The processing can cost
the material recovery facility an average of $82 per ton,
while the value of the recovered materials is around
$45 per ton. This shows the limitation of the manual
sorting method [6].

With the introduction of deep learning techniques,
computer vision tasks have been improved
dramatically [7]. This improvement occurred because
convolutional neural networks (CNNs) can learn data
patterns independently based on the given dataset [8].
CNNs can achieve high accuracy in the classification
of waste datasets [9], [10]. There are many
approaches to model architecture for converting
models into lightweight versions [11]. There is no
existing systematic and reproducible evaluation of
lightweight models specifically on the TrashNet
dataset using standardised training procedures.

The first objective is to establish a standardised
benchmarking framework for lightweight neural
network models on waste classification tasks. This
framework enables researchers to conduct fair
comparisons between novel models and training
methods and establish baselines using consistent
evaluation protocols on TrashNet under controlled
GPU computing conditions. RTX 2080 Ti (11GB) is
selected as the benchmarking platform ecause it
represents a widely-available mid-range data center
GPU.

The second objective is to provide a comparative
analysis of performance and efficiency trade-offs
across different architectural paradigms. This analysis
quantifies the relationships between classification
accuracy, parameter count, and computational
characteristics to inform architectural design decisions
for waste classification research rather than practical
deployment decisions for automated waste sorting
systems.

The main research question can be stated as
follows: How do different lightweight backbone models
compare in terms of classification accuracy and
computational efficiency when evaluated under
standardised training conditions on the TrashNet
dataset using RTX 2080 Ti hardware?

The first contribution is to provide a fully
reproducible benchmark of MobileNet V3 Large, Vision
Transformer (ViT) Small, EfficientFormer L1, and
ShuffleNet V2 on TrashNet with MLflow logging. The
code is available on GitHub.

The second contribution is to provide a systematic
analysis of the relationships between performance and
efficiency that challenge conventional assumptions
about the parameter count versus computational
performance. This analysis reveals that architectural
optimisation and memory access patterns are more
critical than raw parameter reduction for computational
efficiency on data centre GPU hardware.

The remainder of this paper is organised as
follows. The literature review examines related work on
waste classification tasks and lightweight model
architectures. The methodology describes the four
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backbone  model architectures and training
procedures. The experiment, results, and discussion
cover the dataset description, model settings, and
evaluation metrics, followed by performance
comparisons and a comprehensive analysis. Finally,
the conclusion summarises key findings, discusses the
effectiveness of different approaches, and suggests
future work.

A. Deep Learning Approaches for Waste
Classification

As discussed earlier, manual sorting faces
significant limitations that deep learning techniques
can address. Ahmed et al. [11] conducted a
comprehensive investigation of waste classification
using state-of-the-art (SOTA) models, including CNNs,
DenseNet, MobileNet, and Residual Networks
(ResNet). The experiments showed that DenseNet169
achieved an accuracy of 94.40%, MobileNetV2
attained an accuracy of 97.60%, and ResNet50V2
achieved an accuracy of 98.95%. These results
demonstrate that ResNet50V2 outperforms other
SOTA models in waste classification.

LITERATURE REVIEW

Jin et al. [12] proposed an improved version of
MobileNetV2, which increased classification accuracy
by utilising transfer learning. Principal component
analysis (PCA) is used to reduce the dimensionality of
the last fully connected layer. This enables real-time
operation of the model on an edge device. The
experimental results show that their proposed model
achieved an accuracy of 90.7% on "Huawei Cloud"
datasets. It has an average inference time of 600 ms
on the Raspberry Pi 4B microprocessor.

The dataset used to train a model has a significant
impact on its performance in waste classification. A
particular dataset has become a commonly used
benchmark for this task [13]. However, many studies
used different datasets to compare the performance of
models. Kumsetty et al. [14] introduced the TrashBox
dataset, which contains 17,785 images across seven
different classes, including medical and e-waste
categories. They trained multiple models on the new
TrashBox dataset with transfer learning. They
achieved an accuracy of 98.47% on ResNet-101.

Transfer learning has been widely used in waste
classification tasks to overcome the gap in limited
training data. Several studies have demonstrated the
effectiveness of fine-tuning pre-trained models rather
than training them from scratch [15], [16]. Risfendra et
al. [17] trained an EfficientNet-BO model with transfer
learning. They train with a dataset that contains 7014
images with six different classes. The model achieved
an accuracy of 91.94%, a precision of 92.10%, a recall
of 91.94% and an F1-score of 91.96%.

There are several limitations in the current deep
learning techniques for waste classification despite
their good performance. The characteristics of the
dataset can impact the model's performance in real-
world scenarios [11]. Langley et al. [18] identify
significant gaps in practical deployment because most
existing deep-learning studies for waste sorting are
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developed in controlled laboratory environments rather
than those involving contaminated material streams.

B. Lightweight Neural Network Architectures

The use of lightweight models is due to the limited
resources that can be utilised in an environment. Thus,
the lightweight model has been the focus of research
aimed at developing even lighter models. These
models offer competitive performance while
minimising computational resources.

MobileNet is one of the most widely used models in
the lightweight family. The MobileNet introduced
depthwise separable convolutions to reduce
computation costs [19]. MobileNetV2 has further
improved its efficiency by utilising inverted residual
blocks and linear bottlenecks. It can achieve a
competitive accuracy with a large model [20]. Wang et
al. [21] proposed a Dense-MobileNet model by
implementing DenseNet inside MobileNet. The
experiment results showed that Dense-MobileNet can
achieve higher accuracy than MobileNet while
requiring fewer parameters and computational costs.

EfficientNet has gained attention due to its scaling
methods, which optimise the network depth, width, and
resolution [22]. This model achieved good accuracy
with fewer parameters compared to traditional
architecture. The ViT has emerged as an alternative to
CNN, but it requires substantial computational
resources and a large dataset for training. A lightweight
VIiT, ViT Small, is developed by reducing the number
of attention heads and embedding dimensions [23].
However, the performance on the smaller dataset is
poor. ShuffleNet used group convolutions and channel
shuffle operations to achieve good efficiency [24].

The depth-wise separable convolutions reduce
computational complexity by separating spatial and
channel-wise operations [26]. Knowledge distillation
allows smaller models to learn from larger teacher
networks [27]. Quantisation and pruning techniques
can further reduce model size and computational
requirements, but they can also degrade model
performance [28]. Lightweight neural network
architectures become computationally efficient mainly
by reducing the number of parameters. This allows
them to be deployed on devices with limited resources
while maintaining competitive performance [21], [29].
However, the efficiency gained by reducing
parameters can worsen the model's performance [30].
The challenge is finding the right balance between
computational efficiency and classification accuracy.

Several challenges remain despite the lightweight
model demonstrating promising results. The lack of
standardised benchmarks and protocols can make
direct comparisons with different approaches
misleading [31]. The field of lightweight models faces
major inconsistencies in its methods. Many studies
employ various training procedures, learning rates,
and evaluation protocols. This makes results
reproduce and lead to misleading comparisons, even
with promising model performance [32], [30]. Table 1
shows the summary of waste classification and
lightweight model studies from literature review.
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TABLE 1. Summary of Waste Classification and Lightweight
Model Studies from Literature Review

Study Model Dataset | Accur Key
acy Contribu
tion
Ahme | ResNet5 | Kaggle 98.95 | Best
detal | OV2 "Garbage | % SOTA
[11] classifica perform
tion" ance in
compari
son
study
Jinet | Improve | "Huawei | 90.7% | Real-
al.[12] | d Cloud" time
MobileN edge
etV2 deploym
with enton
PCA Raspber
ry Pi4B
Kums | ResNet- | TrashBo | 98.47 | Introduc
etty et | 101 x (17,785 | % ed new
al. [14] images, dataset
7 with
classes) medical
and e-
waste
Risfen | Efficient | Custom 91.94 | Transfer
draet | Net-BO (7,014 % learning
al. [17] images, approac
6 h
classes)
Wang | Dense2- | Caltech ~96% | ~50%
et al. MobileN | datasets fewer
[21] et paramet
ers than
MobileN
et
lll. METHODOLOGY

This section explains the lightweight backbone
model and addresses the research question. It also
introduces a standardised benchmarking framework
with comprehensive reproducibility measures. Figure 1
shows flowchart of the experimental workflow.

A. Backbone Model Architectures

The experimental framework evaluates four
different lightweight backbone architectures. Each
model has a different architectural design. The
selection encompasses a model with depthwise
separable convolutions, MobileNet V3, a pure attention
mechanisms model, ViT, a hybrid CNN-Transformer
approaches model, EfficientFormer, and a channel
shuffle operations model, ShuffleNet V2. All models
were implemented using the timm library (version =
0.9) and PyTorch (version = 2.1), with the classifier
head removed and replaced with a task-specific linear
layer through a custom GenericClassifier wrapper
architecture. This architecture instantiates backbone
models via factory functions and adapts them for six-
class waste classification.
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MobileNet V3-Large employs depthwise separable
convolutions with squeeze-and-excitation blocks. The
model utilises hard-swish activation functions and
implements neural architecture search-derived
building blocks. The model was instantiated using
mobilenetv3 large 100 configuration with global
average pooling, accepting variable input channels
while maintaining computational efficiency through
inverted residual structures.

ViT Small processes images as sequences of
16x16 pixel patches. This model abandons
convolutional operations entirely, employing multi-
head self-attention mechanisms across 12 transformer
blocks with an embedding dimension of 384. The
model uses ViT Small with a patch size of 16 and an
input configuration of 224, utilising token-based global
pooling, where the classification token aggregates
80720 Spiit spatial information across all patches.

Dataset

EfficientFormer represents a hybrid CNN-
Transformer model that combines the inductive biases
of convolutional networks in early stages with the
global modelling capacity of transformers in later
stages. The model implements dimension-consistent

A 4

5-Fold Cross- design with 4D partition operations, enabling efficient
Validation mobile deployment while maintaining competitive
performance.

SHuffleNetV2 is optimised in deployment due to
memory access costs [25]. It utilises channel shuffle
operations to enable information to flow across feature

MobileNet V3-Large. channels while maintaining high ~computational
ViT Small, efficiency. For non-RGB inputs, the initial convolutional
Eﬁggm';ﬁge\;'z'-ﬁ layer was modified to accept variable input channels

while preserving the 24-channel output dimension.

All backbone models were validated for feature
extraction by passing dummy inputs (1xCx224x224)

v through them. This process determined their output
feature dimensions, which varied from 448 to 1280

AdamW Training depending on the architecture. The task-specific
classifier head was built as a single linear layer that

converts the backbone's feature output into the
number of target classes.

The experimental framework maintained identical
hyperparameters across all backbone models to

accuracy, pracision, ensure fair comparison. The selection of AdamW with
recall, F1-score, a learning rate of 1x10* was based on its proven
inference time stability across diverse architectures. AdamW

decoupled weight decay helps prevent overfitting on
small datasets like TrashNet. The CosineAnnealingLR
scheduler was chosen because it provides smooth
learning rate decay without requiring architecture-
specific tuning. This standardised approach isolates
ANOVA + Bonferroni architectural differences as the main cause of

correction performance variations. This directly addresses the
research question regarding the optimal selection of a
lightweight backbone.

Y

B. Training Procedures

All models were trained using identical training
protocols and no hyperparameter tuning. Each model
used a batch size of 32, an input resolution of 224x224
pixels, and 100 epochs on an RTX 2080 Ti GPU.

FIGURE 1. Flowchart of the experimental workflow Adaptive Moment Estimation with Weight Decay
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(AdamW) optimisation uses a learning rate of 1 x 10
and weight decay of 1 x 10, with CosineAnnealingLR
scheduling configured with a minimum learning rate
value of 1x10%. The scheduler updates the learning
rate per batch rather than per epoch, providing fine-
grained learning rate decay throughout training.
Standard cross-entropy loss was applied throughout
all experiments. Model selection was performed based
on validation accuracy, with the best-performing
checkpoint saved for final evaluation.

Augmentation methods differed for training,
validation, and testing to maintain consistent
evaluations. Training augmentations consisted of
resizing to 224x224 pixels, random horizontal flip with
a probability of 0.5, random vertical flip with a
probability of 0.5, and random rotation within £10
degrees. All images underwent tensor conversion and
normalisation using ImageNet statistics (mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]). Validation
and test sets received only resize and normalisation
transformations to ensure consistent evaluation.
Images were automatically converted to RGBA format
before being converted to RGB to prevent
preprocessing errors.

The paper used 5-fold stratified cross-validation for
robust evaluation and to reduce bias. The dataset was
initially split 80-20, with a fixed 20% reserved for
testing in all final evaluations. Cross-validation was
applied only to the remaining 80% of the dataset. This
maintained consistent class distributions across all
folds through stratified splitting. Performance metrics
were then gathered from all five folds, and the mean
and standard deviation for each metric were reported.

A random seed was fixed at 42 across all model
evaluations using NumPy's random number generator
for dataset-splitting operations. The MLflow tracking
infrastructure captured comprehensive experimental
metadata. Each experiment run was assigned a
unique identifier, enabling precise reproduction and
comparison. The logging system monitored training
dynamics through per-batch gradient norms, learning
rate schedules, and computational resource utilisation
at each epoch. Performance artefacts were
systematically preserved in multiple formats. The
confusion matrices are saved in JSON, pickle and
PNG format. Inference timing measurements were
conducted on the test dataset with CUDA
synchronisation to ensure accurate latency
assessment.

Inference timing measurements followed a strict
protocol, excluding data loading time to focus solely on
the model's forward pass execution. Measurements
were then aggregated across the entire test dataset to
calculate the average inference time per sample.
Systematic memory management protocols were
implemented after each experimental run to prevent
memory overflow during consecutive experiments.
This was followed by garbage collection and CUDA
cache clearing to ensure clean memory states
between all 20 experimental runs.
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V. EXPERIMENT, RESULTS AND DISCUSSION

A. Dataset

Experiments utilised the TrashNet dataset [33],
which contains 2,527 images across six waste
categories with significant class imbalance. Class
distribution includes 594 papers, 501 glass, 482
plastic, 410 metal, 403 cardboard, and 137 trash
images, with the trash class notably underrepresented.

The dataset was partitioned using an 80-20 split for
cross-validation and test sets, respectively. To ensure
reproducibility, the random seed was fixed at 42 using
NumPy's random number generator. The test set
contained 505 images, while the remaining 2,022
images were used for 5-fold stratified cross-validation.
This process yielded approximately 1,621 training
images and 405 validation images per fold, with exact
numbers varying slighty due to stratification
requirements.

B. Model Setting

The four evaluated backbone models have smaller
parameters that directly impact computational
efficiency. ShuffleNet V2 has the least parameter
models with 1.26M parameters. MobileNet V3-Large
contains 4.21M parameters, while EfficientFormer
utilises 11.39M parameters. The ViT Small requires
21.67 million parameters, making it the largest model
in comparison. All models were adapted for six-class
waste classification by replacing the original classifier
head with a linear layer mapping from each backbone's
feature dimension to the target number of classes.

C. Evaluation Metrics

Model performance was assessed using
classification accuracy as the primary metric,
supplemented by accuracy, precision, recall, and F1-
score to provide a comprehensive evaluation of
classification performance. Computational efficiency
was measured using the total parameter count and the
average inference time per sample. This inference
time was calculated on the test dataset with CUDA
synchronisation to ensure timing accuracy. All
evaluation procedures were logged using MLflow to
ensure comprehensive tracking of experimental
conditions and results.

D. Results and Discussion

Repeated-measures ANOVA on 5-fold cross-
validation results revealed statistically significant
differences in mean accuracy scores across the four
lightweight backbone models. Table 2 presents the
ANOVA results.

TABLE 2. Repeated-measures ANOVA Results
Source | F-Value | Num DF | Den DF | p-value
Model 15.4654 3 12 | 0.0002

The significant ANOVA result with p = 0.0002 (<
0.05) warranted post-hoc pairwise comparisons using
the Bonferroni correction to control for multiple testing.
Table 3 presents the complete pairwise comparison
results.
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TABLE 3. Post-Hoc Pairwise T-Test Results with Bonferroni
Correction

E-ISSN: 2682-860X
Cross-validation results revealed varying training
stability among models. MobileNet V3 Large has the

Model1 | Model 2 T p p highest variance with o = 2.02%, indicating less robust
statistic (uncorre (Bonferr . . . o
cted) oni) training dynamics. EfficientFormer had the second
EfficientF MobileNet | 2.868 0.046 0.273 highest variance with o = 0.99%. This suggests that
ormer V3 Large EfficientFormer has lower sensitivity to data
EfficientF | ShuffleNe | 2.813 0.048 0.289 distribution, making it a good choice for comparative
ormer tv2 study. Table 5 shows the model performance rankings
E::;c:ntF ViT Small | -2.929 0.043 0.257 on each category.
MobileNet | ShuffleNe | O 1 1 TABLE 5. Model Performance Rankings
V3 Large tVv2 . Best .
MobileNet | ViT Small | -6.096 0.004 0.022 Metric | Model | Second Third Fourth
V3 Large Accurac | ViT- EfficientFor | MobileNet Shuffle
ShuffleNe | ViT Small | -6.437 0.003 0.018 y Small mer-L1 V3-Large Net V2
tV2 (0.815) | (0.799) (0.768) (0.768)
. \ \ . Inferenc MobileN | ShuffleNet EfficientFor ViT-
Post-hoc analysis with Bonferroni correction e Speed | etV3- V2 (1.09ms) | mer-L1 Small
revealed only two statistically significant pairwise Large (1.14ms) (1.15ms
differences between MobileNet V3-Large vs ViT-Small (0.72ms )
(p =0.022) and ShuffleNet V2 vs ViT-Small (p = 0.018). ) : _ :
While other comparisons showed trends before Paramet | Shuffle | MobileNet EfficientFor | ViT-

. . _ ers Net V2 V3-Large mer-L1 Small
correction (e.g., EfficientFormer vs ShuffleNet V2, p = (1.26M) | (4.21M) (11.39M) (21.67M
0.048), these did not survive multiple testing )
adjustment. Overall MobileN | EfficientFor | ViT-Small Shuffle

. . L. Trade-off | et V3- mer-L1 Net V2
The experimental evaluation reveals distinct Large

performance characteristics across the four lightweight

backbone models. Table 4 presents the
comprehensive performance metrics for all models.
TABLE 4. Model Performance Summary
. F1- Infere
Model Accur Pl_'eCIs Rec Sco Parame nce
acy ion all re ters (M) Time
(ms)
0.815 | 0.818 g-f1 2'31 115+
ViT Small | + + 000 | 0.00 | 2167 012
0.0074 | 0.007 | ' 7 :
0.80 | 0.80
EfficientFo 0799 0.804 0t 0t 114 +
rmer L1 £ £ 001 | 001 | 130 0.10
0.0099 | 0.009 | 0
0.76 | 0.76
ShuffieNet | 0768 | 0773 | g4 | o} 196 1.00 +
V2 X1 00161 | 0016 2.01 2.01 0.03
076 | 0.76
MobiteNet | 0708 | 0774 1 gy | oy | 072+
V3 Large 00202 | 0018 8.02 3.01 0.06

EfficientFormer has the second-highest accuracy at
0.799. The model performed competitively with
11.39M parameters, which is half the number of ViT
Small. However, its inference times remained
comparable at 1.14 ms per sample on RTX 2080 Ti
hardware.

The evaluation shows that ViT Small achieved the
highest accuracy at 0.815% but required 21.67 million
parameters. In contrast, efficiency-focused models,
such as MobileNet V3 Large and ShuffleNet V2,
achieved comparable accuracy levels of 0.768 and

0.768, respectively, with significantly fewer parameters.

Computational efficiency analysis reveals that
MobileNet V3 Large achieved superior computational
efficiency on RTX 2080 Ti hardware, with an inference
time of 0.72 ms, while having 4.21 million parameters.
It outperforms ShuffleNet V2, which achieves 1.09ms
with 1.26M parameters. This 34% speed improvement
challenges conventional assumptions about the
efficiency of parameter count.

Confusion Matrix

The confusion matrices show distinct classification
patterns among the lightweight models evaluated
during 5-fold cross-validation. Figure 2 shows the ViT
Small Confusion Matrix for each fold.

Vit Small - Confusion Matrices (All Folds)

Fold 1

FIGURE 2. ViT Small Confusion Matrix for each fold

The VIT Small confusion matrices show the
strongest classification performance across all five
folds. The intense and consistent diagonal patterns in
these matrices visually confirm ViT Small's reported
highest accuracy of 0.815. Figure 3 shows the
Efficientformer Confusion Matrix for each fold.

FIGURE 3. Efficientformer Confusion Matrix for each fold.
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EfficientFormer exhibits comparable but slightly
reduced diagonal intensity compared to ViT Small
across all five folds. While the diagonal elements are
strong, there is marginally more off-diagonal confusion
visible compared to ViT Small, which corresponds to
its slightly lower accuracy of 0.799. The matrices
demonstrate that EfficientFormer maintains reliable
classification boundaries between waste categories.
Figure 4 shows the ShufflenetV2 Confusion Matrix for
each fold.

n .
m I “m |
‘ ] o e
[ - | =1
FIGURE 4. ShufflenetV2 Confusion Matrix for each fold.
ShuffleNet V2 displays more variation in

classification patterns across folds compared to the
transformer-based models. Figure 5 shows the
MobileNetV3 Large Confusion Matrix for each fold.

Mobilenet V3 Large - Cont
"

n Matrices (All Folds)

o o
N [ - | N -- | N -
SR T S
i M . BN
S T =
FIGURE 5. MobileNetV3 Large Confusion Matrix for each

fold

MobileNet V3 Large demonstrates consistent
confusion matrix patterns across all five folds, with a
stable diagonal intensity that reflects its reported
accuracy of 0.768. The consistency between folds
visually confirms that MobileNet V3 Large has a
standard deviation of 2.02%.

Discussion

Comparing across all four models, ViT Small
demonstrated the strongest diagonal patterns, with the
highest classification confidence, corresponding to its
superior accuracy of 0.815. EfficientFormer has its
competitive edge with an accuracy of 0.799.
ShuffleNet V2 exhibits the most scattered confusion
patterns, characterised by increased off-diagonal
elements, which aligns with its 0.768 accuracy.
MobileNet V3 Large maintained in between the model
with moderate diagonal strength but variable
consistency across folds.
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Visual analysis shows that while MobileNet V3
Large and ShuffleNet V2 achieve similar accuracy,
their confusion patterns are very different. MobileNet
V3 Large maintains strong classification boundaries,
but its performance varies. ShuffleNet V2 has more
consistent patterns with less scatter in misclassification.
This evidence supports the finding that ShuffleNet V2
offers superior training stability with lower
computational efficiency compared to MobileNet V3
Large while maintaining comparable overall accuracy.

The precision-recall balance across all models, with
precision ranging from 0.773 to 0.818 and recall
ranging from 0.768 to 0.816. These values indicate that
no model exhibits a bias toward any specific class
despite the dataset's class imbalance.

ViT Small provides the highest classification
performance for applications where computational
resources are less constrained. However, the
increased parameter count and moderate training
variance require careful consideration for research
applications that require consistency.

EfficientFormer provides an effective trade-off
between accuracy and computational efficiency. The
hybrid model has competitive performance with
moderate resource requirements. This performance
makes it suitable for controlled experimental scenarios
with reasonable computational budgets.

MobileNet V3 Large can be the optimal choice for
applications  prioritising inference speed and
computational efficiency on RTX 2080 Ti hardware. It
has superior inference performance, but the training is
inconsistent, making it suitable for experimental
settings where speed is critical. The combination of
competitive accuracy at 0.768 with superior inference
speed at 0.72 ms positions this model as the optimal
balance point for controlled comparative analysis,
where speed is prioritised over training consistency.

The results show that ShuffleNet V2 achieves the
lowest parameter count while maintaining moderate
efficiency on RTX 2080 Ti hardware. This finding
shows the importance of benchmarking over
theoretical parameter counting when selecting models
for architectural comparison.

A critical insight from computational efficiency
results is that MobileNet V3 Large has superior
inference performance, even with a moderate number
of parameters. This demonstrates that the model is
taking full advantage of the RTX 2080 Ti hardware with
faster inference performance. This finding suggests
that, rather than focusing on the parameter, it is more
effective to design the model based on the specific
hardware used.

V. CONCLUSION

This paper establishes a comprehensive and
reproducible benchmark for lightweight neural network
models in waste classification tasks, providing
comparative guidance for researchers developing
automated waste classification systems [34].

This benchmarking study has limitations that
contextualize the findings. TrashNet's limited size and
controlled conditions may not represent real-world
waste streams with contaminated. The evaluation on
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RTX 2080 Ti hardware may not generalize to edge
devices or newer architectures with different memory
hierarchies. Additionally, the standardized training
protocol, while ensuring fair comparison, may not
reveal each architecture's optimal performance under
architecture-specific tuning. The six-class also
simplifies modern recycling requirements. These
constraints position the benchmarks as research
baselines rather than deployment-ready solutions

Future work should extend this comparative
benchmarking framework to evaluate additional
architectural and training methodologies under the
established standardised protocols. Investigation of
knowledge distillation techniques and ensemble
methods could enhance accuracy while maintaining
computational efficiency. Additionally, extending the
evaluation to diverse hardware platforms, including
edge computing devices, would provide broader
validation of the comparative relationships identified
through this controlled experimental analysis on the
RTX 2080 Tl 11GB rather than the challenging visual
conditions encountered in practical waste sorting
environments.

VL.

The TrashNet dataset used in this paper is publicly
available at https://github.com/garythung/trashnet.
The complete source code, experimental
configurations, and trained model checkpoints are
available at https://qgithub.com/lewbei/A-Reproducible-
Benchmark-of-AdamW-Augmented-Lightweight-
Models-for-Trash-Classification.  All  experimental
results can be reproduced using the provided MLflow
configurations and random seed settings.
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