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A Reproducible Benchmark of AdamW-Augmented Lightweight 
Models for Trash Classification

Kai Liang Lew, Xin Ming Chee, Chia Shyan Lee and Chean Khim Toa*

Abstract – Global waste generation is projected to 
reach 3.40 billion tonnes by 2050, creating urgent 
demands for automated waste classification systems 
that can overcome the limitations of manual sorting 
methods. Current deep-learning research on waste 
classification lacks standardised evaluation protocols, 
preventing meaningful architectural comparisons and 
hindering the progress of reproducible research. This 
paper establishes a reproducible benchmark framework 
for lightweight neural network models designed 
explicitly for trash classification research applications. 
Lightweight models are designed for optmised 
architecture and computation cost while maintain 
accuracy. Four representative lightweight models, 
including MobileNet V3 Large, Vision Transformer (ViT) 
Small, EfficientFormer, and ShuffleNet V2, were 
systematically evaluated on the TrashNet dataset using 
identical training protocols. All models employed 
AdamW optimisation with a learning rate of 1 × 10-4, 
weight decay of 1 × 10-4, and CosineAnnealingLR 
scheduling through 5-fold stratified cross-validation on 
RTX 2080 Ti hardware. Experimental results 
demonstrate that ViT Small achieved the highest 
classification accuracy at 0.815 but required 21.67M 
parameters, while MobileNet V3 Large delivered 
superior computational efficiency with 0.768 accuracy 
and 0.72ms inference time using only 4.21M parameters. 
Statistical analysis revealed significant performance 
differences across models (p = 0.0002), with hardware-
aware architectural optimisations proving more critical 
than raw parameter reduction for computational 
performance on data centre GPU hardware. The 
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standardised evaluation framework and open-source 
implementation provide rigorous baselines for 
advancing automated waste classification research. 

Keywords—Trash Classification, Lightweight Backbones, 

AdamW Optimisation, Data Augmentation, Benchmarking 

Trade-Offs, Deep Learning. 

 

I. INTRODUCTION 

Global waste generation is projected to increase 
from 2.01 billion tonnes in 2016 to 3.40 billion tonnes 
by 2050 [1]. This increase stems from rapid population 
growth and changing consumption patterns, 
exacerbating the environmental waste crisis. In 2016, 
1.6 billion tonnes of carbon dioxide, equivalent to a 
greenhouse gas, were produced during the process of 
treating and disposing of waste, which accounts for 5 
per cent of global emissions [2]. An effective waste 
management system relies on accurate classification 
and efficient sorting processes. These two can help 
maximise recycling efficiency and avoid incorrect 
waste in the wrong category [3]. 

Manual sorting of waste remains the standard 
method in many facilities worldwide, creating 
challenges that directly impact environmental and 
economic outcomes. Workers face multiple hazards 
during sorting due to exposure to toxic materials and 
hazardous chemicals, which can result in 
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musculoskeletal disorders and respiratory problems 
[4]. Moreover, material recovery facilities reject waste 
that exceeds the tolerable contamination threshold and 
must send it to landfills [5]. The processing can cost 
the material recovery facility an average of $82 per ton, 
while the value of the recovered materials is around 
$45 per ton. This shows the limitation of the manual 
sorting method [6].  

With the introduction of deep learning techniques, 
computer vision tasks have been improved 
dramatically [7]. This improvement occurred because 
convolutional neural networks (CNNs) can learn data 
patterns independently based on the given dataset [8]. 
CNNs can achieve high accuracy in the classification 
of waste datasets [9], [10]. There are many 
approaches to model architecture for converting 
models into lightweight versions [11]. There is no 
existing systematic and reproducible evaluation of 
lightweight models specifically on the TrashNet 
dataset using standardised training procedures. 

The first objective is to establish a standardised 
benchmarking framework for lightweight neural 
network models on waste classification tasks. This 
framework enables researchers to conduct fair 
comparisons between novel models and training 
methods and establish baselines using consistent 
evaluation protocols on TrashNet under controlled 
GPU computing conditions. RTX 2080 Ti (11GB) is 
selected as the benchmarking platform ecause it 
represents a widely-available mid-range data center 
GPU. 

The second objective is to provide a comparative 
analysis of performance and efficiency trade-offs 
across different architectural paradigms. This analysis 
quantifies the relationships between classification 
accuracy, parameter count, and computational 
characteristics to inform architectural design decisions 
for waste classification research rather than practical 
deployment decisions for automated waste sorting 
systems. 

The main research question can be stated as 
follows: How do different lightweight backbone models 
compare in terms of classification accuracy and 
computational efficiency when evaluated under 
standardised training conditions on the TrashNet 
dataset using RTX 2080 Ti hardware? 

The first contribution is to provide a fully 
reproducible benchmark of MobileNet V3 Large, Vision 
Transformer (ViT) Small, EfficientFormer L1, and 
ShuffleNet V2 on TrashNet with MLflow logging. The 
code is available on GitHub. 

The second contribution is to provide a systematic 
analysis of the relationships between performance and 
efficiency that challenge conventional assumptions 
about the parameter count versus computational 
performance. This analysis reveals that architectural 
optimisation and memory access patterns are more 
critical than raw parameter reduction for computational 
efficiency on data centre GPU hardware. 

 The remainder of this paper is organised as 
follows. The literature review examines related work on 
waste classification tasks and lightweight model 
architectures. The methodology describes the four 

backbone model architectures and training 
procedures. The experiment, results, and discussion 
cover the dataset description, model settings, and 
evaluation metrics, followed by performance 
comparisons and a comprehensive analysis. Finally, 
the conclusion summarises key findings, discusses the 
effectiveness of different approaches, and suggests 
future work. 

II. LITERATURE REVIEW 

A. Deep Learning Approaches for Waste 
Classification  

As discussed earlier, manual sorting faces 
significant limitations that deep learning techniques 
can address. Ahmed et al. [11] conducted a 
comprehensive investigation of waste classification 
using state-of-the-art (SOTA) models, including CNNs, 
DenseNet, MobileNet, and Residual Networks 
(ResNet). The experiments showed that DenseNet169 
achieved an accuracy of 94.40%, MobileNetV2 
attained an accuracy of 97.60%, and ResNet50V2 
achieved an accuracy of 98.95%. These results 
demonstrate that ResNet50V2 outperforms other 
SOTA models in waste classification. 

Jin et al. [12] proposed an improved version of 
MobileNetV2, which increased classification accuracy 
by utilising transfer learning. Principal component 
analysis (PCA) is used to reduce the dimensionality of 
the last fully connected layer. This enables real-time 
operation of the model on an edge device. The 
experimental results show that their proposed model 
achieved an accuracy of 90.7% on "Huawei Cloud" 
datasets. It has an average inference time of 600 ms 
on the Raspberry Pi 4B microprocessor. 

The dataset used to train a model has a significant 
impact on its performance in waste classification. A 
particular dataset has become a commonly used 
benchmark for this task [13]. However, many studies 
used different datasets to compare the performance of 
models. Kumsetty et al. [14] introduced the TrashBox 
dataset, which contains 17,785 images across seven 
different classes, including medical and e-waste 
categories. They trained multiple models on the new 
TrashBox dataset with transfer learning. They 
achieved an accuracy of 98.47% on ResNet-101. 

Transfer learning has been widely used in waste 
classification tasks to overcome the gap in limited 
training data. Several studies have demonstrated the 
effectiveness of fine-tuning pre-trained models rather 
than training them from scratch [15], [16]. Risfendra et 
al. [17] trained an EfficientNet-B0 model with transfer 
learning. They train with a dataset that contains 7014 
images with six different classes. The model achieved 
an accuracy of 91.94%, a precision of 92.10%, a recall 
of 91.94% and an F1-score of 91.96%.  

There are several limitations in the current deep 
learning techniques for waste classification despite 
their good performance. The characteristics of the 
dataset can impact the model's performance in real-
world scenarios [11]. Langley et al. [18] identify 
significant gaps in practical deployment because most 
existing deep-learning studies for waste sorting are 
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developed in controlled laboratory environments rather 
than those involving contaminated material streams. 

B. Lightweight Neural Network Architectures  

The use of lightweight models is due to the limited 
resources that can be utilised in an environment. Thus, 
the lightweight model has been the focus of research 
aimed at developing even lighter models. These 
models offer competitive performance while 
minimising computational resources.  

MobileNet is one of the most widely used models in 
the lightweight family. The MobileNet introduced 
depthwise separable convolutions to reduce 
computation costs [19]. MobileNetV2 has further 
improved its efficiency by utilising inverted residual 
blocks and linear bottlenecks. It can achieve a 
competitive accuracy with a large model [20]. Wang et 
al. [21] proposed a Dense-MobileNet model by 
implementing DenseNet inside MobileNet. The 
experiment results showed that Dense-MobileNet can 
achieve higher accuracy than MobileNet while 
requiring fewer parameters and computational costs. 

EfficientNet has gained attention due to its scaling 
methods, which optimise the network depth, width, and 
resolution [22]. This model achieved good accuracy 
with fewer parameters compared to traditional 
architecture. The ViT has emerged as an alternative to 
CNN, but it requires substantial computational 
resources and a large dataset for training. A lightweight 
ViT, ViT Small, is developed by reducing the number 
of attention heads and embedding dimensions [23]. 
However, the performance on the smaller dataset is 
poor. ShuffleNet used group convolutions and channel 
shuffle operations to achieve good efficiency [24].  

The depth-wise separable convolutions reduce 
computational complexity by separating spatial and 
channel-wise operations [26]. Knowledge distillation 
allows smaller models to learn from larger teacher 
networks [27]. Quantisation and pruning techniques 
can further reduce model size and computational 
requirements, but they can also degrade model 
performance [28]. Lightweight neural network 
architectures become computationally efficient mainly 
by reducing the number of parameters. This allows 
them to be deployed on devices with limited resources 
while maintaining competitive performance [21], [29]. 
However, the efficiency gained by reducing 
parameters can worsen the model's performance [30]. 
The challenge is finding the right balance between 
computational efficiency and classification accuracy. 

Several challenges remain despite the lightweight 
model demonstrating promising results. The lack of 
standardised benchmarks and protocols can make 
direct comparisons with different approaches 
misleading [31]. The field of lightweight models faces 
major inconsistencies in its methods. Many studies 
employ various training procedures, learning rates, 
and evaluation protocols. This makes results 
reproduce and lead to misleading comparisons, even 
with promising model performance [32], [30]. Table 1 
shows the summary of waste classification and 
lightweight model studies from literature review. 

 

TABLE 1.  Summary of Waste Classification and Lightweight 
Model Studies from Literature Review 

Study Model Dataset Accur
acy 

Key 
Contribu

tion 

Ahme
d et al. 
[11] 

ResNet5
0V2 

Kaggle 
"Garbage 
classifica
tion" 

98.95
% 

Best 
SOTA 
perform
ance in 
compari
son 
study 

Jin et 
al. [12] 

Improve
d 
MobileN
etV2 
with 
PCA 

"Huawei 
Cloud" 

90.7% Real-
time 
edge 
deploym
ent on 
Raspber
ry Pi 4B 

Kums
etty et 
al. [14] 

ResNet-
101 

TrashBo
x (17,785 
images, 
7 
classes) 

98.47
% 

Introduc
ed new 
dataset 
with 
medical 
and e-
waste 

Risfen
dra et 
al. [17] 

Efficient
Net-B0 

Custom 
(7,014 
images, 
6 
classes) 

91.94
% 

Transfer 
learning 
approac
h 

Wang 
et al. 
[21] 

Dense2-
MobileN
et 

Caltech 
datasets 

~96% ~50% 
fewer 
paramet
ers than 
MobileN
et 

 

III. METHODOLOGY  

This section explains the lightweight backbone 
model and addresses the research question. It also 
introduces a standardised benchmarking framework 
with comprehensive reproducibility measures. Figure 1 
shows flowchart of the experimental workflow. 

A. Backbone Model Architectures  

The experimental framework evaluates four 
different lightweight backbone architectures. Each 
model has a different architectural design. The 
selection encompasses a model with depthwise 
separable convolutions, MobileNet V3, a pure attention 
mechanisms model, ViT, a hybrid CNN-Transformer 
approaches model, EfficientFormer, and a channel 
shuffle operations model, ShuffleNet V2. All models 
were implemented using the timm library (version ≥ 

0.9) and PyTorch (version ≥ 2.1), with the classifier 
head removed and replaced with a task-specific linear 
layer through a custom GenericClassifier wrapper 
architecture. This architecture instantiates backbone 
models via factory functions and adapts them for six-
class waste classification. 
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FIGURE 1.  Flowchart of the experimental workflow 

 

MobileNet V3-Large employs depthwise separable 
convolutions with squeeze-and-excitation blocks. The 
model utilises hard-swish activation functions and 
implements neural architecture search-derived 
building blocks. The model was instantiated using 
mobilenetv3_large_100 configuration with global 
average pooling, accepting variable input channels 
while maintaining computational efficiency through 
inverted residual structures. 

ViT Small processes images as sequences of 
16×16 pixel patches. This model abandons 
convolutional operations entirely, employing multi-
head self-attention mechanisms across 12 transformer 
blocks with an embedding dimension of 384. The 
model uses ViT Small with a patch size of 16 and an 
input configuration of 224, utilising token-based global 
pooling, where the classification token aggregates 
spatial information across all patches. 

EfficientFormer represents a hybrid CNN-
Transformer model that combines the inductive biases 
of convolutional networks in early stages with the 
global modelling capacity of transformers in later 
stages. The model implements dimension-consistent 
design with 4D partition operations, enabling efficient 
mobile deployment while maintaining competitive 
performance. 

SHuffleNetV2 is optimised in deployment due to 
memory access costs [25]. It utilises channel shuffle 
operations to enable information to flow across feature 
channels while maintaining high computational 
efficiency. For non-RGB inputs, the initial convolutional 
layer was modified to accept variable input channels 
while preserving the 24-channel output dimension. 

All backbone models were validated for feature 
extraction by passing dummy inputs (1xCx224x224) 
through them. This process determined their output 
feature dimensions, which varied from 448 to 1280 
depending on the architecture. The task-specific 
classifier head was built as a single linear layer that 
converts the backbone's feature output into the 
number of target classes. 

The experimental framework maintained identical 
hyperparameters across all backbone models to 
ensure fair comparison. The selection of AdamW with 
a learning rate of 1×10-4 was based on its proven 
stability across diverse architectures. AdamW 
decoupled weight decay helps prevent overfitting on 
small datasets like TrashNet. The CosineAnnealingLR 
scheduler was chosen because it provides smooth 
learning rate decay without requiring architecture-
specific tuning. This standardised approach isolates 
architectural differences as the main cause of 
performance variations. This directly addresses the 
research question regarding the optimal selection of a 
lightweight backbone. 

 

B. Training Procedures  

All models were trained using identical training 
protocols and no hyperparameter tuning. Each model 
used a batch size of 32, an input resolution of 224×224 
pixels, and 100 epochs on an RTX 2080 Ti GPU. 
Adaptive Moment Estimation with Weight Decay 
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(AdamW) optimisation uses a learning rate of 1 × 10-4 
and weight decay of 1 × 10-4, with CosineAnnealingLR 
scheduling configured with a minimum learning rate 
value of 1×10-6. The scheduler updates the learning 
rate per batch rather than per epoch, providing fine-
grained learning rate decay throughout training. 
Standard cross-entropy loss was applied throughout 
all experiments. Model selection was performed based 
on validation accuracy, with the best-performing 
checkpoint saved for final evaluation.  

Augmentation methods differed for training, 
validation, and testing to maintain consistent 
evaluations. Training augmentations consisted of 
resizing to 224×224 pixels, random horizontal flip with 
a probability of 0.5, random vertical flip with a 
probability of 0.5, and random rotation within ±10 
degrees. All images underwent tensor conversion and 
normalisation using ImageNet statistics (mean=[0.485, 
0.456, 0.406], std=[0.229, 0.224, 0.225]). Validation 
and test sets received only resize and normalisation 
transformations to ensure consistent evaluation. 
Images were automatically converted to RGBA format 
before being converted to RGB to prevent 
preprocessing errors. 

The paper used 5-fold stratified cross-validation for 
robust evaluation and to reduce bias. The dataset was 
initially split 80-20, with a fixed 20% reserved for 
testing in all final evaluations. Cross-validation was 
applied only to the remaining 80% of the dataset. This 
maintained consistent class distributions across all 
folds through stratified splitting. Performance metrics 
were then gathered from all five folds, and the mean 
and standard deviation for each metric were reported.  

A random seed was fixed at 42 across all model 
evaluations using NumPy's random number generator 
for dataset-splitting operations. The MLflow tracking 
infrastructure captured comprehensive experimental 
metadata. Each experiment run was assigned a 
unique identifier, enabling precise reproduction and 
comparison. The logging system monitored training 
dynamics through per-batch gradient norms, learning 
rate schedules, and computational resource utilisation 
at each epoch. Performance artefacts were 
systematically preserved in multiple formats. The 
confusion matrices are saved in JSON, pickle and 
PNG format. Inference timing measurements were 
conducted on the test dataset with CUDA 
synchronisation to ensure accurate latency 
assessment. 

Inference timing measurements followed a strict 
protocol, excluding data loading time to focus solely on 
the model's forward pass execution. Measurements 
were then aggregated across the entire test dataset to 
calculate the average inference time per sample. 
Systematic memory management protocols were 
implemented after each experimental run to prevent 
memory overflow during consecutive experiments. 
This was followed by garbage collection and CUDA 
cache clearing to ensure clean memory states 
between all 20 experimental runs. 

 

IV. EXPERIMENT, RESULTS AND DISCUSSION  

A. Dataset  

Experiments utilised the TrashNet dataset [33], 
which contains 2,527 images across six waste 
categories with significant class imbalance. Class 
distribution includes 594 papers, 501 glass, 482 
plastic, 410 metal, 403 cardboard, and 137 trash 
images, with the trash class notably underrepresented.  

The dataset was partitioned using an 80-20 split for 
cross-validation and test sets, respectively. To ensure 
reproducibility, the random seed was fixed at 42 using 
NumPy's random number generator. The test set 
contained 505 images, while the remaining 2,022 
images were used for 5-fold stratified cross-validation. 
This process yielded approximately 1,621 training 
images and 405 validation images per fold, with exact 
numbers varying slightly due to stratification 
requirements. 

B. Model Setting  

The four evaluated backbone models have smaller 
parameters that directly impact computational 
efficiency. ShuffleNet V2 has the least parameter 
models with 1.26M parameters. MobileNet V3-Large 
contains 4.21M parameters, while EfficientFormer 
utilises 11.39M parameters. The ViT Small requires 
21.67 million parameters, making it the largest model 
in comparison. All models were adapted for six-class 
waste classification by replacing the original classifier 
head with a linear layer mapping from each backbone's 
feature dimension to the target number of classes. 

C. Evaluation Metrics  

Model performance was assessed using 
classification accuracy as the primary metric, 
supplemented by accuracy, precision, recall, and F1-
score to provide a comprehensive evaluation of 
classification performance. Computational efficiency 
was measured using the total parameter count and the 
average inference time per sample. This inference 
time was calculated on the test dataset with CUDA 
synchronisation to ensure timing accuracy. All 
evaluation procedures were logged using MLflow to 
ensure comprehensive tracking of experimental 
conditions and results. 

D. Results and Discussion  

Repeated-measures ANOVA on 5-fold cross-
validation results revealed statistically significant 
differences in mean accuracy scores across the four 
lightweight backbone models. Table 2 presents the 
ANOVA results. 

TABLE 2.  Repeated-measures ANOVA Results 

Source F-Value Num DF Den DF p-value 

Model 15.4654 3 12 0.0002 

 

The significant ANOVA result with p = 0.0002 (< 
0.05) warranted post-hoc pairwise comparisons using 
the Bonferroni correction to control for multiple testing. 
Table 3 presents the complete pairwise comparison 
results. 
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TABLE 3.  Post-Hoc Pairwise T-Test Results with Bonferroni 
Correction 

Model 1 Model 2 T-
statistic 

p 
(uncorre

cted) 

p 
(Bonferr

oni) 

EfficientF
ormer 

MobileNet 
V3 Large 

2.868 0.046 0.273 

EfficientF
ormer  

ShuffleNe
t V2 

2.813 0.048 0.289 

EfficientF
ormer  

ViT Small -2.929 0.043 0.257 

MobileNet 
V3 Large 

ShuffleNe
t V2 

0 1 1 

MobileNet 
V3 Large 

ViT Small -6.096 0.004 0.022 

ShuffleNe
t V2 

ViT Small -6.437 0.003 0.018 

Post-hoc analysis with Bonferroni correction 
revealed only two statistically significant pairwise 
differences between MobileNet V3-Large vs ViT-Small 
(p = 0.022) and ShuffleNet V2 vs ViT-Small (p = 0.018). 
While other comparisons showed trends before 
correction (e.g., EfficientFormer vs ShuffleNet V2, p = 
0.048), these did not survive multiple testing 
adjustment. 

The experimental evaluation reveals distinct 
performance characteristics across the four lightweight 
backbone models. Table 4 presents the 
comprehensive performance metrics for all models. 

TABLE 4.  Model Performance Summary 

Model 
Accur

acy 
Precis

ion 
Rec
all 

F1-
Sco
re 

Parame
ters (M) 

Infere
nce 

Time 
(ms) 

ViT Small 
0.815 
± 
0.0074 

0.818 
± 
0.007 

0.81
6 ± 
0.00
7 

0.81
6 ± 
0.00
7 

21.67 
1.15 ± 
0.12 

EfficientFo
rmer L1 

0.799 
± 
0.0099 

0.804 
± 
0.009 

0.80
0 ± 
0.01
0 

0.80
0 ± 
0.01
0 

11.39 
1.14 ± 
0.10 

ShuffleNet 
V2 X1 

0.768 
± 
0.0161 

0.773 
± 
0.016 

0.76
8 ± 
0.01
6 

0.76
9 ± 
0.01
6 

1.26 
1.09 ± 
0.03 

MobileNet 
V3 Large 

0.768 
± 
0.0202 

0.774 
± 
0.018 

0.76
8 ± 
0.02
0 

0.76
9 ± 
0.01
9 

4.21 
0.72 ± 
0.06 

 

EfficientFormer has the second-highest accuracy at 
0.799. The model performed competitively with 
11.39M parameters, which is half the number of ViT 
Small. However, its inference times remained 
comparable at 1.14 ms per sample on RTX 2080 Ti 
hardware. 

The evaluation shows that ViT Small achieved the 
highest accuracy at 0.815% but required 21.67 million 
parameters. In contrast, efficiency-focused models, 
such as MobileNet V3 Large and ShuffleNet V2, 
achieved comparable accuracy levels of 0.768 and 
0.768, respectively, with significantly fewer parameters. 

Computational efficiency analysis reveals that 
MobileNet V3 Large achieved superior computational 
efficiency on RTX 2080 Ti hardware, with an inference 
time of 0.72 ms, while having 4.21 million parameters. 
It outperforms ShuffleNet V2, which achieves 1.09ms 
with 1.26M parameters. This 34% speed improvement 
challenges conventional assumptions about the 
efficiency of parameter count. 

Cross-validation results revealed varying training 
stability among models. MobileNet V3 Large has the 
highest variance with σ = 2.02%, indicating less robust 
training dynamics. EfficientFormer had the second 
highest variance with σ = 0.99%. This suggests that 
EfficientFormer has lower sensitivity to data 
distribution, making it a good choice for comparative 
study. Table 5 shows the model performance rankings 
on each category. 

TABLE 5.  Model Performance Rankings 

Metric 
Best 

Model 
Second Third Fourth 

Accurac
y 

ViT-
Small 
(0.815) 

EfficientFor
mer-L1 
(0.799) 

MobileNet 
V3-Large 
(0.768) 

Shuffle
Net V2 
(0.768) 

Inferenc
e Speed 

MobileN
et V3-
Large 
(0.72ms
) 

ShuffleNet 
V2 (1.09ms) 

EfficientFor
mer-L1 
(1.14ms) 

ViT-
Small 
(1.15ms
) 

Paramet
ers 

Shuffle
Net V2 
(1.26M) 

MobileNet 
V3-Large 
(4.21M) 

EfficientFor
mer-L1 
(11.39M) 

ViT-
Small 
(21.67M
) 

Overall 
Trade-off 

MobileN
et V3-
Large 

EfficientFor
mer-L1 

ViT-Small Shuffle
Net V2 

Confusion Matrix 

The confusion matrices show distinct classification 
patterns among the lightweight models evaluated 
during 5-fold cross-validation. Figure 2 shows the ViT 
Small Confusion Matrix for each fold. 

 

FIGURE 2.  ViT Small Confusion Matrix for each fold 
 

The ViT Small confusion matrices show the 
strongest classification performance across all five 
folds. The intense and consistent diagonal patterns in 
these matrices visually confirm ViT Small's reported 
highest accuracy of 0.815. Figure 3 shows the 
Efficientformer Confusion Matrix for each fold. 

 

 

FIGURE 3.  Efficientformer Confusion Matrix for each fold. 
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EfficientFormer exhibits comparable but slightly 
reduced diagonal intensity compared to ViT Small 
across all five folds. While the diagonal elements are 
strong, there is marginally more off-diagonal confusion 
visible compared to ViT Small, which corresponds to 
its slightly lower accuracy of 0.799. The matrices 
demonstrate that EfficientFormer maintains reliable 
classification boundaries between waste categories. 
Figure 4 shows the ShufflenetV2 Confusion Matrix for 
each fold. 

 

FIGURE 4.  ShufflenetV2 Confusion Matrix for each fold. 

ShuffleNet V2 displays more variation in 
classification patterns across folds compared to the 
transformer-based models. Figure 5 shows the 
MobileNetV3 Large Confusion Matrix for each fold. 

 

 

FIGURE 5.  MobileNetV3 Large Confusion Matrix for each 
fold 

MobileNet V3 Large demonstrates consistent 
confusion matrix patterns across all five folds, with a 
stable diagonal intensity that reflects its reported 
accuracy of 0.768. The consistency between folds 
visually confirms that MobileNet V3 Large has a 
standard deviation of 2.02%. 

Discussion 

Comparing across all four models, ViT Small 
demonstrated the strongest diagonal patterns, with the 
highest classification confidence, corresponding to its 
superior accuracy of 0.815. EfficientFormer has its 
competitive edge with an accuracy of 0.799. 
ShuffleNet V2 exhibits the most scattered confusion 
patterns, characterised by increased off-diagonal 
elements, which aligns with its 0.768 accuracy. 
MobileNet V3 Large maintained in between the model 
with moderate diagonal strength but variable 
consistency across folds. 

Visual analysis shows that while MobileNet V3 
Large and ShuffleNet V2 achieve similar accuracy, 
their confusion patterns are very different. MobileNet 
V3 Large maintains strong classification boundaries, 
but its performance varies. ShuffleNet V2 has more 
consistent patterns with less scatter in misclassification. 
This evidence supports the finding that ShuffleNet V2 
offers superior training stability with lower 
computational efficiency compared to MobileNet V3 
Large while maintaining comparable overall accuracy. 

The precision-recall balance across all models, with 
precision ranging from 0.773 to 0.818 and recall 
ranging from 0.768 to 0.816. These values indicate that 
no model exhibits a bias toward any specific class 
despite the dataset's class imbalance. 

ViT Small provides the highest classification 
performance for applications where computational 
resources are less constrained. However, the 
increased parameter count and moderate training 
variance require careful consideration for research 
applications that require consistency. 

EfficientFormer provides an effective trade-off 
between accuracy and computational efficiency. The 
hybrid model has competitive performance with 
moderate resource requirements. This performance 
makes it suitable for controlled experimental scenarios 
with reasonable computational budgets. 

MobileNet V3 Large can be the optimal choice for 
applications prioritising inference speed and 
computational efficiency on RTX 2080 Ti hardware. It 
has superior inference performance, but the training is 
inconsistent, making it suitable for experimental 
settings where speed is critical. The combination of 
competitive accuracy at 0.768 with superior inference 
speed at 0.72 ms positions this model as the optimal 
balance point for controlled comparative analysis, 
where speed is prioritised over training consistency. 

The results show that ShuffleNet V2 achieves the 
lowest parameter count while maintaining moderate 
efficiency on RTX 2080 Ti hardware. This finding 
shows the importance of benchmarking over 
theoretical parameter counting when selecting models 
for architectural comparison. 

A critical insight from computational efficiency 
results is that MobileNet V3 Large has superior 
inference performance, even with a moderate number 
of parameters. This demonstrates that the model is 
taking full advantage of the RTX 2080 Ti hardware with 
faster inference performance. This finding suggests 
that, rather than focusing on the parameter, it is more 
effective to design the model based on the specific 
hardware used. 

V. CONCLUSION  

This paper establishes a comprehensive and 
reproducible benchmark for lightweight neural network 
models in waste classification tasks, providing 
comparative guidance for researchers developing 
automated waste classification systems [34].  

This benchmarking study has limitations that 
contextualize the findings. TrashNet's limited size and 
controlled conditions may not represent real-world 
waste streams with contaminated. The evaluation on 
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RTX 2080 Ti hardware may not generalize to edge 
devices or newer architectures with different memory 
hierarchies. Additionally, the standardized training 
protocol, while ensuring fair comparison, may not 
reveal each architecture's optimal performance under 
architecture-specific tuning. The six-class also 
simplifies modern recycling requirements. These 
constraints position the benchmarks as research 
baselines rather than deployment-ready solutions 

Future work should extend this comparative 
benchmarking framework to evaluate additional 
architectural and training methodologies under the 
established standardised protocols. Investigation of 
knowledge distillation techniques and ensemble 
methods could enhance accuracy while maintaining 
computational efficiency. Additionally, extending the 
evaluation to diverse hardware platforms, including 
edge computing devices, would provide broader 
validation of the comparative relationships identified 
through this controlled experimental analysis on the 
RTX 2080 TI 11GB rather than the challenging visual 
conditions encountered in practical waste sorting 
environments. 

VI. DATA AND CODE AVAILABILITY  

The TrashNet dataset used in this paper is publicly 
available at https://github.com/garythung/trashnet. 
The complete source code, experimental 
configurations, and trained model checkpoints are 
available at https://github.com/lewbei/A-Reproducible-
Benchmark-of-AdamW-Augmented-Lightweight-
Models-for-Trash-Classification. All experimental 
results can be reproduced using the provided MLflow 
configurations and random seed settings. 
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