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Abstract - Previous research by the author in the use 

of histograms of second-order derivatives showed that 
the differences between pixels in MRI images can be 
determined without referring to the ground truth for the 
purpose of noise reduction. Yet, the results of the 
previous research also showed that the methodologies 
used could not prevent false positives and negatives. To 
address this problem, a technique has been developed to 
involve multiple conditions that utilize the statistics of the 
histograms and the circumstances of neighbours in the 
vicinity of a pixel. The confusion matrix for this method 
shows that the technique has marginal but consistent 
improvement across the noise levels that are tested, 
compared to prior methods. 

Keywords: Second-Order Derivatives, Histograms, Laplace 

Curves, MRI Images, Confusion Matrix, Noise Estimation 

I. INTRODUCTION 

This paper is preceded by four other previous works. 
These previous works are about the use of histograms 
of second-order derivatives of pixels within an image. 
The first to third works involved noise reduction and 
contrast enhancement [1][2][3]. The fourth work is also 
about noise reduction, with a method that improved on 
the previous ones [4]. 

The first to third works involve the use of only one 
Laplace curve. The methodologies in these previous 
works performed well for images that are heavily 

 
* Corresponding author. Email: wtchan@mmu.edu.my, ORCID: 0000-0002-2366-1851 
Wai Ti Chan is with Faculty of Engineering and Technology (FET), Multimedia University (MMU), Jalan Ayer Keroh Lama, Bukit Beruang, 

75450 Melaka, Malaysia. (Phone: +606-2523185; fax: +606 - 231 6552; e-mail: wtchan@mmu.edu.my). 
 

corrupted by noise. However, they do not perform as well 
for images that have relatively low noise. The results 
were some losses in detail, due to blurring caused by 
false positives. The fourth work involves the use of an 
additional curve. The results were better but were also 
affected by false positives as well as false positives. 

Thus, there was the conclusion that any further 
development of methods that utilize the aforementioned 
histograms and Laplace curves must involve the use of 
confusion matrices to test for false negatives and 
positives. 

II. REVIEW OF PREVIOUS WORK & ADDITIONAL THEORIES 

The first to third works established the use of a 
Laplace curve that is generated using the statistical 
distribution of the second-order derivatives. The curve is 
compared with the histogram for differences in the 
shapes of their profiles. The analysis of the differences 
yields information that is useful for noise and contrast 
estimation [1][2][3]. 

The methodology of the fourth previous work uses an 
additional Laplace curve. This improves performance at 
higher noise levels, compared to methods with just one 
profile. This paper continues this hypothesis. 

The fourth of the previous works also finds that the 
previous methods have been consistently effective at 
higher levels of noise. This is due to there being more 
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pixels affected by noise, such that false positives and 
negatives become less of a concern [4]. This implied a 
need for the use of a confusion matrix. 

To illustrate this need, data from the fourth of the 
previous works have been included in this paper as 
Figure 1 and Figure 2. The data in these charts is formed 
by comparing the results of processes with the algorithm 
that was developed in the previous works with the 
ground truth images [4]. 

In Figure 1, the first set of measuring criteria are the 
ratio of false positives to the number of pixels that have 
been selected for filtering and the ratio of false negatives 
to the number of pixels that have not been selected. In 
Figure 2, the second set of measuring criteria include the 
ratios of the false positives and negatives to the total 
number of pixels in the image. The ratios are in the form 
of percentages. The reasoning for this is that the sample 
images that are used have variable numbers of pixels. 
The ratios, in the form percentages, are appropriate for 
indicating the performance of a method when the sample 
images do not have fixed dimensions [5]. 

Figure 2 shows that the algorithm in the previous 
works does not do well at avoiding false negatives and 
positives at low levels of noise, whereas Figure 1 shows 
the algorithm having poorer performance at avoiding 
false negatives at higher noise levels. 

The previous works considered the second-order 
derivative value of a pixel against the corresponding 
statistics from the histogram. The only other localized 
circumstance of a pixel that is utilized are the differences 
between the value of the pixel and those of its 
immediately adjacent neighbours [1]. The details of 
surrounding pixels that are further away, such as the 
population of pixels with similar values in the vicinity of 
the evaluated pixel, were not considered in previous 
works. 

This omission, as revealed by the review of the 
previous works, gives rise to a theory. The theory is that 
pixels with similar second-order derivative values in the 
vicinity would contribute to any statistical method that is 
used to evaluate a pixel. This theory is based on the 
observation that there have been methods in which 
pixels are classified as being similar according to their 
values, such as the work done by Jeyalaksshmi & 
Prasanna in grouping pixels into regions according to 
their grayscale intensity [6]. 

III. METHODOLOGY 

A. Sample MRI Images 

The following methodology uses the same set of 150 
MRI images as those used in previous works. The 
images came from sources such as Radiopaedia, The 
Cancer Imaging Archives (TCIA), Science Photo and 
National Library of Medicine. 

 

 

FIGURE 1. False omission and false discovery rates at different 
Rician noise levels, according to percentage of pixels selected 

and not selected, inclusive of variance; results of previous work. 

a. This is the ratio of the number of pixels that have false positives to the 
number of pixels that have been selected for filtering, in percentage form. 

b. This is the ratio of the number of pixels that have false negatives to the 
number of pixels that have not been selected for filtering, in percentage 
form. 

 

 

 

FIGURE 2. (a) False positive and (b) false negatives at different 
Rician noise levels, according to percentage of total number of 

pixels, inclusive of variance; results of previous work. 

c. This is the ratio of the number of pixels that have false positives to the 
total number of pixels in an image, in percentage form. 

d. This is the ratio of the number of pixels that have false negatives to the 
total number of pixels in an image, in percentage form.
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The images have been selected for the variety in their 
image subjects, their dimensions and the presence (or 
lack thereof) of other details like text labels. In the 
previous works, these images have been useful for 
troubleshooting flaws in the algorithms and their 
responses to the diversity in the images. They are also 
useful for the work that is described in this paper. 

B. Histograms of Second-Order Derivative Values 

As in the previous works, the methodology in this 
paper retains the method of acquiring the second-order 
derivative values. This is achieved through the 
application of a 2D Laplacian operator with four masks. 
There is a 3 × 3 mask for each pixel that is away from 
the edges, a 3 × 2 mask for each pixel on the vertical 
edges, a 2 × 3 mask for each of those on the horizontal 
ones and a 2 × 2 mask used on each pixel in the corners 
[1][2]. The derivative values are then collated as a 
frequency histogram. 

To avoid redundancy and any further self-citation, 
any further elaboration is omitted from this paper.  

C. Laplace Curves on Histogram 

As in past works, a Laplace curve is generated using 
the distribution of the second-order derivative values. 
This curve is then laid over the profile of the histogram 
for comparison [1][2]. The second and third of the 
previous works implement a second curve. The second 
curve is generated from the frequency interval for the 
second-order derivative value of zero. The details of this 
methodology can be examined in the article of the 
previous works [2][3]. 

As a summary of those previous works, the first curve 
is generated with σ1, which is the standard deviation of 
the distribution of the second-order derivative values. 
The second curve is generated with σ2, which is a 
standard deviation that is derived via a recursive process 
using (1) (which is an adaptation of the Laplace 
probability distribution function). 

𝜎2 = 20.5𝑏 

ℎ(0) = 𝑁 (
1

2𝑏
𝑒𝑥𝑝 (−

|0 − 𝜇|

𝑏
)) 

 

() 

 

Where σ2 is the standard deviation for the second curve, 
h(0) is the frequency of the second-order derivative 
value of zero in the histogram, 
N is the number of pixels in the image, and 
μ is the average of the second-order derivative values. 
 

D. Ratios of Heights of Curves and Frequency 
Intervals to Total Number of Pixels 

The previous works utilize the arithmetic differences 

between the frequency intervals in the histogram and 

the corresponding heights of first and second Laplace 

curve. There is a difference in the methodology that is 

described in this article compared to those in previous 

works. This methodology utilizes the ratios of the 

heights of the curves and the frequency intervals to the 

total number of pixels. 

Each distinct second-order derivative value has three 

of these ratios. The ratios and their component 

quantities are defined as follows: 

• j, distinct second-order derivative value  

• h1,j , height of the first Laplace curve at the point that 

corresponds to j 

• h2,j , height of the second Laplace curve at the point 

that corresponds to j 

• N, total number of pixels in the image, mentioned 

earlier. 

• R1 , ratio of h1,j to N 

• R2 , ratio of h2,j to N 

 

These ratios are considered global variables. This is 

because they are independent of the local 

circumstances of a pixel. The ratios are to be compared 

against a ratio that is determined with the local 

circumstances of the pixel. Comparing global variables 

to local ones has been documented as a method of 

image processing for the purpose of determining 

locations of interest [7]. This technique is applied here 

to further the theory that deviations from the statistics of 

the second-order histogram would reveal the presence 

of noise, as have been posited in previous works. 

E. Ratio of Number of Pixels with Similar Second-
Order Derivative Values to Number of Pixels in the 
Vicinity 

The local circumstances of a pixel are represented by 

the other pixels around the pixel that is being evaluated. 

An 11 × 11 mask with the pixel at the center is applied 

to obtain a sampling of the other pixels in the vicinity. 

The mask is altered to accommodate pixels that are at 

the edges or corners of the images, like what is 

described in section B. 

A ratio is derived from this sampling. The ratio and its 

component quantities are defined as follows: 

• j, the second-order derivative value of the pixel 

being evaluated, corresponding to j as described 

previously.  

• L , the total number of pixels within the mask 

• Lj , number of pixels with value of j within the mask 

• RL , the ratio of Lj to L 

F. Threshold Conditions 

The ratio RL is to be compared with ratios R1  and R2. 

This comparison is implemented as thresholds for a 

step that is described later. The comparison involves 

two thresholds, which are defined as follows: 

• Condition #1: R1 is less than RL 

• Condition #2: R2 is less than RL 

 

If both conditions are fulfilled, the pixel is determined 
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as being affected by noise. Otherwise, the pixel is 

considered as not being affected by noise. The results 

of this determination are then compared with the ground 

truth images as per the procedures for a confusion 

matrix. 

G. Confusion Matrix 

The accuracy of the method is to be presented via the 

following ratios: 

• Ratio of false positives to the sum of true positives 

and false positives, i.e. the false discovery rate; the 

sum is the number of pixels that the algorithm has 

determined as being affected by noise. 

• Ratio of false negatives to the sum of true negatives 

and false negatives, i.e. the false omission rate; the 

sum is the number of pixels that the algorithm has 

determined as not being affected by noise. 

• Ratio of false positives to the total number of pixels 

in the image; this is used to investigate the response 

of the algorithm to images of different sizes. 

• Ratio of false negatives to the total number of pixels 

in the image; this has the same purpose as the 

above. 

Incidentally, the ratios can be used to determine the 

response of a method to different scenarios [8]. In this 

case, the scenario is the increasing level of Rician noise 

that is introduced into the ground truth images. 

H. Goal of Testing 

Ideally, the results should be better than the ones 

shown in Figure 1 and Figure 2. In particular, the false 

discovery rates at low levels of noise should be lower 

and the false omission rates at high levels of noise 

should be lower too. The ratios from the results of this 

methodology that correspond to those in Figure 2 should 

also be more consistent, i.e., the variance is less. 

 

IV. RESULTS & DISCUSSION 

A. Example of Implementation of Termination Factor 

Figure 3 shows an example of the sample MRI 
images. This one has been included due to the presence 
of various distinct viscera. The distinct viscera test the 
methodology on how it can differentiate regions. This 
image has been corrupted with Rician noise at a 
standard deviation of distribution of 2. 

The confusion matrix for this is as shown in Table I. 
As can be observed, the percentage of false positives is 
significant for this image. This is because small and 
distinct details are interpreted as noise by the algorithm 
in this method. Incidentally, this finding also occurred in 
previous works. Thus, the methodology that is described 
in this paper has not addressed this setback. 

 

FIGURE 3. Abdominal MRI image of a woman, 47 days after 
giving birth; image source: National Library of Medicine. 

TABLE 1. False positives and false negatives for the image in 
Fig. 1 in terms of percentages of pixels in the image. 

 

Condition Positive Negative 

   
True 80.43% 0.19% 

   
False 18.67% 0.71% 

   

 

B. Results of Tests on Sample MRI Images 

Figure 4 and Figure 5 show the results of the testing 
with the sample images. Compared to Figure 1, Figure 4 
shows marginal improvements for the false discovery 
rates, i.e., reductions in the percentages, across the 
noise levels. The reason for this is implied in the 
differences in the false omission rates between the two 
pairs of charts. 

The false omission rates are marginally lower for both 
averages and standard deviations at low to middle levels 
of noise, e.g., standard deviation of 2 to 8. This implies 
that the methodology that is used in this research has 
selected more pixels that are affected by noise, but only 
incrementally. However, the variance of the rates is 
narrower in Figure 1 than in Figure 4. 

At high levels of noise, e.g. beyond standard 
deviation of 12, the methodology that is used selects 
almost all pixels. Yet, this did not lead to high false 
omission rates. Instead, there are false omission rates of 
zero for these levels. The false discovery rates at these 
levels of noise are also marginally lower, thus suggesting 
an overall small improvement. 

Figure 5(a) shows false positives that are slightly 
higher across noise levels, thus suggesting a less 
discriminate selection of pixels. However, this is 
compensated for by a significant reduction in false 
negatives. In particular, the false omission rates 
converge to zero at noise levels of beyond standard 
deviation of 12.
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FIGURE 4. False omission and false discovery rates, according 
to Rician noise level and percentage of pixels selected and not 

selected, inclusive of variance; results of current work. 

a. This ratio is the number of pixels that have false positives to the number 
of pixels that have been selected for filtering, in percentage form. 

b. This ratio is the number of pixels that have false negatives to the number 
of pixels that have not been selected for filtering, in percentage form. 

c. The rates for standard deviations beyond 12 are zero; they have been 
omitted for better display of the results. 

 

FIGURE 5. (a) False positive and (b) false negatives, according 
to Rician noise level and percentage of total number of pixels, 

inclusive of variance; results of current work. 

d. This ratio is the number of pixels that have false positives to the total 
number of pixels in an image, in percentage form. 

e. This ratio is the number of pixels that have false negatives to the total 
number of pixels in an image, in percentage form. 

 

C. Prior Algorithms 

Before this research work settled on the use of the 

algorithm as described in the Methodology section, 

there were previous versions of the algorithm with lesser 

results. 

In particular, one of these previous versions uses the 

arithmetic differences between the frequency intervals 

in the histogram and the corresponding heights of the 

Laplace curves, as per the methodologies of previous 

works. These have poorer performance than the 

algorithm that is described here. The results of this 

version of the algorithm are not shown here to avoid 

redundancy.  

Thus, the theory that is based on these arithmetic 

differences has to be revised [3][4]. The results that are 

shown in Figure 4 and Figure 5, when compared to 

those in Figure 1 and Figure 2, further contribute to this 

finding. 

D. Notable Anomalies for Results with MRI Scans of 
Vascular Complications 

The 150 sample images include MRI scans of 

vascular complications, such as the scan of a cerebral 

arteriovenous malformation as shown in Figure 6. The 

results for these images consistently register a false 

omission rate of zero at low levels of noise. There is no 

notable trend in the false discovery rates. 

This is likely due to the setting of the scans, having 

been calibrated for the detection of vascular objects, 

e.g., blood vessels and capillaries, which appear as 

grainy regions in the images. In previous works with 

methods that utilize histograms of second-order 

derivatives, the algorithms would register these as noise 

[1]. In the case of the algorithm that is used in this 

methodology, more pixels in these images are selected 

than in other images. However, the false discovery rates 

are not significantly worse, which suggests that this is 

not a flaw in the algorithm. 
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FIGURE 6. MRI image of arteriovenous malformation in 

cerebrum; image source: National Library of Medicine. 

E. Comparison with Other Works 

The benchmarking of the methodology in this 

research depends on the following characteristics: 

• MRI images with Rician noise. 

• Usage of convolution methods to determine the 
presence of noise, pixel by pixel. 

• Usage of confusion matrices to verify results. 

The literature review did not yield any other research 

with a methodology that strictly matches all the 

characteristics. However, there were two that are 

partially comparable to the research in this paper. 

Manjón & Coupé worked on a technique that uses 

convolution-based method for MRI images with Rician 

noise [9]. However, qualitative evaluation was used for 

the results, i.e., the resulting images were visually 

compared to the real ones, so confusion matrices were 

not used. On the other hand, Table 5 in the cited paper 

does show a table of PSNR scores [9]. Although the 

image sets that were used are different from those in 

this research and previous works, the results have a 

similar trend to that in previous works [2][3]; this trend is 

a general reduction in PSNR scores as overall noise 

level increases. Thus, it can be inferred that the 

technique described by Manjón & Coupé does not 

address the issue of false positives and negatives. 

M. Fayaz et al. developed a methodology to classify 

MRI images with statistical calculations. It includes 

noise removal with morphological techniques. The 

results are checked with a confusion matrix [10]. The 

methodology of M. Fayaz et al. does not apply the 

confusion matrix on a pixel-by-pixel basis, unlike what is 

done here. On the other hand, they applied additional 

steps, e.g., the conversion of grayscale images to RGB, 

to overcome limitations in previous methods; this is 

similar to what is done in this paper. However, the 

improvement in their results was marginal, e.g., 1.3% 

over the most recent previous method, according to 

accuracy tests that have been implemented across their 

previous methods; this is like the findings of this 

research. Although the confusion matrices that are used 

for their methods are not directly comparable to the one 

described here, the similarity of marginal improvement 

over previous methods is notable. 

V. CONCLUSION & RECOMMENDATION 

The algorithm in the methodology of this paper does 

not give a substantial improvement at avoiding false 

positives and negatives. The improvement is only 

marginal, when compared to the earlier methods that 

utilize second-order histograms. 

On the other hand, the improvements are consistent 

throughout the noise levels, e.g., the methodology in this 

paper is more reliable at selecting pixels that are 

affected by noise. This improvement is due to the 

introduction of another condition that also makes use of 

the second-order derivatives of pixels. Instead of a 

distribution-based condition, such as the frequency 

histograms that are in previous works, this condition is 

based on the circumstances of neighbouring pixels. 

Thus, having more and different conditions for the 

determination of noise-affected pixels is feasible for 

improving performance. 

The aforementioned anomaly of virtually zero false 

omission rates for MRI images of vascular objects is 

notable. This finding suggests that there is practical 

application in further developing this algorithm into a 

diagnostic tool. This would involve tests with MRI scans 

of the blood vessels of healthy subjects and subjects 

with vascular problems, in order to test the reliability of 

such an algorithm. 

However, expectations of improvement would have to 

be kept modest. The findings of this research and other 

similar research suggest that increasing complexity in 

methodology does not yield proportional improvement in 

accuracy. 

ACKNOWLEDGMENT 

There is no financial support from any agencies 
funding this research work. 

 

AUTHOR CONTRIBUTIONS 

Wai Ti Chan: Conceptualization, Data Curation, 
Methodology, Validation, Writing – Original Draft 
Preparation;  

 



Vol 5 No 1 (2023)  E-ISSN: 2682-860X 

12 
 

CONFLICT OF INTERESTS 

No conflict of interests were disclosed. 

 

ETHICS STATEMENTS 

Our publication ethics follow The Committee of 
Publication Ethics (COPE) guideline.  
https://publicationethics.org/ 

 

REFERENCES 

[1] W.T. Chan, K.S. Sim, and F.S. Abas, "Contrast Measurement 
with Histograms of Second-order Derivatives of Pixels for 
Magnetic Resonance Images," Engineering Letters, vol. 27, no. 
2, pp. 390–395, 2019. 

 URL: 
https://www.engineeringletters.com/issues_v27/issue_2/EL_27
_2_16.pdf 

[2] W.T. Chan, K.S. Sim, and F.S. Abas, "Pixel Filtering and 
Reallocation with Histograms of Second-order Derivatives of 
Pixel Values for Electron Microscope Images," International 
Journal of Innovative Computing Information and Control, vol. 
14, no. 3, pp. 915–928, 2018. 

 DOI: https://doi.org/10.24507/ijicic.14.03.915  
[3] W.T. Chan and K.S. Sim, "Termination Factor for Iterative Noise 

Reduction in MRI Images Using Histograms of Second-order 
Derivatives," IAENG International Journal of Computer Science, 
vol. 48, no. 1, pp. 174–180, 2021. 

 DOI: 
https://www.iaeng.org/IJCS/issues_v48/issue_1/IJCS_48_1_19
.pdf 

[4] W.T. Chan, "Conditional Noise Filter for MRI Images with 
Revised Theory on Second-order Histograms," International 
Journal on Robotics, Automation and Sciences, vol. 3, pp. 25–
32, 2021. 

 DOI: https://doi.org/10.33093/ijoras.2021.3.5 
[5] A. Tharwat, "Classification Assessment Methods," Applied 

Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2018. 
 DOI: https://doi.org/10.1016/J.ACI.2018.08.003 
[6] S. Jeyalaksshmi and S. Prasanna, "Measuring Distinct Regions 

of Grayscale Image Using Pixel Values," International Journal of 
Engineering and Technology, vol. 7, no. 1.1, pp. 121–124, 2018. 

 DOI: https://doi.org/10.14419/IJET.V7I1.1.9210 
[7] V. Lakshmanan, "Global and Local Image Statistics," 

Automating the Analysis of Spatial Grids, Springer, pp. 91-128, 
2012. 

 DOI: https://doi.org/10.1007/978-94-007-4075-4_4 
[8] S.M. Boca and J.T. Leek, "A Direct Approach to Estimating False 

Discovery Rates Conditional on Covariates," PeerJ, vol. 6, no. 
e6035, 2018. 

 DOI: https://doi.org/10.1101/035675 
[9] J.V. Manjón and P. Coupé, "MRI Denoising Using Deep 

Learning," International Workshop on Patch-based Techniques 
in Medical Imaging, pp. 12-19, 2018. 

 DOI: https://doi.org/10.1007/978-3-030-00500-9_2 
[10] M. Fayaz, J. Haider, M.B. Qureshi, M.S. Qureshi, S. Habib, and 

J. Gwak, "An Effective Classification Methodology for Brain MRI 
Classification Based on Statistical Features, DWT and Blended 
ANN," IEEE Access, vol. 9, pp. 159146–159159, 2021. 

 DOI: https://doi.org/10.1109/ACCESS.2021.3132159 
 

https://publicationethics.org/
https://www.engineeringletters.com/issues_v27/issue_2/EL_27_2_16.pdf
https://www.engineeringletters.com/issues_v27/issue_2/EL_27_2_16.pdf
https://doi.org/10.24507/ijicic.14.03.915
https://www.iaeng.org/IJCS/issues_v48/issue_1/IJCS_48_1_19.pdf
https://www.iaeng.org/IJCS/issues_v48/issue_1/IJCS_48_1_19.pdf
https://doi.org/10.33093/ijoras.2021.3.5
https://doi.org/10.1016/J.ACI.2018.08.003
https://doi.org/10.14419/IJET.V7I1.1.9210
https://doi.org/10.1007/978-94-007-4075-4_4
https://doi.org/10.1101/035675
https://doi.org/10.1007/978-3-030-00500-9_2
https://doi.org/10.1109/ACCESS.2021.3132159

