Some Insights on Pythagorean Neutrosophic Graphs
Main Article Content
Abstract
Pythagorean neutrosophic graphs (PNeuGr) are a specialized extension of the neutrosophic graphical idea, where the total sum range of memberships is adjusted by squaring each membership. This article is furnished to enhance the handling of uncertain events in a complex environment. The discussion encloses the irregular properties of the PNeuGr and its practical implications
Manuscript received:9 Apr 2025 | Revised: 28 May 2025 | Accepted: 19 Jun 2025 | Published: 30 Jul 2025
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
A. Rosenfeld, “Fuzzy graphs”, Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic press, 1975.
DOI: https://doi.org/10.1016/B978-0-12-775260-0.50008-6
A. Nagoor Gani and D. Rajalaxmi (a) Subahashini, “Fuzzy Labeling Tree,” International Journal of Pure and Applied Mathematics, vol. 90, no. 2, pp. 131-141, 2014.
DOI: http://dx.doi.org/10.12732/ijpam.v90i2.3
K.T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.
DOI: https://doi.org/10.1016/S0165-0114(86)80034-3
R. Parvathi and M.G. Karunambigai, “Intuitionistic Fuzzy Graphs,” Computational Intelligence, Theory and Applications, vol. 38, pp. 139-150, 2006.
DOI: https://doi.org/10.1007/3 540-34783-6_15
M. Akram and R. Akmal, “Operations on intuitionistic fuzzy graph structures,” Fuzzy Information and Engineering, vol. 8, no. 4, pp. 389-410, 2016.
DOI: https://doi.org/10.1016/j.fiae.2017.01.001
F. Smarandache, “Neutrosophic set- a generalization of the intuitionistic fuzzy set,” 2006 IEEE International Conference on Granular Computing, pp. 38-42, 2006.
DOI: https://doi.org/10.1109/GRC.2006.1635754
F. Smarandache, “A geometric interpretation of the neutrosophic set- A generalization of the intuitionistic fuzzy set,” 2011 IEEE International Conference on Granular
Computing, pp. 602-606, 2011.
DOI: https://doi.org/10.1109/GRC.2011.6122665
W.B. Vasantha Kandasamy, K. Ilanthenral, F. Smarandache, Neutrosophic graphs: A New Dimension to Graph Theory, Belgium: EuropaNova ASBL, Brussels, 2015.
URL: https://digitalrepository.unm.edu/math_fsp/98/
S. Broumi, F. Smarandache, M. Talea and A. Bakali, “Single valued neutrosophic graphs: Degree, order and size,” 2016 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 2444-2451, 2016.
DOI: https://doi.org/10.1109/FUZZ-IEEE.2016.7738000
R. R. Yager, "Pythagorean fuzzy subsets," 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57-61, 2013.
DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
M. Akram, F. Ilyasa and A.B. Saeid, “Certain notions of pythagorean fuzzy graphs,” Journal of Intelligent & Fuzzy Systems, vol. 36, pp. 5857–5874, 2019.
DOI: https://doi.org/10.3233/JIFS-181697
R. Jansi, K. Mohana and F. Smarandache, “Correlation measure for pythagorean neutrosophic sets with T and F as dependent neutrosophic components,” Neutrosophic Sets
System, vol. 30, pp. 202-212, 2019.
DOI: https://doi.org/10.5281/zenodo.3569786
D. Ajay and P. Chellamani, “Pythagorean neutrosophic fuzzy graphs,” International Journal of Neutrosophic Science, vol. 11, no. 2, pp. 108-114, 2020.
DOI: https://doi.org/10.54216/IJNS.0110205
D. Ajay, P. Chellamani and G. Rajchakit et al., “Regularity of pythagorean neutrosophic graphs with an illustration in MCDM,” AIMS Mathematics, vol. 7, no. 5, pp. 9424-9442,
DOI: http://dx.doi.org/10.3934/math.2022523
D. Ajay and P. Chellamani, “Operations on Pythagorean neutrosophic graphs,” AIP Conference Proceedings, vol. 2516, pp. 200028, 2022.
DOI: https://doi.org/10.1063/5.0108432
M. Mullai, G. Vetrivel, G. Rajchakit, and G.M. Kumar, “Neighbourly Edge Irregularity on Interval-Valued Pythagorean Neutrosophic Graph”, International Journal on Robotics, Automation and Sciences, vol. 5, no. 2, pp. 54-58, 2023.
DOI: https://doi.org/10.33093/ijoras.2023.5.2.6
G. Vetrivel, M. Mullai and G. Rajchakit, “Product operations on pythagorean co-neutrosophic graphs and its application”, Neutrosophic Sets System, vol. 72, pp. 357-380, 2024.
DOI: https://doi.org/10.5281/zenodo.13566972
G. Vetrivel, M. Mullai, G. Rajchakit, R. Surya and S. Saravanan, “Complement properties of pythagorean co-neutrosophic graphs”, International Journal on Robotics, Automation and Sciences, vol. 6, no. 2, pp. 42-51, 2024.
DOI: https://doi.org/10.33093/ijoras.2024.6.2.7
N. Shah and S. Broumi, “Irregular neutrosophic graphs,” Neutrosophic Sets and System, vol. 13, pp. 47- 55, 2016.
DOI: https://doi.org/10.5281/zenodo.570846
A.A. Talebi, M. Ghassemi, H. Rashmanlou and S. Broumi, “Novel properties of edge irregular single valued neutrosophic graphs,” Neutrosophic Sets and System, vol. 43, pp. 255-279, 2021.