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Forecasting High-Risk Traffic Zones Using Machine Learning for 
Enhanced Road Safety 
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Abstract – Road traffic accidents continue to pose serious 
global public health and economic challenges. In Malaysia 
alone, traffic-related incidents caused an estimated RM25 
billion in losses in 2023. This study presents a two-part 
machine learning framework: Part A focuses on predicting 
accident severity, while Part B uses these predictions to 
forecast high-risk traffic zones through spatial and 
temporal analysis. Accident data from 2023 was selected 
from the UK Road Safety dataset to reflect current traffic 
patterns, infrastructure, and enforcement efforts. Five 
classifiers, Logistic Regression, Decision Tree, Random 
Forest, XGBoost, and K-Nearest Neighbors, were trained 
and evaluated. A stacking ensemble combining the top 
three models was constructed to enhance predictive 
accuracy. The models were assessed using accuracy, 
precision, recall, and F1-score, with results showing that 
the ensemble method outperformed individual classifiers. 
The findings demonstrate the potential of ensemble 
learning in identifying high-risk zones and supporting 

proactive road safety planning. 

Keywords— Road Safety, Accident Severity Prediction, 

Ensemble Learning, Machine Learning, Traffic Risk Mapping, 

Classification Models. 

I. I. INTRODUCTION 

Road traffic accidents (RTAs) remain one of the most 
pressing global health and safety issues. The World 
Health Organization (WHO) reports that over 1.19 
million people die annually, with an additional 20–50 
million sustaining injuries of varying severity [1]. Despite 
improvements in vehicle technologies and infrastructure, 
RTAs continue to be the eighth leading cause of death 
worldwide and are projected to rise to the seventh by 
2030 without intensified interventions [1,2]. In response, 

the United Nations proclaimed the Decade of Action for 
Road Safety 2021–2030, with an ambitious goal of 
reducing global road traffic deaths and injuries by 50% by 
2030 [1,3]. These figures highlight the persistent gap 
between policy aspirations and the realities of global traffic 
safety. 

In Malaysia, the burden of RTAs remains significant. 
According to the Malaysian Institute of Road Safety 
Research (MIROS), the economic loss per road fatality is 
estimated at RM3.12 million under the Value of Statistical 
Life (VSL) framework [4,5]. Recent government statistics 
indicate that road accidents accounted for RM25 billion in 
losses in 2023, equivalent to approximately 1.4% of the 
national GDP [6]. With an average of 18 deaths occurring 
daily, RTAs pose not only a severe public health threat but 
also a substantial economic burden on the nation’s 
development trajectory. 

The persistence of these losses can be attributed to a 
complex interplay of factors, including driver behavior, 
infrastructure design, vehicle safety standards, and 
environmental conditions [7,8]. Traditional statistical 
methods often struggle to capture the nonlinear and high-
dimensional interactions among these variables, limiting 
their ability to generate reliable predictive insights. Recent 
studies demonstrate that machine learning (ML) 
approaches offer a more robust alternative, with the 
capacity to model complex interdependencies and uncover 
latent patterns in traffic data, thereby enabling proactive 
and adaptive safety interventions [8–10]. The integration of 
ML into traffic risk modeling thus represents a promising 
avenue for advancing both predictive accuracy and policy 
relevance in road safety research. 
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This study proposes a machine learning-based 
framework for forecasting high-risk traffic zones using 
the 2023 UK Road Safety dataset. The dataset was 
deliberately scoped to a single year to ensure 
alignment with current infrastructure, enforcement 
trends, and behavioral shifts following the COVID-19 
pandemic. As noted by Reddy et al. (2024), the use of 
recent data enhances relevance and decision-making 
accuracy  in real-time traffic safety analytics [4]. 
However, the dataset exhibits significant class 
imbalance, with most accidents classified as Slight 
and relatively few classified as Fatal or Serious. This 
imbalance presents a technical challenge for multi-
class classification models aiming to deliver balanced 

predictive performance across severity levels. 

To address these limitations, the study is structured 
into two phases. Part A focuses on accident severity 
prediction, where five classifiers including Logistic 
Regression, Decision Tree, Random Forest, 
XGBoost, and K-Nearest Neighbors, are trained and 
evaluated. A stacking ensemble model is then 
constructed by combining the top-performing 
classifiers to enhance overall accuracy and sensitivity 
to minority classes. Part B extends the analysis 
through spatial and temporal forecasting, using 
severity probabilities to identify high-risk zones via 
heatmaps and grid-based mapping. The contributions 
of this paper are threefold: (1) a comparative analysis 
of five machine learning models using a single-year, 
real-world accident dataset; (2) the development of a 
stacking ensemble to address class imbalance and 
improve predictive performance; and (3) the 
application of geospatial techniques to forecast high-
risk areas and support data-driven road safety 
planning. 

II. RELATED WORKS 

Road traffic accident severity prediction has seen a 
marked shift from traditional statistical models to more 
powerful machine learning (ML) approaches. Early 
methods like logistic regression provided interpretability 
but struggled with complex, high-dimensional datasets. 

A prominent improvement has been achieved using 
tree-based models such as Random Forest (RF) and 
XGBoost, which handle nonlinearity and feature 
interactions effectively. For example, a study in Saudi 
Arabia demonstrated that XGBoost outperformed RF and 
logistic regression using accident data from Qassim 
Province, achieving up to 94% accuracy and an AUC of 
0.98 in binary classification [11]. Another balanced and 
unbalanced dataset study reported that stacking multiple 
base models with logistic regression as the meta-learner 
achieved an AUC of 96.92%, outperforming individual 
classifiers [12]. 

Ensemble learning, especially stacking, has been 
explored extensively. A two-layer stacking model 
combining RF, AdaBoost, and GBDT (Gradient Boosting 
Decision Trees) effectively predicted crash injury severity 
[13]. Recent efforts also investigated stacking strategies in 
ensemble frameworks for crash frequency forecasting, 
demonstrating superior out-of-sample predictive 
performance over parametric models [14]. Additional work 
reinforced the robustness of two-layer stacking models in 
predicting traffic accident severity [15]. 

Some studies compared tree-based and ensemble 
regression approaches for severity prediction. One such 
analysis revealed that Random Forest achieved 
exceptional results, with accuracy of 0.974, precision 0.954, 
recall 0.930, and F1 score 0.942, outperforming other 
models like AdaBoost and Gradient Boosting [7]. 

III. METHODOLOGY 

This study adopts a two-phase methodology aimed at 
predicting traffic accident severity and identifying high-
risk spatial zones using machine learning techniques. 
Phase A focuses on developing supervised 
classification models for accident severity prediction, 
while Phase B leverages model probability outputs to 
generate severity-based heatmaps and spatial risk 
maps. The complete workflow is illustrated in Fig. 1. 

 
Figure. 1. Workflow of the proposed methodology for accident severity prediction and spatial risk mapping.
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1) Dataset 
The Road Safety Data – Collisions 2023 dataset, 

published by the UK Department for Transport [9], 
was utilized. It contains 104,258 records with 37 
attributes, covering spatial, temporal, environmental, 
and accident-related features. After preprocessing, 
the dataset was refined to 19,926 clean records and 
22 predictive attributes (Table I). Key features include 
accident location (longitude/latitude), number of 
vehicles involved, timestamp, weather conditions, 
light conditions, and road surface type. 

Table 1. Attribute description. 

No. Attribute Description 

1 Longitude Longitude of the location of an accident 
scene. 

2 Latitude Latitude of the location of an accident 
scene. 

3 Vehicles Number of vehicles involved in the accident 
4 Date Date of the accident. 
5 Day of Week Day of the week that accident occurred. 
6 Time Timestamp of the accident. 
7 Weather Weather condition at the time of the 

accident. 
8 Light Condition Light conditions at the time of the accident. 
9 Road Surface Road Surface at the time of the accident. 

10 Urban/ Rural 
Area 

Area where the accident occurred. 

 
2) Data Preprocessing 

To ensure data quality and improve model 
performance, several preprocessing steps were 
performed: 

a) Missing and Duplicate Values: Initial inspection 
revealed several columns with missing entries, 
including accident index, accident reference, and 
date. In total, 3,303 rows with missing critical 
identifiers and 61,122 rows missing date 
information were removed, reducing the dataset 
from 104,258 to 37,863 instances. Additionally, 
duplicate entries were removed to maintain data 
integrity. 

b) Feature Selection: From the original 37 features, 
non-predictive or redundant attributes such as 
accident_index, accident_reference, and 
coordinate references were excluded. After feature 
selection, the dataset was reduced to 22 relevant 
attributes, retaining only those with predictive or 
spatial significance. 

c) Outlier Removal: Outliers in selected numerical 
features such as number_of_vehicles, speed_limit, 
and total_trans_amt, were detected using the 
Interquartile Range (IQR) method. The IQR is 
defined in Eq. (1) 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1                                (1) 

Acceptable values were bound by: 

              [𝑄1 − 1.5 × 𝐼𝑄𝑅, 𝑄3 + 1.5 × 𝐼𝑄𝑅]           (2) 

This filtering removed 19,907 extreme rows, 
reducing the dataset from 39,833 to 19,926 
clean records. 

d) Feature Scaling: To standardize the scale of 
numeric variables and improve model performance, 
Min- Max normalization was applied. Each value 
was transformed using Eq. (3): 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑋 −  𝑋𝑚𝑖𝑛 / 𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛 (3) 

This resolution ensures that all features contribute 
equally during model training. The original speed 
limit values were preserved in a separate column 
for interpretability during post-analysis. 

3) Exploratory Data Analysis 
Exploratory Data Analysis (EDA) was conducted to gain 

insights into the distribution, frequency, and characteristics 
of traffic accidents in the dataset. The primary focus was 
on understanding accident severity distribution, temporal 
patterns, environmental factors, and spatial trends. 

a) Severity Distribution: The dataset exhibits a 
severe class imbalance, with the majority of cases 
categorized under Slight severity as. Fig.2 
showed Serious and Fatal cases occur far less 
frequently, which aligns with real-world accident 
statistics. This imbalance poses a significant 
challenge for classification models, particularly 
in accurately identifying high-risk events. 

 
Figure. 2. Accident severity distribution. 

b) Temporal Trends: Accidents were analyzed 
across months, days of the week, and time 
intervals. Fig 3. Illustrated that higher accident 
frequencies were observed during weekdays, 
particularly during morning and evening rush 
hours, suggesting a strong link to commuting 
activity. Month-wise trends revealed notable 
seasonal fluctuations, which may reflect 
varying traffic volumes or weather conditions. 

 
Figure 3. Monthly distribution of fatal traffic crashes 

(Severity = 1). 

c) Environmental Conditions: Variables such as 
weather_conditions, light_conditions, and 
road_surface_conditions were examined for 
correlations with accident severity. A higher 
proportion of Serious and Fatal accidents 
occurred under poor lighting or wet road 
conditions, indicating the influence of 
environmental risk factors on accident 
outcomes. 

d) Geospatial Patterns: Using the longitude and 
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latitude attributes, accident locations were 
visualized to identify spatial clusters. Dense 
accident hotspots were predominantly 
located in urban centers, consistent with 
areas of high traffic flow and population 
density. These visualizations supported later 
development of severity heatmaps and grid-
based spatial risk maps. 

4) Individual Models Training 

To establish robust predictive baselines, five widely 
used supervised machine learning classifiers were 
implemented: Logistic Regression (LR), Decision Tree 
(DT), Random Forest (RF), Extreme Gradient Boosting 
(XGB), and K-Nearest Neighbors (KNN). These models 
were chosen to capture a broad spectrum of learning 
paradigms, ranging from linear (LR) to non-linear tree-
based (DT, RF, XGB) and instance-based learning 
(KNN). 

The dataset was partitioned into training and testing 
subsets using an 80/20 stratified split, ensuring the 
preservation of the original class distribution. To mitigate 
the impact of class imbalance, model training pipelines 
incorporated a ColumnTransformer for numerical 
feature scaling and categorical one-hot encoding, 
followed by a hybrid resampling strategy combining 
Synthetic Minority Over-sampling Technique (SMOTE) 
with Random Under-Sampling (RUS). This ensured an 
enhanced representation of minority classes without 
excessive duplication of synthetic samples. 

Hyperparameter optimization was conducted using 
both GridSearchCV and RandomizedSearchCV, 
applying 3–5 fold cross-validation depending on model 
complexity. This dual strategy balanced exhaustive 
search with computational efficiency. Label encoding 
was selectively applied for algorithms requiring integer-
encoded labels (e.g., XGBoost).. 

5) Stacking Model Training 
Building on the performance of individual models, a 

stacking ensemble architecture was designed to exploit 
model diversity and enhance generalization. Logistic 
Regression, Random Forest, and XGBoost were 
selected as base learners due to their complementary 
strengths in linear discrimination, bagging-based 
variance reduction, and boosting-based bias correction. 

The meta-learner was implemented using Gradient 
Boosting, trained on the class probability outputs of the 
base models. A two-stage training approach was 
employed: base learners were trained on stratified folds, 
and the meta-learner was trained exclusively on out-of-
fold predictions, thereby preventing data leakage and 
ensuring an unbiased estimation of ensemble 
performance. 

This hierarchical architecture enables the ensemble 
to capture heterogeneous decision boundaries across 
classifiers, ultimately improving robustness against 
class imbalance and enhancing sensitivity to rare but 
critical accident severity classes. 

6) Spatial Analysis 
a) Heatmap Visualization: To identify localized accident 
risk, severity probabilities derived from the predictive 
models were spatially mapped using the Folium 
heatmap library. Each accident record was weighted by 

its predicted severity probability, thereby emphasizing 
regions with higher concentrations of severe accident 
likelihoods. This probabilistic weighting allowed the 
visualization to highlight urban hotspots where severe 
accidents are more prevalent, aligning spatial patterns with 
population density and traffic congestion levels. 

b) Grid-Based Aggregation: To facilitate regional-level 
analysis and mitigate the noise inherent in individual 
accident locations, a grid-based spatial aggregation 
approach was applied. Geographic coordinates (latitude, 
longitude) were rounded to 0.01° precision, corresponding 
to approximately 1.1 km × 1.1 km cells. For each cell, the 
mean severity probability was computed to represent 
localized accident risk intensity. These aggregated scores 
were visualized as a choropleth risk map using a 
sequential YlOrRd color gradient, where darker shades 
denoted higher predicted risk. This transformation enabled 
systematic hotspot detection and comparative assessment 
across urban and rural zones. 

c) Composite Risk Score: To capture both the frequency of 
accidents and their predicted severity, a composite spatial 
risk score was formulated (Eq. 4).  

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =  0.7 ×  𝐴𝑣𝑔 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 +  0.3 ×

 (𝐴
𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝐶𝑜𝑢𝑛𝑡 

𝑀𝑎𝑥 𝐶𝑜𝑢𝑛𝑡
)                                                          (4) 

This dual-factor measure integrates the number of 
incidents within a grid cell and their associated severity 
probabilities, providing a holistic indicator of regional 
accident risk. The composite index not only highlights 
areas with frequent accidents but also prioritizes regions 
where the potential consequences are more severe, 
thereby offering actionable insights for resource allocation, 
traffic enforcement, and urban planning interventions 

7) Model Evaluation 
Model performance was assessed using four key 

metrics: Accuracy, Precision, Recall, F1 Score and 
Confusion Matrix. These metrics offer a balanced view of 
overall performance and the model's sensitivity to critical 
cases. Accuracy measures the proportion of correctly 
predicted samples, Precision, and Recall, particularly for 
the Fatal class, highlights how well the model detects 
severe incidents. F1-Score balances precision and recall. 
Lastly, The Confusion Matrix was used to visualize the 
classification results and reveal misclassifications across 
severity levels.  

On severe outcomes, a composite severity 
probability was calculated using Eq. (5) by summing the 
probabilities of the Fatal and Serious classes: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑃(𝐹𝑎𝑡𝑎𝑙)  +
 𝑃(𝑆𝑒𝑟𝑖𝑜𝑢𝑠)                   (5) 

Accidents with a predicted severity probability greater 
than or equal to 0.3391 were flagged as high-risk. This 
threshold was determined based on model calibration 
and adjusted to balance sensitivity and specificity. Two 
new fields, predicted_severity_prob and a binary 
high_risk indicator, were added to the dataset for 
subsequent analysis.The average severity probability 
across the dataset was also computed as a baseline 
indicator of overall risk is define in Eq. (6): 

𝑎𝑣𝑔 =
𝑃𝑓𝑎𝑡𝑎𝑙,1 + 𝑃𝑠𝑒𝑟𝑖𝑜𝑢𝑠,1+⋯+ 𝑃𝑓𝑎𝑡𝑎𝑙,𝑛 + 𝑃𝑠𝑒𝑟𝑖𝑜𝑢𝑠,𝑛

𝑛                    (6) 
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IV. RESULTS AND DISCUSSION 

1) Spatial Distribution of Predicted Accident Severity 

The spatial analysis of predicted accident severity 
revealed distinct geographic patterns when visualized 
using severity-weighted heatmaps. In Figure 4a, London 
stands out as the most intense hotspot, characterized by 
deep red clusters that highlight consistently high 
predicted severity. This concentration is likely driven by 
the city’s dense traffic networks, high vehicle volumes, 
and complex road structures that amplify the risk of 
serious collisions. 

Beyond the capital, additional clusters emerged in 
regional urban centers such as Manchester and 
Birmingham (Figures 4b–4c). These zones, represented 
by orange to yellow gradients, indicate moderate-to-high 
severity levels. The patterns in these cities suggest a 
strong influence of high-speed routes and regional 
intersections that increase the likelihood of severe 
outcomes. 

At a finer spatial scale, localized “silent risk zones” were 
detected in smaller towns such as Lincoln and 
Gainsborough (Figures 4d–4e). Although these areas 
report fewer accidents in terms of frequency, the model 
assigns them elevated severity probabilities. This finding 
underscores the value of probabilistic mapping, as such 
regions might otherwise remain overlooked in traditional 
frequency-based analyses. 

By contrast, rural and less densely populated areas 
such as Watchet and Witham displayed predominantly blue 
and green zones, signifying lower predicted severity. These 
patterns likely reflect reduced traffic intensity and simpler 
road structures, although the limited availability of training 
data in rural regions may also affect the model’s predictive 
confidence. 

Overall, the combined spatial heatmap demonstrates 
that severity-based risk assessment can effectively 
highlight both established urban hotspots and emerging 
high-risk pockets. This geospatial perspective provides 
actionable insights for policymakers, supporting targeted 
interventions such as infrastructure upgrades, dynamic 
traffic regulations, and localized road safety campaigns. 

 

                          (a)                                                       (b)                                                           (c)  

   

                           (d)                                                        (e)                                                               (f) 

Figure 4. Spatial distribution of predicted accident severity across the UK. 

(a) London, showing the most intense severity hotspots; 
(b) Manchester, highlighting moderate-to-high severity clusters; 
(c) Birmingham, with regionally concentrated risk zones; 
(d) Lincoln, and (e) Gainsborough, illustrating localized “silent risk zones” with elevated severity despite lower accident frequency; 
(f) Severity is visualized using a probabilistic heatmap, where red indicates high predicted severity (Fatal + Serious), while blue-green 
represents lower predicted severity. 
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2) Grid-Based Aggregation for Localized Risk 
Detection 

To uncover structured spatial patterns beyond 
individual accident points, predicted severity 
probabilities were aggregated into uniform 0.01° grid 
cells (≈1.1 km²). Each cell’s average severity was 
mapped using a sequential yellow-to-red colormap, 
transforming scattered events into a coherent spatial 
framework. This grid-based approach highlights both 
concentrated and diffuse high-risk zones, with deep-
red clusters around urban Birmingham, transitional 
orange/yellow cells in suburban corridors, and lighter 
shades across rural areas. The resulting visualization 
(Figure 5.27) provides a clearer basis for identifying 
persistent accident hotspots and prioritizing localized 
safety interventions. 

 

Figure 5. Grid map of urban Birmingham surrounded by red, 
orange and yellow rectangles. 

Beyond enhancing visual clarity, the grid-based 
framework increases actionability by quantifying 
accident risk at a micro-geographic scale. This makes 
the approach particularly valuable for policymakers, 
urban planners, insurers, and smart city stakeholders, 
who can use the results to prioritize high-severity 
zones for targeted interventions. Practical applications 
include deploying traffic-calming measures in red-zone 
cells, prioritizing infrastructure upgrades in high-risk 
areas, dynamically adjusting insurance premiums, and 
allocating emergency response resources more 
efficiently. 

 

Figure 6: Composite risk score. 

A key innovation is the introduction of a composite 
risk score (Figure 6), which integrates both severity 
probability (70%) and accident frequency (30%). This 
weighting ensures that even locations with rare but 
potentially catastrophic incidents are flagged as 
critical, preventing reliance on frequency alone. The 
top 10 highest-risk cells, all with severity probabilities 
near 1.0 despite low accident counts, underscore the 
model’s sensitivity to silent but high-impact risks. 

Together, the grid-based maps and composite scoring 
system provide a dual-layered decision support tool: 
the maps highlight broader spatial risk patterns, while 
the scores pinpoint micro-locations requiring 
immediate attention. This duality balances macro-level 
insight with micro-level prioritization, offering a 
practical pathway toward proactive, data-driven road 
safety strategies. Moreover, because the method does 
not depend on fixed administrative boundaries, it 
remains scalable across different jurisdictions and 
adaptable to diverse urban and regional contexts. 

3) Risk Trend for Top 3 Zones 

To complement spatial risk mapping, this section 
examines the temporal evolution of accident severity 
across grid zones. Severity probabilities predicted by 
the stacking ensemble were aggregated monthly and 
annually at a 0.1° grid resolution, enabling structured 
tracking of risk fluctuations over time. A pivot table was 
used to visualize monthly severity trends, and the three 
highest-risk grids (by average severity) were selected 
for deeper analysis. 

The resulting trends (Figure 7) reveal that accident 
severity is strongly influenced by seasonal factors 
rather than being randomly distributed. Peaks are 
observed in winter months (December–January), likely 
due to adverse weather and reduced daylight, while 
additional spikes in summer (July–August) suggest 
links to increased travel, tourism, and congestion. 
Importantly, each zone displays distinct temporal 
dynamics, highlighting the location-specific nature of 
risk patterns. 

 

Figure 7: Line chart of monthly predicted risk trends for Top 3 
zones. 

Zone 1 (Lat: 55.0, Lon: –2.0) shows a volatile 
profile, with high severity in January (0.6), a decline 
through spring, and a sharp July spike above 0.7, 
alongside secondary peaks in October–November. 
Zone 2 (Lat: 52.6, Lon: –1.5) demonstrates an autumn-
centric pattern, with notable surges in October (>0.7) 
and November (~0.5). Zone 3 (Lat: 53.0, Lon: –0.4) 
remains relatively stable but exhibits a modest 
November increase (~0.5). Cross-zone comparisons 
show a consistent rise in November severity, 
suggesting system-wide seasonal vulnerability, 
whereas September consistently marks a low-risk 
period. 

From an operational standpoint, these results 
underscore the value of time-aware risk management. 
Seasonal variation implies that safety interventions 
should be scheduled dynamically: for example, 
summer-focused measures in Zone 1, autumn-
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focused strategies in Zone 2, and targeted year-end 
preparedness in Zone 3. The identification of a 
universal November risk peak highlights the need for 
coordinated national responses, while the September 
lull may represent a window for resource reallocation. 

4) Performance Analysis of Individual and Ensemble 
Models 

The results in Table 2 highlight clear trade-offs 
between the evaluated classifiers. XGBoost (XGB), an 
advanced ensemble learning algorithm based on 
gradient boosting, achieves the highest accuracy 
(0.73) and demonstrates strong recall for the majority 
“Slight” class (0.91). However, its performance drops 
significantly for minority classes, with recall values of 
only 0.07 for Fatal and 0.15 for Serious accidents. This 
suggests that while boosting effectively optimizes 
performance on the dominant class, it struggles to 
generalize to underrepresented but critical categories. 

RF, another ensemble-based method using 
bagging, provides more balanced predictions, 
achieving a macro-average F1 of 0.40, though with 
lower overall accuracy compared to XGB. LR and KNN 
contribute complementary strengths, with LR 

achieving relatively high Fatal recall (0.60) and KNN 
performing better for Serious recall (0.41), though both 
models are limited in overall accuracy and 
consistency. 

The Stacking Ensemble (SEL) combines the 
strengths of LR, RF, and XGB under a meta-classifier, 
producing a more equitable trade-off between 
accuracy and class-specific recall. While its accuracy 
(0.71) is slightly lower than XGB, it achieves markedly 
higher recall for Fatal (0.37) and Serious (0.41) 
classes. This demonstrates the value of stacking in 
leveraging heterogeneous learners: whereas XGB 
alone tends to favor the majority class, SEL ensures 
broader generalization by integrating multiple decision 
boundaries. 

In summary, although XGB, as an ensemble 
learning approach that achieves the strongest overall 
accuracy, the stacking ensemble (SEL) delivers a 
superior balance by capturing rare but high-severity 
accidents more effectively. In the context of road 
safety, this balanced predictive capability is more 
valuable than raw accuracy, since Fatal and Serious 
cases, despite their rarity, are the most critical for 
intervention and policymaking. 

Table 2. Performance comparison of supervised classifiers and stacking ensemble (SEL) for 
accident severity prediction. 

Model Accu. 
Weighted 
Avg F1 

Class 1 
(Fatal) 
Recall 

Class 2 
(Serious) 
Recall 

Class 3 
(Slight) 
Recall 

MacrAvg 
F1 

LR 0.49 0.56 0.6 0.3 0.54 0.33 

DT 0.61 0.64 0.3 0.31 0.71 0.38 

RF 0.64 0.66 0.34 0.32 0.74 0.4 

XGB 0.73 0.69 0.07 0.15 0.91 0.37 

KNN 0.55 0.59 0.15 0.41 0.6 0.35 

SEL 0.71 0.68 0.37 0.41 0.90 0.38 

 

The confusion matrix (Figure 8) confirms these 
findings. It shows that while the model still tends to 
misclassify severe accidents as “Slight,” this behavior 
is now more predictable and consistent, rather than 
erratic. Fatal and Serious misclassifications largely 
occur within adjacent severity levels, suggesting that 
the model has learned to distinguish broad severity 
tiers, even if it struggles with fine-grained classification. 

Figure 8. Confusion matrix of Stacking Ensemble Model. 

5) Discussion 

The study demonstrates that machine learning, 
particularly ensemble approaches, can substantially 
enhance the prediction and interpretation of road 
accident severity. XGBoost achieved the highest 
accuracy, confirming the strength of boosting methods 
in optimizing dominant patterns, while the stacking 
ensemble offered a more balanced performance by 
improving recall for Fatal and Serious cases—two 
categories that are critical for policymaking despite 
their rarity. This highlights a key achievement: the 
framework does not simply maximize accuracy but 
enhances equity in risk detection across severity 
levels, thereby increasing its real-world utility. 

Spatially, severity-weighted heatmaps and grid-
based aggregation revealed both urban hotspots and 
localized “silent risk zones,” providing a dual-layered 
system for macro- and micro-level safety planning. The 
introduction of a composite risk score further refined 
hotspot detection by combining severity probability 
with frequency, ensuring that rare but catastrophic 
risks were not overlooked. Temporally, the analysis 
uncovered seasonal trends, with severity peaking in 
winter and summer and showing a recurring national 
rise in November, underscoring the importance of 
time-aware risk mitigation strategies. 
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Nevertheless, limitations remain. Class imbalance 
hindered minority recall, particularly for XGBoost, while 
sparsity in rural data reduced prediction confidence in 
low-density areas. Additionally, the models relied 
solely on collision data, excluding potentially influential 
variables such as weather, driver demographics, and 
vehicle characteristics. 

Future research should integrate multimodal 
datasets, employ explainable AI for interpretability, and 
develop real-time predictive systems that adapt 
dynamically to evolving traffic conditions. These 
advancements will not only improve prediction 
accuracy but also foster actionable, trustworthy 
insights for intelligent transport systems and policy 
interventions. Final, we plan to extend the evaluation 
to include temporal and spatial generalization tests 
and a detailed analysis of model training and inference 
times to better reflect real-world deployment scenarios. 

V. CONCLUSION 

This study presented a comprehensive framework 
for predicting and analyzing road traffic accident 
severity in the UK using supervised machine learning 
and ensemble methods, integrating both spatial and 
temporal perspectives. Among the models tested, 
XGBoost achieved the highest overall accuracy, yet its 
weakness in recalling minority classes highlighted the 
limitations of focusing solely on dominant patterns. The 
stacking ensemble addressed this issue by achieving 
a more balanced trade-off, substantially improving the 
detection of Fatal and Serious cases, which, despite 
their rarity, are of greatest importance to road safety 
policy. Beyond classification performance, the 
research advanced accident risk analysis through 
severity-weighted heatmaps, grid-based aggregation, 
and the introduction of a composite risk score, which 
captured both frequency and severity to identify silent 
high-risk zones that frequency-based methods often 
overlook. Temporal analysis further revealed that 
accident severity follows seasonal trends, with 
recurring high-risk peaks in winter and summer, as well 
as a nationally consistent spike in November, 
underscoring the need for time-sensitive interventions. 
Collectively, these findings demonstrate that road 
accident severity is not randomly distributed but 
shaped by spatial, temporal, and contextual factors, 
and that data-driven frameworks can provide 
actionable insights for targeted infrastructure 
upgrades, dynamic policy design, and resource 
allocation. While challenges remain in addressing 
class imbalance, rural data sparsity, and integration of 
external variables such as weather and driver 
behavior, future research can build on this work by 
incorporating multimodal data, interpretable AI, and 
real-time analytics to support intelligent transport 
systems and smart city risk governance. 
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