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Abstract - Prostate cancer is a significant health 

concern, ranking as the third most common cancer in 
Malaysian men, with increasing incidence in Asia. The 
importance of automating the prostate cancer 
classification process lies in its potential to significantly 
improve diagnostic accuracy, reduce subjectivity, and 
enhance overall efficiency compared to the manual 
approach. The objective of this thesis is two-fold: firstly, 
to effectively enhance and segment crucial features in the 
images to aid in the classification process, and secondly, 
to implement a binary classification task that indicates the 
presence or absence of malignant tissue on 
histopathology images. The study compares the 
performance of two image enhancement approaches, 
stain normalization with adaptive histogram equalization 
(AHE) and sharpening, and stain normalization with 
traditional histogram equalization (HE) and sharpening. 
Additionally, three machine learning models, namely 
SVM, DenseNet121, and InceptionResNetV2, are 
implemented and evaluated for prostate cancer binary 
classification. The findings reveal that AHE contributes to 
better contrast enhancement and image quality 
preservation. Moreover, the InceptionResNetV2 model 
demonstrates superior performance in terms of accuracy 
(97.25%), sensitivity (97.5%), specificity (97.5%), and area 
under the curve (AUC) (97.5%). 
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I. INTRODUCTION 

Prostate cancer, ranked as the third most common 
cancer among men in Malaysia, presents varying 
prevalence across different ethnic groups [1]. While the 
incidence in the country remains relatively low, the 
overall incidence of prostate cancer is on the rise in Asia, 
contributing significantly to global prostate cancer-
related deaths [2]. The accurate diagnosis and 
classification of prostate cancer are critical for 
determining appropriate treatment strategies. 

Histopathology images play a pivotal role in 
diagnosing prostate cancer, offering insights into the 
microscopic structure of prostate tissue. However, 
manual interpretation of these images introduces 
challenges, such as interobserver and intraobserver 
variability, impacting the reliability of prostate cancer 
screening and detection [3], [4], [5]. Intraobserver 
variability is due to the differences in the interpretation of 
the same tissue sample by the same pathologist, while 
interobserver variability is due to the differences in the 
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interpretation of the same tissue sample by different 
pathologists. 

These variations can lead to inconsistencies in 
diagnosis and treatment, which can have serious 
consequences for patients. This not only compromises 
the individual's well-being but also places a strain on the 
healthcare system as a whole, necessitating additional 
resources for corrective measures and potential legal 
ramifications. The gravity of these consequences 
emphasizes the urgent need for advanced and reliable 
techniques that mitigate the impact of manual 
interpretation challenges. 

In light of these challenges, this research project aims 
to address the need for more accurate and consistent 
prostate cancer diagnosis. The objectives are twofold: 
firstly, to enhance and segment essential features in 
histopathology images, facilitating the classification 
process; and secondly, to implement a binary 
classification task to identify the presence or absence of 
malignant tissue in prostate histopathology images. By 
achieving these objectives, this project intends to 
mitigate the challenges posed by manual interpretation 
and contribute to improved patient outcomes. 

The conventional staining method used in 
pathological biopsies may result in limited distinction 
between different tissue components, affecting the 
accuracy of diagnosis. Moreover, pathologists' 
assessments are influenced by their individual 
experiences, leading to variability in interpretations [4]. 
Additionally, the manual analysis of numerous 
histological images is time-consuming and may lead to 
misdiagnoses. The scarcity of specialized pathologists 
further exacerbates the situation [5]. 

To overcome these challenges, a computer-aided 
diagnosis (CAD) system is implemented for detecting 
prostate cancer in histopathological images. The CAD 
system aims to reduce misdiagnosis rates and provide a 
valuable second opinion to assist pathologists in their 
evaluations. The integration of advanced image 
processing techniques and machine learning algorithms 
aims to enhance the accuracy and efficiency of prostate 
cancer diagnosis, ultimately leading to improved patient 
outcomes. 

What sets this research apart is its innovative 
approach to addressing the diagnostic challenges 
inherent in histopathological interpretation. By 
leveraging advanced image processing techniques and 
state-of-the-art machine learning algorithms, this project 
presents a novel solution that enhances the reliability 
and accuracy of prostate cancer classification. Through 
a combination of image enhancement, and binary 
classification, this project not only contribute to the 
technical advancement of the field but also offer a 
practical tool for healthcare professionals to make more 
informed decisions. 

With a focus on processing 4000 digitalized 
histopathology prostate cancer images at 40× 
magnification using Google Colab, the research employs 
machine learning algorithms, specifically Support Vector 

Machine (SVM) and Convolutional Neural Networks 
(CNNs), for classifying normal and cancerous prostate 
tissues based on the processed histopathology images. 

As we delve into the existing body of research, the 
subsequent literature review will comprehensively 
explore state-of-the-art methods and techniques that 
have been developed to tackle the challenges 
highlighted in our introduction. By examining the 
advancements in image enhancement, feature 
extraction, and deep learning approaches, this project 
aims to build upon the foundation of knowledge and 
contribute to the ongoing progress in prostate cancer 
classification based on histopathological images. With a 
strong understanding of the existing landscape, we can 
position this research within the context of these 
approaches and identify opportunities for further 
innovation. 

II. LITERATURE REVIEW 

Histopathological image analysis plays a pivotal role 
in the accurate and timely diagnosis of prostate cancer, 
a prevalent and critical health concern affecting men 
worldwide. The advancements in medical image 
processing and machine learning techniques have 
provided promising avenues for enhancing the 
classification of prostate cancer based on 
histopathological images. This literature review presents 
a comprehensive analysis of state-of-the-art methods 
and techniques employed in prostate cancer 
classification, with a specific focus on image 
enhancement, feature extraction, and deep learning 
approaches. 

A. Image Enhancement Methods 

Image enhancement techniques are of paramount 
importance in enhancing the quality and visual clarity of 
histopathological images for subsequent analysis and 
interpretation. These techniques encompass various 
methods, including image sharpening, contrast 
adjustment, and stain normalization, which collectively 
enhance image quality, accentuate crucial details, and 
eliminate artefacts that might impact subsequent 
analyses. Among the commonly employed techniques, 
noise reduction plays a vital role in mitigating noise in 
histopathological images caused by factors such as 
image acquisition, staining variations, and digitization 
processes. By effectively reducing noise, image 
enhancement ensures that critical information is not 
obscured, enabling accurate interpretations and 
classifications. Gaussian filtering [6], median filtering [7], 
and wavelet-based [8] methods are frequently utilized to 
reduce noise while preserving essential image details. 
Studies by Xuru [6] highlighted the efficacy of Gaussian 
filtering in preserving edge contour information, resulting 
in improved model learning and enhanced classification 
accuracy.  

Contrast adjustment is equally crucial and involves 
modifying intensity levels to enhance the visual 
distinction between structures or components. 
Techniques like histogram equalization [9], [10], [11], 
adaptive histogram equalization [10], [11], and contrast 
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stretching [11] enhance the visibility of significant 
features within histopathological images. Notably, 
Acharya's [8] adaptive image enhancement technique 
utilizing genetic algorithms demonstrated remarkable 
results in various metrics, making it promising for 
disease interpretation and diagnosis.  

Stain normalization techniques are essential for 
standardizing colour appearance across different 
histopathological images, thus ensuring consistent 
analysis and interpretation. The widely used Macenko 
and Reinhard approach successfully normalizes the 
colour of histopathological images, facilitating better 
tissue recognition and classification by machine learning 
models [12], [13]. Ultimately, the application of these 
enhancement techniques enhances the accuracy and 
reliability of histopathological image analysis, with the 
selection of specific methods contingent on image 
characteristics and analysis requirements. 

B. Feature Extraction using Local Binary Patterns 
(LBP) 

Feature extraction is a critical step in 
histopathological image analysis, aiming to capture 
relevant information for subsequent analysis and 
classification tasks. Texture analysis, a commonly 
employed technique, quantifies spatial arrangements 
and pixel intensity variations to provide insights into 
tissue patterns and structures. One widely used method 
for texture analysis is Local Binary Patterns (LBP), which 
encodes local texture patterns by comparing each pixel's 
intensity value with the values of its neighboring pixels. 
Specifically, LBP assigns a binary code to each pixel 
based on whether its intensity is greater than or less than 
the intensity of the surrounding pixels. This process 
captures variations in texture, such as edges, corners, 
and other patterns. Gray-level co-occurrence matrices 
(GLCM) [14] and Gabor filters [15] are also frequently 
used for texture feature extraction. Öztürk et al. [14] 
investigated the use of GLCM and LBP, finding that the 
GLCM-based approach achieved the highest accuracy 
of 98.33% for tissue type identification. When combined 
with GLCM and other methods, LBP yielded the highest 
classification accuracy for histological tissue images. 
Gabor filters, which analyze frequency and orientation 
components, have been widely used for tissue 
classification, tumor detection, and grading, achieving an 
impressive 95.8% accuracy in binary classification. 
Shape analysis, another crucial method, focuses on 
geometric characteristics and contours of objects in 
histopathological images, providing valuable information 
about structural irregularities and morphological 
changes [16], [17]. The choice of feature extraction 
techniques depends on analysis objectives and image 
characteristics, with the extracted features serving as 
input for subsequent classification algorithms to develop 
robust and accurate models for histopathological image 
analysis. 

C. Convolutional Neural Networks (CNNs) 

In recent years, deep learning architectures, 
particularly Convolutional Neural Networks (CNNs), 
have demonstrated remarkable performance in various 

medical image analysis tasks, including prostate cancer 
classification. CNNs are designed to automatically learn 
hierarchical features from images by applying 
convolutions and pooling operations that progressively 
extract low- to high-level features. This enables them to 
capture complex patterns and structures effectively. 
Numerous studies have explored the application of 
CNNs for prostate cancer classification based on 
histopathological images. For instance, Karimi et al. [18] 
proposed a deep learning-based method that achieved 
high classification accuracies, comparable to expert 
pathologists, demonstrating the potential of well-
designed deep learning models in Prostate Cancer 
Gleason grading. Similarly, Gour et al. [19] compared 
various state-of-the-art CNN models and found that the 
EfficientNet-B7 model showed promise as a valuable 
tool for pathologists in determining the stage of prostate 
cancer. Kott et al. [20] developed a state-of-the-art deep 
learning algorithm using ResNet, achieving high 
accuracy in classifying image patches and Gleason 
grading of prostate biopsy specimens. Tolkach et al. [21] 
presented DL-based models using the NASNetLarge 
architecture, achieving high accuracy in the detection of 
prostate cancer tissue and Gleason grading. Jusman et 
al. [22] conducted a study on prostate cancer cell 
detection using pre-trained deep learning models, 
demonstrating good performance in classifying prostate 
images. The review also highlights the potential 
applicability of CNN models in classifying breast cancer 
in histopathological images, as demonstrated by Al-Haija 
et al. [23], Motlagh et al. [24], and Parvin et al. [25]. 
These studies collectively showcase the promising role 
of deep learning in enhancing the accuracy and 
efficiency of cancer diagnosis, offering possibilities for 
advancements in medical image analysis. Recent 
advancements in CNNs, including residual connections, 
attention mechanisms, transfer learning, hardware 
improvements, and regularization techniques, have 
significantly contributed to their improved performance in 
various computer vision applications. 

D. Support Vector Machines (SVM) 

Machine learning algorithms, such as support vector 
machines (SVM), random forests, and k-nearest 
neighbors (KNN), have gained widespread popularity in 
the classification of prostate cancer using 
histopathological images. SVM, particularly esteemed 
for its ability to manage high-dimensional feature spaces 
and its effectiveness in binary classification tasks, has 
been extensively employed in this domain. SVM 
functions by finding the optimal hyperplane that best 
separates different classes of data points. This 
hyperplane maximizes the margin between the two 
classes, allowing SVM to make accurate predictions for 
new, unseen data points. For instance, Bhattacharjee et 
al. [26] achieved an accuracy of 88.7% in prostate 
cancer classification using SVM on histopathological 
images. 

However, ongoing research aims to enhance SVM's 
accuracy by combining multiple features and integrating 
deep learning techniques such as Convolutional Neural 
Networks (CNNs). Notably, SVM's applicability extends 
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beyond prostate cancer, as demonstrated in breast 
cancer classification. Aswathy and Jagannath [27] 
introduced an integrated SVM model for breast cancer 
classification, achieving an accuracy of approximately 
90%. Alqudah et al. [28] utilized LBP features with a 
sliding window-based SVM system, achieving an overall 
accuracy of 91.12% in breast cancer classification. Singh 
et al. [29] proposed a cubic SVM classifier for breast 
cancer detection and classification, achieving a peak 
accuracy of 92.3%. Additionally, Lopez et al. [30] 
developed a clinical decision support tool incorporating 
SVM, naïve Bayes, and KNN classifiers, where SVM 
outperformed others with an accuracy of 0.7490 in 
detecting invasive ductal carcinoma. 

While SVM boasts robustness, it does have 
limitations, including sensitivity to noisy data, 
computational expense for large datasets, and intricate 
model interpretation. Nonetheless, advancements like 
kernel tricks and stochastic gradient descent 
optimization have bolstered SVM's performance. The 
integration of deep learning architectures like CNNs has 
further augmented SVM's capabilities in handling 
complex data and achieving state-of-the-art results. 

E. Performance Evaluation 

The evaluation of these methods involves the use of 
various performance metrics to assess their 
effectiveness. For classification tasks, commonly used 
metrics include accuracy, sensitivity, specificity, and 
area under the ROC curve (AUC). Accuracy measures 
the proportion of correctly predicted instances, sensitivity 
evaluates the true positive rate, and specificity assesses 
the true negative rate. AUC provides a comprehensive 
measure of the model's performance in distinguishing 
between cancerous and non-cancerous regions.  

On the other hand, image enhancement techniques 
are evaluated using mean squared error (MSE), 
structural similarity index measure (SSIM), and peak 
signal-to-noise ratio (PSNR). MSE quantifies the 
average squared difference between the enhanced 
image and the original image, with lower values 
indicating better enhancement. SSIM is a metric that 
evaluates the structural similarity between the enhanced 
and original images, measuring the preservation of 
structures and textures. Higher SSIM values indicate 
better preservation of image features. PSNR measures 
the ratio of the maximum pixel value to the mean 
squared error and indicates the quality of the enhanced 
image. Higher PSNR values suggest better 
enhancement quality. These metrics collectively provide 
valuable insights into the effectiveness of image 
enhancement techniques in improving the visual quality 
and interpretability of histopathological images. 

Histopathological image datasets present significant 
challenges in collection and annotation. Expert 
pathologists are required for manual annotation, which is 
time-consuming and subjective. Collecting large-scale, 
well-annotated datasets necessitates collaboration 
among medical institutions. Moreover, privacy concerns 
and ethical considerations further complicate the 
process of dataset acquisition. 

D. Recent Advancements in 2023 

The landscape of prostate cancer classification has 
seen remarkable advancements in 2023, marked by 
studies that contribute significantly to the refinement of 
histopathological image analysis. Among these recent 
breakthroughs, Fogarty et al. [31] developed a deep 
learning (DL) model aimed at identifying the most 
prominent Gleason pattern. Their approach, validated on 
an independent dataset, effectively discriminates cancer 
grade from benign tissue, achieving remarkable 
accuracies of 91% and an AUC of 0.96. Bazargani et 
al. [32] addressed the domain shift challenge in 
histopathology image analysis by introducing a novel 
centre-based H&E colour augmentation technique. This 
approach enhances the generalization power of deep 
learning models across datasets from different institutes, 
demonstrating promise in learning more generalizable 
features for histopathology image analysis. Moreover, 
Nishio et al. [33] focused on automatic prediction 
systems for grading histopathological images using deep 
learning models and label distribution learning (LDL). 
Their LDL-enhanced system exhibited improved 
diagnostic performance for prostate cancer grading, 
showcasing the potential of novel techniques in 
enhancing accuracy and reliability in cancer diagnosis. 

These recent advancements underscore the 
continuous evolution of histopathological image 
analysis, with researchers leveraging innovative 
methodologies to overcome existing challenges and 
elevate the accuracy and efficiency of prostate cancer 
classification.  

III. METHODOLOGY 

A.  Proposed Methodology 

The proposed methodology for this study is chosen 
based on the project's objectives and nature. The 
primary aim of the project is to develop a robust 
classification system for prostate cancer using 
histopathological images. To achieve this, a systematic 
research design is employed, allowing for the evaluation 
of various image enhancement techniques to improve 
the quality and clarity of the images. This approach 
facilitates the exploration of multiple pathways to achieve 
accurate classification results. 

A flowchart and its pseudocode representing the 
proposed research design is presented in Figure 1 and 
Table 1 respectively. The flowchart outlines the 
sequential steps involved in classifying prostate cancer 
using histopathological images. It includes image 
enhancements, feature extraction, and classification 
using supervised techniques such as Support Vector 
Machines (SVM) and Convolutional Neural Networks 
(CNN) – specifically DenseNet121 and 
InceptionResNetV2. The research design enables a 
structured approach to address the research objectives 
and provides a framework for evaluating the proposed 
methods in the context of prostate cancer classification. 
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FIGURE 1.  Histopathology-Based Prostate Cancer 
Classification Flowchart. 

TABLE1.  Pseudocode of proposed methodology.  

Pseudocode of Proposed Methodology 

Start 

    Load Prostate histopathological image 

    Image Enhancement: 
        Apply Stain Normalization 

        Apply Adaptive Histogram Equalization 

        Apply Sharpening 
        Evaluate Performance 

        If Performance is not satisfactory: 

            Go back to Stain Normalization 
        Else: 

            Proceed to Classification 

    End Image Enhancement 
    Classification: 

        Supervised (Choose a classification method): 

            If SVM: 
                Feature Extraction using LBP 

                Classification using SVMs 

            Else if CNNs: 
                Choose a CNN architecture: 

                    If DenseNet121: 

                        Apply DenseNet121 model 
                    Else if InceptionResnetV2: 

                        Apply InceptionResnetV2 model 

                Classification using chosen CNN 
            Evaluate Performance 

            If Performance is not satisfactory: 

                Go back to Supervised 
            Else: 

                Proceed to End 

        End Classification 
End Start 

 

B. Data Retrieval 

The foundation of this research lies in the acquisition 
and curation of a comprehensive histopathological 
image dataset meticulously tailored to the study's focus 
– the accurate classification of prostate cancer. This 
section details the selection process, considerations, 
and tools employed for data retrieval and management. 

The chosen dataset, known as Diagset-A [34], 
represents a dedicated repository designed explicitly for 
prostate cancer detection. It comprises over 2.6 million 
tissue patches extracted from 430 fully annotated scans, 
4675 scans with binary diagnosis, and 46 scans 
independently diagnosed by histopathologists. 

Within this vast dataset, a carefully curated subset of 
4000 images was extracted to closely align with the 
research objectives. These selected images are 
characterized by their alignment with a 40× 
magnification, a level that effectively balances 
granularity and coverage. This selection criterion was 
grounded in the pursuit of images that preserve intricate 
cellular details while maintaining a coherent overview of 
the tissue. The dataset was divided into 80% training 
dataset and 10% each for validation and testing 
datasets. 

It is important to acknowledge that the original 
dataset presented certain complexities. Notably, the 
dataset was initially annotated across nine distinct 
classes, reflecting various Gleason grades. To mitigate 
challenges stemming from potential imperfections in the 
dataset and to streamline in this research, a strategic 
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decision was made to consolidate the five Gleason 
grades. This amalgamation ultimately resulted in a 
binary classification scheme, categorizing tissues as 
either benign or malignant. This refinement facilitated a 
more focused and coherent approach to subsequent 
analysis and classification. 

Central to the operational foundation of this study is 
the utilization of Google Colab, a cloud-based Jupyter 
notebook environment. Google Colab plays a pivotal role 
in facilitating data retrieval and management, enabling 
seamless interaction with the dataset and analysis tools. 

The adoption of Google Colab strategically 
addresses the challenges inherent to managing a 
dataset of substantial scale. The cloud-based nature of 
this platform effectively mitigates concerns related to 
computational resources, fostering agility in data 
exploration, preprocessing, and manipulation. 
Furthermore, Google Colab's compatibility with an array 
of essential Python libraries ensures a harmonious 
integration of established image processing and analysis 
techniques. 

C. Image Enhancement 

This phase constitutes a pivotal step aimed at 
elevating the quality and interpretability of a carefully 
chosen subset of 4000 histopathological images. This 
segment delves into the meticulous application of three 
pivotal techniques – stain normalization, histogram 
equalization (HE), and sharpening. The selection of 
these techniques was meticulously informed by a 
comprehensive literature review and further scrutinized 
through rigorous evaluation employing metrics such as 
peak signal-to-noise ratio (PSNR), mean squared error 
(MSE), and structural similarity index measure (SSIM). 

i. Stain Normalization for Consistency and Quality: 

Among the triad of enhancement techniques, stain 
normalization emerges as a cornerstone. Its core 
objective revolves around rectifying colour variations 
inherent in histopathological images, thereby 
augmenting visual quality and ensuring consistency. The 
method of choice for stain normalization is the well-
regarded Macenko method. This method intricately 
navigates a series of sequential steps to attain the 
desired colour transformation. 

To execute Macenko's stain normalization within the 
context of Google Colab, a coherent sequence unfolds: 

1. Convert RGB to Optical Density (OD): The RGB 
representation of the image undergoes a 
transformation into the optical density space, 
effectively separating colour attributes from 
intensity information. 

2. Remove Low Intensity Data: Intensity values 
below a predefined threshold (B) are pruned, 
enhancing image clarity by eliminating low-
intensity artifacts. 

3. Singular Value Decomposition (SVD) on OD 
Tuples: Employing singular value decomposition, 

the directions of maximal variance within the 
optical density space are unveiled. 

4. Construct Plane from SVD Directions: The two 
most prominent singular values guide the creation 
of a plane, encapsulating the predominant colour 
variations. 

5. Project Data onto Plane and Normalize: Image 
data is projected onto the plane, culminating in the 
normalization of this projection to ensure 
uniformity. 

6. Calculate Angle of Each Point: The normalized 
space is harnessed to compute the angle of every 
data point in relation to the leading SVD direction, 
effectively quantifying colour characteristics. 

7. Identify Robust Extremes: Through percentile 
analysis, robust angle extremes (𝛼𝑡ℎ and (100 −
α)𝑡ℎ percentiles) are discerned, encapsulating the 
quintessential color characteristics. 

8. Convert Extremes back to OD: These extreme 
angle values are meticulously reconverted into 
optical density space, yielding the optimal stain 
vectors. 

ii. Adaptive Histogram Equalization (AHE) for Contrast 
and Brightness: 

The journey of enhancement further embraces 
Adaptive Histogram Equalization (AHE), an approach 
meticulously calibrated to amplify contrast and 
luminosity. AHE extends its reach by adapting 
transformation functions to the unique properties of 
discrete tiles within the image. The orchestration of AHE 
in this project, harmoniously orchestrated within Google 
Colab, unfolds as follows: 

1. Division into Tiles: The image canvas is 
partitioned into non-overlapping tiles or regions. 

2. Histogram Calculation: Each tile's histogram is 
meticulously calculated, encapsulating the 
frequency distribution of pixel intensities. 

3. Independent Transformation: Individual tiles 
undergo independent histogram equalization 
transformations, magnifying contrast and 
luminosity. The transformation function is 
founded on a discrete approximation of grey 
level probabilities, anchored by Equation (1) and 
(2). 

          𝑝𝑟(𝑟𝑘) =
𝑛𝑘

𝑛
    𝑤ℎ𝑒𝑟𝑒  𝑘 = 0,1, … , 𝐿 − 1       (1)     

  𝑠𝑘 = 𝑇(𝑟𝑘) = (𝐿 − 1) ∑ 𝑝𝑟(𝑟𝑗)𝑘
𝑗=0           (2) 

     where 𝑘 = 0,1,2, … , 𝐿 − 1    

4. Tiles Convergence: The equalized tiles 
convene, giving rise to an enriched and 
enhanced image, endowed with augmented 
contrast and luminosity. 
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iii. Sharpening for Edge and Detail Enhancement: 

Completing the triumvirate of enhancement 
techniques is the application of sharpening, executed 
through the judicious utilization of a Gaussian kernel. 
This technique embarks on a transformative journey 
aimed at accentuating edges and finer details. The 
Gaussian kernel, facilitated through convolution, 
embraces a dual role – accentuating high-frequency 
components while steadfastly preserving integral image 
features. A coherent portrayal of sharpening's 
orchestration is articulated through the following 
sequence: 

1. Convolution with Gaussian Kernel: The original 
image embarks on a convolutional encounter with 
a Gaussian kernel, yielding a perceptible shift 
toward a blurred rendition. 

Gaussian kernel: 

 

2. Blurred Image Subtraction: The blurred 
counterpart is meticulously subtracted from the 
original image, culminating in the extraction of 
high-frequency constituents intrinsic to edges and 
finer details. 

3. Amplification of High-Frequency 
Components: These high-frequency elements 
are subjected to an amplification regime, 
intensifying sharpness and accentuating the 
prominence of edges. 

D. Image Classification 

The conclusive stage of this study entails the 
meticulous classification of histopathological prostate 
cancer images via the skilful utilization of supervised 
classification methodologies. This segment delves into 
the deployment of Support Vector Machine (SVM) and 
Convolutional Neural Network (CNN) models, both 
adapted with precision to realize the objective of precise 
classification. At the core of this endeavour lies the 
fundamental principle of supervised classification, 
whereby labelled data serves as the bedrock upon which 
predictive models are cultivated, empowering them to 
uncover patterns and foresee labels for previously 
unseen instances. 

The application of Support Vector Machine (SVM) 
stands as a pivotal element in the quest for classification 
accuracy. The journey commences with the extraction of 
features through the utilization of Local Binary Patterns 
(LBP), a revered texture descriptor renowned for 
capturing localized patterns that intricately define an 
image's texture. This texture-focused perspective 
provides the foundation upon which SVM, fortified with 
the Radial Basis Function (RBF) kernel, excels. The RBF 
kernel confers the SVM with the ability to navigate 

complex, non-linear data distributions, thereby 
facilitating the discernment of intricate patterns. 

Parallel to the SVM narrative, Convolutional Neural 
Networks (CNNs) emerge as potent instruments within 
the classification repertoire. In this phase, two distinct 
CNN architectures come into play – DenseNet121 and 
InceptionResNetV2. Each architecture is meticulously 
tailored to uncover inherent features and patterns within 
images. The mechanism adopted is transfer learning, a 
technique that capitalizes on pre-trained models, refining 
them to our specific dataset. 

• DenseNet121: The selection of DenseNet121 is 
grounded in its ability to reuse features, facilitating 
the capture of fine-grained intricacies within images. 
This architecture, characterized by dense 
connections between layers, heightens the model's 
capacity to extract nuanced details concealed within 
images. 

• InceptionResNetV2: Augmenting the ensemble is 
InceptionResNetV2, a hybrid architecture 
amalgamating the strengths of Inception and 
ResNet models. This amalgamation enriches the 
learning process, empowering the model to unravel 
intricate and discriminative features pivotal to 
classification. 

The orchestration of DenseNet121 and 
InceptionResNetV2, in conjunction with the training and 
evaluation procedures, unfolds within the nurturing 
embrace of Keras, while TensorFlow assumes the 
mantle of the backend. Keras stands as an intuitive 
arena, seamlessly facilitating the construction and 
training of intricate deep learning models. Harmonizing 
with this frontend grace is TensorFlow, an optimization 
powerhouse that fuels the computation and optimization 
underpinning expansive neural networks. 

IV. RESULTS AND DISCUSSION 

A. Performance Evaluation of Image Enhancement 
Techniques 

The study evaluated two different approaches for 
image enhancement in the context of prostate cancer 
classification. The first approach utilized stain 
normalization with the Macenko method, followed by 
adaptive histogram equalization (AHE) and sharpening 
with a Gaussian filter. The second approach also 
employed stain normalization with the Macenko method 
but used traditional histogram equalization (HE) instead 
of AHE, followed by sharpening with a Gaussian filter. 
Sample outputs of both approaches are denoted in 
Figure 2, Figure 3, and Figure 4. The evaluation was 
based on quantitative metrics such as peak signal-to-
noise ratio (PSNR), mean squared error (MSE), and 
structural similarity index measure (SSIM). 
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FIGURE 2.  Original Image of Cancer Sample 69 with the Two 
Approaches. 

 

 

FIGURE 3.  Original Image of Cancer Sample 435 with the Two 
Approaches. 

 

 

FIGURE 4.  Original Image of Cancer Sample 1232 with the Two 
Approaches. 

 

TABLE 2. Performance Evaluation of Image Enhancement 
Approaches.  

Approach 
Average 

PSNR (dB) 
Average 

MSE 
Average 

SSIM 

Stain Normalization 

+ AHE + Sharpening 
18.7994 99.0596 0.8381 

Stain Normalization 
+ HE + Sharpening 

15.7363 105.0273 0.7052 

 

The results in Table 2 indicated that the Stain 
Normalization + AHE + Sharpening approach 
outperformed the Stain Normalization + HE + 
Sharpening approach in terms of PSNR, MSE, and 
SSIM. The first approach achieved a higher average 
PSNR (18.80 dB) compared to the second approach 
(15.74 dB), indicating better preservation of image 
details and less distortion. The Stain Normalization + 
AHE + Sharpening approach also had a lower average 
MSE (99.06) compared to the Stain Normalization + HE 
+ Sharpening approach (105.03), implying a closer 
resemblance between the enhanced and original 
images. Additionally, the first approach yielded a higher 

average SSIM (0.84) compared to the second approach 
(0.71), signifying better preservation of structural 
information in the enhanced images. 

The findings suggest that AHE contributes to better 
contrast enhancement and image quality preservation 
compared to traditional HE when combined with stain 
normalization and sharpening techniques. The localized 
approach of AHE allows for more effective contrast 
enhancement and preservation of image features 
compared to the global nature of traditional histogram 
equalization. 

TABLE 3. Performance Evaluation of Different Image 
Enhancement Approaches using InceptionResNetV2. 

Approach 
InceptionResNetV2 
Model Accuracy (%) 

Original Dataset 95.00 

Stain Normalized Dataset 92.78 

AHE Dataset 91.11 

Sharpen Dataset 95.56 

Stain Normalized + Sharpen Dataset 93.89 

Stain Normalized + AHE Dataset 94.44 

Stain Normalized + Sharpen + AHE Dataset 95.08 

Stain Normalization + AHE + Sharpen Dataset 97.22 

 

Table 3 presents the results of evaluating various 
image enhancement techniques using the 
InceptionResNetV2 model for prostate cancer 
classification. These results provide essential insights 
into the impact of each approach on the model's 
accuracy and highlight the rationale for choosing a 
specific enhancement strategy. 

The accuracy of the "Original Dataset" (95.00%) 
serves as a baseline for evaluating enhancement 
methods and understanding their effects. The "Stain 
Normalized Dataset" (92.78%) showcases the efficacy of 
stain normalization alone, mitigating colour 
inconsistencies in histopathological images. "Sharpen 
Dataset" (95.56%) highlights the benefits of image 
sharpening in capturing finer diagnostic features. 

The combined approaches demonstrate nuanced 
outcomes: "Stain Normalized + Sharpen Dataset" 
(93.89%) suggests complementary strengths, while 
"Stain Normalized + AHE Dataset" (94.44%) offers a 
moderate boost from AHE. Notably, "Stain Normalization 
+ AHE + Sharpen Dataset" achieves the highest 
accuracy at 97.22%, illustrating the potential of a 
comprehensive approach. 

Hence, the results in Table III underscore the 
significance of a customized image enhancement 
pipeline. The sequential application of stain 
normalization, AHE, and sharpening contributes to 
substantial accuracy improvements, highlighting the 
merits of a balanced enhancement strategy. This 
approach was selected because it demonstrates the 
most promising outcomes in terms of classification 
accuracy, providing a robust framework for enhancing 
histopathological images for prostate cancer 
classification using InceptionResNetV2. 
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B. Prostate Cancer Classification Results and Analysis 

The study employed three classification models for 
prostate cancer classification: Support Vector Machine 
(SVM), DenseNet121, and InceptionResNetV2. Each 
model underwent a thorough parameter tuning process, 
and data augmentation techniques were applied to 
enhance generalization capabilities. The models were 
evaluated using metrics such as accuracy, sensitivity, 
specificity, and area under the ROC curve (AUC). 

TABLE 4. Performance Evaluation of SVM, DenseNet121, and 
InceptionResNetV2. 

Model Accuracy Sensitivity Specificity AUC 

SVM 0.8550 0.8450 0.8650 0.9448 

DenseNet121 0.9600 0.9700 0.9650 0.9675 

InceptionResNet

V2 
0.9725 0.9750 0.9750 0.9750 

 

The results in Table 4 showed that all three models 
achieved high accuracy and AUC values, indicating their 
effectiveness in prostate cancer classification. The 
InceptionResNetV2 model outperformed the other two 
models, achieving the highest accuracy (97.25%), 
sensitivity (97.50%), specificity (97.50%), and AUC 
(0.9750). The DenseNet121 model also exhibited strong 
performance with an accuracy of 96.00%, sensitivity of 
97.00%, specificity of 96.50%, and AUC of 0.9675. The 
SVM model achieved an accuracy of 85.50%, sensitivity 
of 84.50%, specificity of 86.50%, and AUC of 0.9448. 

The superior performance of the InceptionResNetV2 
model can be attributed to its ability to capture complex 
patterns and hierarchies in images through its deep 
architecture and residual connections. The 
InceptionResNetV2 model incorporates both the benefits 
of the Inception module for multi-scale feature extraction 
and the ResNet architecture for easier training of very 
deep networks. 

 

FIGURE 4.  Training and Validation Accuracy-Loss Graph of 
InceptionResNetV2. 

 

 

FIGURE 5.  Training and Validation Accuracy-Loss Graph of 
Densenet121. 

The training and validation accuracy/loss graphs for 
both DenseNet121 (Figure 5) and InceptionResNetV2 
(Figure 4) models demonstrated a positive trend, with 
accuracy steadily improving over time. Both models 
exhibited good generalization capabilities, as the 
validation accuracy closely tracked the training accuracy 
without overfitting. 

The findings of the study align with existing literature, 
which also demonstrates the effectiveness of deep 
learning techniques, especially CNNs, in prostate cancer 
classification based on histopathological images. The 
inclusion of SVM in the analysis provided a 
comprehensive evaluation and comparison of different 
classification techniques. 

Overall, the study highlights the potential of deep 
learning models, particularly InceptionResNetV2, for 
prostate cancer classification using histopathological 
images. The high accuracy and AUC values obtained by 
all three models indicate the effectiveness of deep 
learning and machine learning techniques in this 
domain. The study's implementation details and 
parameter tuning process contribute to the transparency 
and reliability of the research findings. 

V. CONCLUSION 

In conclusion, this research demonstrates the 

effectiveness of image enhancement techniques and 

deep learning models for prostate cancer classification 

based on histopathological images. The study reveals 

that stain normalization with adaptive histogram 

equalization (AHE) and sharpening outperforms stain 

normalization with histogram equalization (HE) and 

sharpening in enhancing image quality. Additionally, the 

InceptionResNetV2 model shows superior performance 

among Support Vector Machine (SVM), DenseNet121, 

and InceptionResNetV2, achieving the highest 

accuracy, sensitivity, specificity, and AUC values. The 

research provides valuable insights and 

recommendations for future work, including the use of 

larger datasets, ensemble models, explainable AI, and 

integration into clinical practice. These findings 

contribute to the ongoing efforts in improving prostate 

cancer diagnosis and treatment, ultimately benefiting 

patient outcomes both in Malaysia and globally. 
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