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Abstract — Road traffic accidents continue to pose serious the United Nations proclaimed the Decade of Action for
global public health and economic challenges. In Malaysia Road Safety 2021-2030, with an ambitious goal of
alone, traffic-related incidents caused an estimated RM25 reducing global road traffic deaths and injuries by 50% by
billion in losses in 2023. This study presents a two-part 2030 [1,3]. These figures highlight the persistent gap

machine learning framework: Part A focuses on predicting  petween policy aspirations and the realities of global traffic
accident severity, while Part B uses these predictions to safety.

forecast high-risk traffic zones through spatial and

temporal analysis. Accident data from 2023 was selected In Malaysia, the burden of RTAs remains significant.
from the UK Road Safety dataset to reflect current traffic ~ According to the Malaysian Institute of Road Safety
patterns, infrastructure, and enforcement efforts. Five Research (MIROS), the economic loss per road fatality is
classifiers, Logistic Regression, Decision Tree, Random  estimated at RM3.12 million under the Value of Statistical
Forest, XGBoost, and K-Nearest Neighbors, were trained | ife (VSL) framework [4,5]. Recent government statistics
and evaluated. A stacking ensemble combining the top indicate that road accidents accounted for RM25 billion in
three models was constructed to enhan_ce predictive  |555es in 2023, equivalent to approximately 1.4% of the
accuracy. The models were assessed using accuracy, pational GDP [6]. With an average of 18 deaths occurring

z:ecision, ;fca"’ti"% F1-tsc<:e, wi?_rzs_u!zls slholwingf_that daily, RTAs pose not only a severe public health threat but
e ensemble method outperformed Individual classitiers. 5.5, 5 gypstantial economic burden on the nation’s

The findings demonstrate the potential of ensemble .
learning ingidentifying high-risk I:;ones and supporting development trajectory.
proactive road safety planning. The persistence of these losses can be attributed to a
complex interplay of factors, including driver behavior,
Keywords—  Road Safety, Accident Severity Prediction, infrastructure design, vehicle safety standards, and
Ensemble Learning, Machine Learning, Traffic Risk Mapping,  gnyironmental conditions [7,8]. Traditional statistical
Classification Models. methods often struggle to capture the nonlinear and high-
I. I.INTRODUCTION dimensional interactions among these variables, limiting
] . . their ability to generate reliable predictive insights. Recent
Ro_ad traffic accidents (RTAs) remain one ofthe most  gtudies demonstrate that machine learning (ML)
pressing global health and safety issues. The World  gpproaches offer a more robust alternative, with the
Health Organization (WHO) reports that over 1.19  capacity to model complex interdependencies and uncover
million people die annually, with an additional 20-50  |atent patterns in traffic data, thereby enabling proactive
million sustaining injuries of varying severity [1]. Despite  and adaptive safety interventions [8—10]. The integration of
improvements in vehicle technologies and infrastructure, ML into traffic risk modeling thus represents a promising

RTAs continue to be the eighth leading cause of death  ayenue for advancing both predictive accuracy and policy
worldwide and are projected to rise to the seventh by  rglevance in road safety research.

2030 without intensified interventions [1,2]. In response,
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This study proposes a machine learning-based
framework for forecasting high-risk traffic zones using
the 2023 UK Road Safety dataset. The dataset was
deliberately scoped to a single year to ensure
alignment with current infrastructure, enforcement
trends, and behavioral shifts following the COVID-19
pandemic. As noted by Reddy et al. (2024), the use of
recent data enhances relevance and decision-making
accuracy in real-time traffic safety analytics [4].
However, the dataset exhibits significant class
imbalance, with most accidents classified as Slight
and relatively few classified as Fatal or Serious. This
imbalance presents a technical challenge for multi-
class classification models aiming to deliver balanced

predictive performance across severity levels.

To address these limitations, the study is structured
into two phases. Part A focuses on accident severity
prediction, where five classifiers including Logistic
Regression, Decision Tree, Random Forest,
XGBoost, and K-Nearest Neighbors, are trained and
evaluated. A stacking ensemble model is then
constructed by combining the top-performing
classifiers to enhance overall accuracy and sensitivity
to minority classes. Part B extends the analysis
through spatial and temporal forecasting, using
severity probabilities to identify high-risk zones via
heatmaps and grid-based mapping. The contributions
of this paper are threefold: (1) a comparative analysis
of five machine learning models using a single-year,
real-world accident dataset; (2) the development of a
stacking ensemble to address class imbalance and
improve predictive performance; and (3) the
application of geospatial techniques to forecast high-
risk areas and support data-driven road safety
planning.

Road traffic accident severity prediction has seen a
marked shift from traditional statistical models to more
powerful machine learning (ML) approaches. Early
methods like logistic regression provided interpretability
but struggled with complex, high-dimensional datasets.

RELATED WORKS
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A prominent improvement has been achieved using
tree-based models such as Random Forest (RF) and
XGBoost, which handle nonlinearity and feature
interactions effectively. For example, a study in Saudi
Arabia demonstrated that XGBoost outperformed RF and
logistic regression using accident data from Qassim
Province, achieving up to 94% accuracy and an AUC of
0.98 in binary classification [11]. Another balanced and
unbalanced dataset study reported that stacking multiple
base models with logistic regression as the meta-learner
achieved an AUC of 96.92%, outperforming individual
classifiers [12].

Ensemble learning, especially stacking, has been
explored extensively. A two-layer stacking model
combining RF, AdaBoost, and GBDT (Gradient Boosting
Decision Trees) effectively predicted crash injury severity
[13]. Recent efforts also investigated stacking strategies in
ensemble frameworks for crash frequency forecasting,
demonstrating superior out-of-sample predictive
performance over parametric models [14]. Additional work
reinforced the robustness of two-layer stacking models in
predicting traffic accident severity [15].

Some studies compared tree-based and ensemble
regression approaches for severity prediction. One such
analysis revealed that Random Forest achieved
exceptional results, with accuracy of 0.974, precision 0.954,
recall 0.930, and F1 score 0.942, outperforming other
models like AdaBoost and Gradient Boosting [7].

. METHODOLOGY

This study adopts a two-phase methodology aimed at
predicting traffic accident severity and identifying high-
risk spatial zones using machine learning techniques.
Phase A focuses on developing supervised
classification models for accident severity prediction,
while Phase B leverages model probability outputs to
generate severity-based heatmaps and spatial risk
maps. The complete workflow is illustrated in Fig. 1.
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Figure. 1. Workflow of the proposed methodology for accident severity prediction and spatial risk mapping.
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1) Dataset

The Road Safety Data — Collisions 2023 dataset,
published by the UK Department for Transport [9],
was utilized. It contains 104,258 records with 37
attributes, covering spatial, temporal, environmental,

and

accident-related features. After preprocessing,

the dataset was refined to 19,926 clean records and
22 predictive attributes (Table I). Key features include
accident location (longitude/latitude), number of
vehicles involved, timestamp, weather conditions,
light conditions, and road surface type.

Table 1. Attribute description.

No. Attribute Description

1 Longitude Longitude of the location of an accident
scene.

2 Latitude Latitude of the location of an accident
scene.

3 Vehicles Number of vehicles involved in the accident

4 Date Date of the accident.

5 Day of Week Day of the week that accident occurred.

6 Time Timestamp of the accident.

7 Weather Weather condition at the time of the
accident.

8 Light Condition  Light conditions at the time of the accident.

9 Road Surface Road Surface at the time of the accident.

10 Urban/ Rural Area where the accident occurred.

Area

2) Data Preprocessing

To ensure data quality and improve model
performance, several preprocessing steps were
performed:

a)

b)

d)

Missing and Duplicate Values: Initial inspection
revealed several columns with missing entries,
including accident index, accident reference, and
date. In total, 3,303 rows with missing critical
identifiers and 61,122 rows missing date
information were removed, reducing the dataset
from 104,258 to 37,863 instances. Additionally,
duplicate entries were removed to maintain data
integrity.

Feature Selection: From the original 37 features,
non-predictive or redundant attributes such as
accident_index, accident reference, and
coordinate references were excluded. After feature
selection, the dataset was reduced to 22 relevant
attributes, retaining only those with predictive or
spatial significance.

Outlier Removal: Outliers in selected numerical
features such as number_of vehicles, speed_limit,
and fotal trans_amt, were detected using the
Interquartile Range (IQR) method. The IQR is
defined in Eq. (1)

IQR = Q3 —Q1 @)
Acceptable values were bound by:
[Q1 — 1.5 X IQR,Q3 + 1.5 X IQR] 2)

This filtering removed 19,907 extreme rows,
reducing the dataset from 39,833 to 19,926
clean records.

Feature Scaling: To standardize the scale of
numeric variables and improve model performance,
Min- Max normalization was applied. Each value
was transformed using Eq. (3):

Xscaled = X — Xmin/Xmax — Xmin (3)

E-ISSN: 2682-860X
This resolution ensures that all features contribute
equally during model training. The original speed
limit values were preserved in a separate column
for interpretability during post-analysis.

3) Exploratory Data Analysis

51

Exploratory Data Analysis (EDA) was conducted to gain
insights into the distribution, frequency, and characteristics
of traffic accidents in the dataset. The primary focus was
on understanding accident severity distribution, temporal
patterns, environmental factors, and spatial trends.

a) Severity Distribution: The dataset exhibits a
severe class imbalance, with the majority of cases
categorized under Slight severity as. Fig.2
showed Serious and Fatal cases occur far less
frequently, which aligns with real-world accident
statistics. This imbalance poses a significant
challenge for classification models, particularly
in accurately identifying high-risk events.
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Figure. 2. Accident severity distribution.

b) Temporal Trends: Accidents were analyzed
across months, days of the week, and time
intervals. Fig 3. lllustrated that higher accident
frequencies were observed during weekdays,
particularly during morning and evening rush
hours, suggesting a strong link to commuting
activity. Month-wise trends revealed notable
seasonal fluctuations, which may reflect
varying traffic volumes or weather conditions.
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Figure 3. Monthly distribution of fatal traffic crashes
(Severity = 1).

¢) Environmental Conditions: Variables such as
weather_conditions,  light_conditions, and
road_surface_conditions were examined for
correlations with accident severity. A higher
proportion of Serious and Fatal accidents
occurred under poor lighting or wet road
conditions, indicating the influence of
environmental risk factors on accident
outcomes.

d) Geospatial Patterns: Using the longitude and
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latitude attributes, accident locations were
visualized to identify spatial clusters. Dense
accident hotspots were predominantly
located in urban centers, consistent with
areas of high traffic flow and population
density. These visualizations supported later
development of severity heatmaps and grid-
based spatial risk maps.

4) Individual Models Training

To establish robust predictive baselines, five widely
used supervised machine learning classifiers were
implemented: Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), Extreme Gradient Boosting
(XGB), and K-Nearest Neighbors (KNN). These models
were chosen to capture a broad spectrum of learning
paradigms, ranging from linear (LR) to non-linear tree-
based (DT, RF, XGB) and instance-based learning
(KNN).

The dataset was partitioned into training and testing
subsets using an 80/20 stratified split, ensuring the
preservation of the original class distribution. To mitigate
the impact of class imbalance, model training pipelines
incorporated a ColumnTransformer for numerical
feature scaling and categorical one-hot encoding,
followed by a hybrid resampling strategy combining
Synthetic Minority Over-sampling Technique (SMOTE)
with Random Under-Sampling (RUS). This ensured an
enhanced representation of minority classes without
excessive duplication of synthetic samples.

Hyperparameter optimization was conducted using
both  GridSearchCV and RandomizedSearchCV,
applying 3-5 fold cross-validation depending on model
complexity. This dual strategy balanced exhaustive
search with computational efficiency. Label encoding
was selectively applied for algorithms requiring integer-
encoded labels (e.g., XGBoost)..

5) Stacking Model Training

Building on the performance of individual models, a
stacking ensemble architecture was designed to exploit
model diversity and enhance generalization. Logistic
Regression, Random Forest, and XGBoost were
selected as base learners due to their complementary
strengths in linear discrimination, bagging-based
variance reduction, and boosting-based bias correction.

The meta-learner was implemented using Gradient
Boosting, trained on the class probability outputs of the
base models. A two-stage training approach was
employed: base learners were trained on stratified folds,
and the meta-learner was trained exclusively on out-of-
fold predictions, thereby preventing data leakage and
ensuring an unbiased estimation of ensemble
performance.

This hierarchical architecture enables the ensemble
to capture heterogeneous decision boundaries across
classifiers, ultimately improving robustness against
class imbalance and enhancing sensitivity to rare but
critical accident severity classes.

6) Spatial Analysis

a) Heatmap Visualization: To identify localized accident
risk, severity probabilities derived from the predictive
models were spatially mapped using the Folium
heatmap library. Each accident record was weighted by
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its predicted severity probability, thereby emphasizing
regions with higher concentrations of severe accident
likelihoods. This probabilistic weighting allowed the
visualization to highlight urban hotspots where severe
accidents are more prevalent, aligning spatial patterns with
population density and traffic congestion levels.

b) Grid-Based Aggregation: To facilitate regional-level
analysis and mitigate the noise inherent in individual
accident locations, a grid-based spatial aggregation
approach was applied. Geographic coordinates (latitude,
longitude) were rounded to 0.01° precision, corresponding
to approximately 1.1 km x 1.1 km cells. For each cell, the
mean severity probability was computed to represent
localized accident risk intensity. These aggregated scores
were visualized as a choropleth risk map using a
sequential YIOrRd color gradient, where darker shades
denoted higher predicted risk. This transformation enabled
systematic hotspot detection and comparative assessment
across urban and rural zones.

¢) Composite Risk Score: To capture both the frequency of
accidents and their predicted severity, a composite spatial
risk score was formulated (Eq. 4).

Composite Score = 0.7 X Avg Severity + 0.3 X
ident C t
(A cciaen oun ) (4)

This dual-factor measure integrates the number of
incidents within a grid cell and their associated severity
probabilities, providing a holistic indicator of regional
accident risk. The composite index not only highlights
areas with frequent accidents but also prioritizes regions
where the potential consequences are more severe,
thereby offering actionable insights for resource allocation,
traffic enforcement, and urban planning interventions

7) Model Evaluation

Model performance was assessed using four key
metrics: Accuracy, Precision, Recall, F1 Score and
Confusion Matrix. These metrics offer a balanced view of
overall performance and the model's sensitivity to critical
cases. Accuracy measures the proportion of correctly
predicted samples, Precision, and Recall, particularly for
the Fatal class, highlights how well the model detects
severe incidents. F1-Score balances precision and recall.
Lastly, The Confusion Matrix was used to visualize the
classification results and reveal misclassifications across
severity levels.

Max Count

On severe outcomes, a composite severity
probability was calculated using Eq. (5) by summing the
probabilities of the Fatal and Serious classes:

Predicted Severity Probability = P(Fatal) +
P(Serious) 5)

Accidents with a predicted severity probability greater
than or equal to 0.3391 were flagged as high-risk. This
threshold was determined based on model calibration
and adjusted to balance sensitivity and specificity. Two
new fields, predicted _severity prob and a binary
high_risk indicator, were added to the dataset for
subsequent analysis.The average severity probability
across the dataset was also computed as a baseline
indicator of overall risk is define in Eq. (6):

_ Pratan t Pserious1t "t Prataint Pseriousn

n (6)

avg
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IV. RESULTS AND DISCUSSION

1) Spatial Distribution of Predicted Accident Severity

The spatial analysis of predicted accident severity
revealed distinct geographic patterns when visualized
using severity-weighted heatmaps. In Figure 4a, London
stands out as the most intense hotspot, characterized by
deep red clusters that highlight consistently high
predicted severity. This concentration is likely driven by
the city’s dense traffic networks, high vehicle volumes,
and complex road structures that amplify the risk of
serious collisions.

Beyond the capital, additional clusters emerged in
regional urban centers such as Manchester and
Birmingham (Figures 4b—4c). These zones, represented
by orange to yellow gradients, indicate moderate-to-high
severity levels. The patterns in these cities suggest a
strong influence of high-speed routes and regional
intersections that increase the likelihood of severe
outcomes.

E-ISSN: 2682-860X
At a finer spatial scale, localized “silent risk zones” were
detected in smaller towns such as Lincoln and
Gainsborough (Figures 4d—4e). Although these areas
report fewer accidents in terms of frequency, the model
assigns them elevated severity probabilities. This finding
underscores the value of probabilistic mapping, as such
regions might otherwise remain overlooked in traditional
frequency-based analyses.

By contrast, rural and less densely populated areas
such as Watchet and Witham displayed predominantly blue
and green zones, signifying lower predicted severity. These
patterns likely reflect reduced traffic intensity and simpler
road structures, although the limited availability of training
data in rural regions may also affect the model’s predictive
confidence.

Overall, the combined spatial heatmap demonstrates
that severity-based risk assessment can effectively
highlight both established urban hotspots and emerging
high-risk pockets. This geospatial perspective provides
actionable insights for policymakers, supporting targeted
interventions such as infrastructure upgrades, dynamic
traffic regulations, and localized road safety campaigns.
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Figure 4. Spatial distribution of predicted accident severity across the UK.

(a) London, showing the most intense severity hotspots;
(b) Manchester, highlighting moderate-to-high severity clusters;
(c) Birmingham, with regionally concentrated risk zones;

(d) Lincoln, and (e) Gainsborough, illustrating localized “silent risk zones” with elevated severity despite lower accident frequency;
(f) Severity is visualized using a probabilistic heatmap, where red indicates high predicted severity (Fatal + Serious), while blue-green

represents lower predicted severity.

53



Vol 7 No 3 (2025)

2) Grid-Based Aggregation for Localized Risk
Detection

To uncover structured spatial patterns beyond
individual accident points, predicted severity
probabilities were aggregated into uniform 0.01° grid
cells (=1.1 km?). Each cell's average severity was
mapped using a sequential yellow-to-red colormap,
transforming scattered events into a coherent spatial
framework. This grid-based approach highlights both
concentrated and diffuse high-risk zones, with deep-
red clusters around urban Birmingham, transitional
orangel/yellow cells in suburban corridors, and lighter
shades across rural areas. The resulting visualization
(Figure 5.27) provides a clearer basis for identifying
persistent accident hotspots and prioritizing localized
safety interventions.

Figure 5. Grid map of urban Birmingham surrounded by red,

orange and yellow rectangles.

Beyond enhancing visual clarity, the grid-based
framework increases actionability by quantifying
accident risk at a micro-geographic scale. This makes
the approach particularly valuable for policymakers,
urban planners, insurers, and smart city stakeholders,
who can use the results to prioritize high-severity
zones for targeted interventions. Practical applications
include deploying traffic-calming measures in red-zone
cells, prioritizing infrastructure upgrades in high-risk
areas, dynamically adjusting insurance premiums, and
allocating emergency response resources more
efficiently.
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Figure 6: Composite risk score.

A key innovation is the introduction of a composite
risk score (Figure 6), which integrates both severity
probability (70%) and accident frequency (30%). This
weighting ensures that even locations with rare but
potentially catastrophic incidents are flagged as
critical, preventing reliance on frequency alone. The
top 10 highest-risk cells, all with severity probabilities
near 1.0 despite low accident counts, underscore the
model’s sensitivity to silent but high-impact risks.
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Together, the grid-based maps and composite scoring
system provide a dual-layered decision support tool:
the maps highlight broader spatial risk patterns, while
the scores pinpoint micro-locations requiring
immediate attention. This duality balances macro-level
insight with micro-level prioritization, offering a
practical pathway toward proactive, data-driven road
safety strategies. Moreover, because the method does
not depend on fixed administrative boundaries, it
remains scalable across different jurisdictions and
adaptable to diverse urban and regional contexts.

3) Risk Trend for Top 3 Zones

To complement spatial risk mapping, this section
examines the temporal evolution of accident severity
across grid zones. Severity probabilities predicted by
the stacking ensemble were aggregated monthly and
annually at a 0.1° grid resolution, enabling structured

« tracking of risk fluctuations over time. A pivot table was

used to visualize monthly severity trends, and the three
highest-risk grids (by average severity) were selected
for deeper analysis.

The resulting trends (Figure 7) reveal that accident
severity is strongly influenced by seasonal factors
rather than being randomly distributed. Peaks are
observed in winter months (December—January), likely

1 due to adverse weather and reduced daylight, while

additional spikes in summer (July—August) suggest
links to increased travel, tourism, and congestion.
Importantly, each zone displays distinct temporal
dynamics, highlighting the location-specific nature of
risk patterns.

Monthiy Predicled Risk Trends for Top 3 Zanes

Figure 7: Line chart of monthly predicted risk trends for Top 3
zones.

Zone 1 (Lat: 55.0, Lon: —2.0) shows a volatile
profile, with high severity in January (0.6), a decline
through spring, and a sharp July spike above 0.7,
alongside secondary peaks in October—November.
Zone 2 (Lat: 52.6, Lon: —1.5) demonstrates an autumn-
centric pattern, with notable surges in October (>0.7)
and November (~0.5). Zone 3 (Lat: 53.0, Lon: —0.4)
remains

relatively stable but exhibits a modest

November increase (~0.5). Cross-zone comparisons

show a consistent

rise

in  November

severity,

suggesting

system-wide

seasonal

vulnerability,

whereas September consistently marks a low-risk
period.

From an operational standpoint, these results
underscore the value of time-aware risk management.
Seasonal variation implies that safety interventions
should be scheduled dynamically: for example,
summer-focused measures in Zone 1, autumn-
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focused strategies in Zone 2, and targeted year-end
preparedness in Zone 3. The identification of a
universal November risk peak highlights the need for
coordinated national responses, while the September
lull may represent a window for resource reallocation.

4) Performance Analysis of Individual and Ensemble
Models

The results in Table 2 highlight clear trade-offs
between the evaluated classifiers. XGBoost (XGB), an
advanced ensemble learning algorithm based on
gradient boosting, achieves the highest accuracy
(0.73) and demonstrates strong recall for the majority
“Slight” class (0.91). However, its performance drops
significantly for minority classes, with recall values of
only 0.07 for Fatal and 0.15 for Serious accidents. This
suggests that while boosting effectively optimizes
performance on the dominant class, it struggles to
generalize to underrepresented but critical categories.

RF, another ensemble-based method using
bagging, provides more balanced predictions,
achieving a macro-average F1 of 0.40, though with
lower overall accuracy compared to XGB. LR and KNN
contribute complementary strengths, with LR
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achieving relatively high Fatal recall (0.60) and KNN
performing better for Serious recall (0.41), though both
models are limited in overall accuracy and
consistency.

The Stacking Ensemble (SEL) combines the
strengths of LR, RF, and XGB under a meta-classifier,
producing a more equitable trade-off between
accuracy and class-specific recall. While its accuracy
(0.71) is slightly lower than XGB, it achieves markedly
higher recall for Fatal (0.37) and Serious (0.41)
classes. This demonstrates the value of stacking in
leveraging heterogeneous learners: whereas XGB
alone tends to favor the majority class, SEL ensures
broader generalization by integrating multiple decision
boundaries.

In summary, although XGB, as an ensemble
learning approach that achieves the strongest overall
accuracy, the stacking ensemble (SEL) delivers a
superior balance by capturing rare but high-severity
accidents more effectively. In the context of road
safety, this balanced predictive capability is more
valuable than raw accuracy, since Fatal and Serious
cases, despite their rarity, are the most critical for
intervention and policymaking.

Table 2. Performance comparison of supervised classifiers and stacking ensemble (SEL) for
accident severity prediction.

Class 1 Class 2 Class 3
Weighted (Fatal) (Serious) (Slight) MacrAvg

Model Accu. Avg F1 Recall Recall Recall F1

LR 0.49 0.56 0.6 0.3 0.54 0.33

DT 0.61 0.64 0.3 0.31 0.71 0.38

RF 0.64 0.66 0.34 0.32 0.74 0.4
XGB 0.73 0.69 0.07 0.15 0.91 0.37
KNN 0.55 0.59 0.15 0.41 0.6 0.35

SEL 0.71 0.68 0.37 0.41 0.90 0.38

The confusion matrix (Figure 8) confirms these
findings. It shows that while the model still tends to
misclassify severe accidents as “Slight,” this behavior
is now more predictable and consistent, rather than
erratic. Fatal and Serious misclassifications largely
occur within adjacent severity levels, suggesting that
the model has learned to distinguish broad severity
tiers, even if it struggles with fine-grained classification.

Confusion Matrix - Stacking Ensemble

- 5000

Fatal (1) 10 29 74

- 4000

= 3000

Serious (2) 61 346 1393

True label

- 2000

Slight (3) 106 680 5268 - 1000

Fatal (1) Serious (2)

Predicted label

Slight (3)

Figure 8. Confusion matrix of Stacking Ensemble Model.
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5) Discussion

The study demonstrates that machine learning,
particularly ensemble approaches, can substantially
enhance the prediction and interpretation of road
accident severity. XGBoost achieved the highest
accuracy, confirming the strength of boosting methods
in optimizing dominant patterns, while the stacking
ensemble offered a more balanced performance by
improving recall for Fatal and Serious cases—two
categories that are critical for policymaking despite
their rarity. This highlights a key achievement: the
framework does not simply maximize accuracy but
enhances equity in risk detection across severity
levels, thereby increasing its real-world utility.

Spatially, severity-weighted heatmaps and grid-
based aggregation revealed both urban hotspots and
localized “silent risk zones,” providing a dual-layered
system for macro- and micro-level safety planning. The
introduction of a composite risk score further refined
hotspot detection by combining severity probability
with frequency, ensuring that rare but catastrophic
risks were not overlooked. Temporally, the analysis
uncovered seasonal trends, with severity peaking in
winter and summer and showing a recurring national
rise in November, underscoring the importance of
time-aware risk mitigation strategies.
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Nevertheless, limitations remain. Class imbalance
hindered minority recall, particularly for XGBoost, while
sparsity in rural data reduced prediction confidence in
low-density areas. Additionally, the models relied
solely on collision data, excluding potentially influential
variables such as weather, driver demographics, and
vehicle characteristics.

Future research should integrate multimodal
datasets, employ explainable Al for interpretability, and
develop real-time predictive systems that adapt
dynamically to evolving traffic conditions. These
advancements will not only improve prediction
accuracy but also foster actionable, trustworthy
insights for intelligent transport systems and policy
interventions. Final, we plan to extend the evaluation
to include temporal and spatial generalization tests
and a detailed analysis of model training and inference
times to better reflect real-world deployment scenarios.

V. CONCLUSION

This study presented a comprehensive framework
for predicting and analyzing road traffic accident
severity in the UK using supervised machine learning
and ensemble methods, integrating both spatial and
temporal perspectives. Among the models tested,
XGBoost achieved the highest overall accuracy, yet its
weakness in recalling minority classes highlighted the
limitations of focusing solely on dominant patterns. The
stacking ensemble addressed this issue by achieving
a more balanced trade-off, substantially improving the
detection of Fatal and Serious cases, which, despite
their rarity, are of greatest importance to road safety
policy. Beyond classification performance, the
research advanced accident risk analysis through
severity-weighted heatmaps, grid-based aggregation,
and the introduction of a composite risk score, which
captured both frequency and severity to identify silent
high-risk zones that frequency-based methods often
overlook. Temporal analysis further revealed that
accident severity follows seasonal trends, with
recurring high-risk peaks in winter and summer, as well
as a nationally consistent spike in November,
underscoring the need for time-sensitive interventions.
Collectively, these findings demonstrate that road
accident severity is not randomly distributed but
shaped by spatial, temporal, and contextual factors,

and that data-driven frameworks can provide
actionable insights for targeted infrastructure
upgrades, dynamic policy design, and resource

allocation. While challenges remain in addressing
class imbalance, rural data sparsity, and integration of
external variables such as weather and driver
behavior, future research can build on this work by
incorporating multimodal data, interpretable Al, and
real-time analytics to support intelligent transport
systems and smart city risk governance.
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