Prostate Cancer Classification Based on Histopathological Images
Main Article Content
Abstract
Prostate cancer is a significant health concern, ranking as the third most common cancer in Malaysian men, with increasing incidence in Asia. The importance of automating the prostate cancer classification process lies in its potential to significantly improve diagnostic accuracy, reduce subjectivity, and enhance overall efficiency compared to the manual approach. The objective of this thesis is two-fold: firstly, to effectively enhance and segment crucial features in the images to aid in the classification process, and secondly, to implement a binary classification task that indicates the presence or absence of malignant tissue on histopathology images. The study compares the performance of two image enhancement approaches, stain normalization with adaptive histogram equalization (AHE) and sharpening, and stain normalization with traditional histogram equalization (HE) and sharpening. Additionally, three machine learning models, namely SVM, DenseNet121, and InceptionResNetV2, are implemented and evaluated for prostate cancer binary classification. The findings reveal that AHE contributes to better contrast enhancement and image quality preservation. Moreover, the InceptionResNetV2 model demonstrates superior performance in terms of accuracy (97.25%), sensitivity (97.5%), specificity (97.5%), and area under the curve (AUC) (97.5%).
Manuscript received: 1st May 2023 | Revised: 30th July 2023 | Accepted: 21st August 2023 | Published: 30 September 2023
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
A. A. Manan, H. Basri, N. Kaur, S. Z. A. Rahman, P. N. Amir, N. Ali, S. Raman, B. Bahtiar, N. S. M. Ramdzuan, S. S. S. Soffian, R. Othman, N. A. Othman, and A. A. Aziz, “Malaysia National cancer registry report (MNCR),” 2019. [Online].
Available: http://www.moh.gov.my/moh/resources/Penerbitan/Laporan/Umum/2012-2016%20(MNCRR)/MNCR_2012-2016_FINAL_(PUBLISHED_2019).pdf (Accessed: 19, Jun, 2023).
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries," CA: A Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209-249, 2021.
DOI: https://doi.org/https://doi.org/10.3322/CAAC.21660
D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images – Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE J Biomed Health Inform, vol. 24, no. 5, pp. 1413–1426, May 2020,
DOI: https://doi.org/10.1109/JBHI.2019.2944643.
J. Wang, R. J. Chen, M. Y. Lu, A. Baras, and F. Mahmood, “Weakly Supervised Prostate TMA Classification Via Graph Convolutional Networks,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Apr. 2019, pp. 239–243,
DOI: https://doi.org/10.1109/ISBI45749.2020.9098534.
B. Patel, S. Sriprasad, J. Cadeddu, A. Thind, and A. Rane, “Obstacles in prostate cancer screening: Current issues and future solutions,” vol. 12, no. 2, pp. 111–116, Nov. 2018,
DOI: https://doi.org/10.1177/2051415818815395.
M. Xuru, “A Classification Method of Breast Pathological Image Based on Residual Learning,” in Proceedings – 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020, Jul. 2020, pp. 135–139,
DOI: https://doi.org/10.1109/CVIDL51233.2020.00033.
R. Saturi and P. Prem Chand, “Implementation of Efficient Segmentation Method for Histopathological Images,” in Proceedings of the 5th International Conference on Inventive Computation Technologies (ICICT 2020), Feb. 2020, pp. 419–423,
DOI: https://doi.org/10.1109/ICICT48043.2020.9112386.
E. Cengiz, M. M. Kelek, Y. Oguz, and C. Yllmaz, “Classification of breast cancer with deep learning from noisy images using wavelet transform,” Biomedizinische Technik, vol. 67, no. 2, pp. 143–150, Apr. 2022,
DOI: https://doi.org/10.1515/BMT-2021-0163.
S. Mehmood, T.M. Ghazal, M.A. Khan, M. Zubair, M.T. Naseem, T. Faiz and M. Ahmad, "Malignancy Detection in Lung and Colon Histopathology Images Using Transfer Learning With Class Selective Image Processing," IEEE Access, vol. 10, pp. 25657-25668, 2022.
DOI: https://doi.org/DOI: https://doi.org/10.1109/ACCESS.2022.3150924
U. K. Acharya and S. Kumar, “Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement,” Optik (Stuttg), vol. 230, p. 166273, Mar. 2021, DOI: https://doi.org/10.1016/J.IJLEO.2021.166273.
F. A. Dzulkifli, M. Y. Mashor, and H. Jaafar, “Identification of Suitable Contrast Enhancement Technique for Improving the Quality of Astrocytoma Histopathological Images,” ELCVIA Electronic Letters on Computer Vision and Image Analysis, vol. 20, no. 1, pp. 84–98, May 2021,
DOI: https://doi.org/10.5565/rev/elcvia.1256.
S. Roy, A. Kumar Jain, S. Lal, and J. Kini, “A study about color normalization methods for histopathology images,” Micron, vol. 114, pp. 42–61, Nov. 2018,
DOI: https://doi.org/10.1016/J.MICRON.2018.07.005.
F. Bianconi, J. N. Kather, and C. C. Reyes-Aldasoro, “Experimental Assessment of Color Deconvolution and Color Normalization for Automated Classification of Histology Images Stained with Hematoxylin and Eosin,” Cancers, vol. 12, no. 11, p. 3337, Nov. 2020,
DOI: https://doi.org/10.3390/CANCERS12113337.
S. Ozturk and B. Akdemir, “Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA,” Procedia Comput Sci, vol. 132, pp. 40–46, Jan. 2018,
DOI: https://doi.org/10.1016/J.PROCS.2018.05.057.
T. J. Alhindi, S. Kalra, K. H. Ng, A. Afrin, and H. R. Tizhoosh, “Comparing LBP, HOG and Deep Features for Classification of Histopathology Images,” in Proceedings of the International Joint Conference on Neural Networks, Oct. 2018,
DOI: https://doi.org/10.1109/IJCNN.2018.8489329.
S. Bhattacharjee, H. G. Park, C. H. Kim, D. P. Prakash, N. M. Madusanka, J. H. So, N. H. Cho, and H. K. Choi., “Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM,” Applied Sciences, vol. 9, no. 15, p. 2969, Jul. 2019,
DOI: https://doi.org/10.3390/APP9152969.
S. Sharma and R. Mehra, “Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images—a Comparative Insight,” J Digit Imaging, vol. 33, no. 3, pp. 632–654, Jun. 2020,
DOI: https://doi.org/10.1007/S10278-019-00307-Y.
D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images – Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE J Biomed Health Inform, vol. 24, no. 5, pp. 1413–1426, May 2020,
DOI: https://doi.org/10.1109/JBHI.2019.2944643.
M. Gour, S. Jain, and U. Shankar, “Application of Deep Learning Techniques for Prostate Cancer Grading Using Histopathological Images,” Communications in Computer and Information Science, vol. 1567, pp. 83–94, 2022,
DOI: https://doi.org/10.1007/978-3-031-11346-8_8.
O. Kott, D. Linsley, A. Amin, A. Karagounis, C. Jeffers, D. Golijanin, T. Serre and B. Gershman, "Development of a Deep Learning Algorithm for the Histopathologic Diagnosis and Gleason Grading of Prostate Cancer Biopsies: A Pilot Study," European Urology Focus, vol. 7, no. 2, pp. 347-351, 2021.
DOI: https://doi.org/DOI: https://doi.org/10.1016/J.EUF.2019.11.003
Y. Tolkach, T. Dohmgörgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, Jul. 2020, DOI: https://doi.org/10.1038/s42256-020-0200-7.
Y. Jusman, M. A. F. Nurkholid, and F. Utomo, “Prostate Image Classification Using Pretrained Models: GoogLeNet and ResNet-50,” in 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS 2021), 2021,
DOI: https://doi.org/10.1109/ICSPCS53099.2021.9660334.
Q. A. Al-Haija and A. Adebanjo, “Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network,” in IEMTRONICS 2020 – International IOT, Electronics and Mechatronics Conference, Sep. 2020,
DOI: https://doi.org/10.1109/IEMTRONICS51293.2020.9216455.
M. H. Motlagh, M. Jannesari, H. R. Aboulkheyr, P. Khosravi, O. Elemento, M. Totonchi, and I. Hajirasouliha., “Breast Cancer Histopathological Image Classification: A Deep Learning Approach,” bioRxiv, p. 242818, Jan. 2018,
DOI: https://doi.org/10.1101/242818.
F. Parvin and M. Al Mehedi Hasan, “A Comparative Study of Different Types of Convolutional Neural Networks for Breast Cancer Histopathological Image Classification,” in 2020 IEEE Region 10 Symposium, TENSYMP 2020, Jun. 2020, pp. 945–948,
DOI: https://doi.org/10.1109/TENSYMP50017.2020.9230787.
S. Bhattacharjee, H. G. Park, C. H. Kim, D. P. Prakash, N. M. Madusanka, J. H. So, N. H. Cho, and H. K. Choi., “Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM,” Applied Sciences, vol. 9, no. 15, p. 2969, Jul. 2019,
DOI: https://doi.org/10.3390/APP9152969.
M. A. Aswathy and M. Jagannath, “An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features,” Med Biol Eng Comput, vol. 59, no. 9, pp. 1773–1783, Sep. 2021,
DOI: https://doi.org/10.1007/S11517-021-02403-0.
A. Alqudah and A. M. Alqudah, “Sliding Window Based Support Vector Machine System for Classification of Breast Cancer Using Histopathological Microscopic Images,” vol. 68, no. 1, pp. 59–67, 2019,
DOI: https://doi.org/10.1080/03772063.2019.1583610.
S. Singh and R. Kumar, “Histopathological image analysis for breast cancer detection using cubic SVM,” in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN 2020), Feb. 2020, pp. 498–503,
DOI: https://doi.org/10.1109/SPIN48934.2020.9071218.
K. Lopez, M. Magboo, A. T.-B.- MLIS, and undefined, “A Clinical Decision Support Tool to Detect Invasive Ductal Carcinoma in Histopathological Images Using Support Vector Machines, Naïve-Bayes, and K-Nearest,” vol. 332, pp. 46–53, Dec. 2020,
DOI: https://doi.org/10.3233/FAIA200765
R. Fogarty, D. Goldgof, L. Hall, A. Lopez, J. Johnson, M. Gadara, R. Stoyanova, S. Punnen, A. Pollack, J. Pow-Sang and Y. Balagurunathan, "Classifying Malignancy in Prostate Glandular Structures from Biopsy Scans with Deep Learning," Cancers, vol. 15, no. 8, pp. 2335, 2023.
DOI: https://doi.org/DOI: https://doi.org/10.3390/CANCERS15082335
R. Bazargani, W. Chen, S. Sadeghian, M. Asadi, J. Boschman, A. Darbandsari, A. Bashashati and S. Salcudean, "A novel H and E color augmentation for domain invariance classification of unannotated histopathology prostate cancer images," Medical Imaging 2023: Digital and Computational Pathology, pp. 35, 2023.
DOI: https://doi.org/DOI: https://doi.org/10.1117/12.2654040
M. Nishio, H. Matsuo, Y. Kurata, O. Sugiyama, and K. Fujimoto, “Label Distribution Learning for Automatic Cancer Grading of Histopathological Images of Prostate Cancer,” Cancers (Basel), vol. 15, no. 5, p. 1535, Mar. 2023,
DOI: https://doi.org/10.3390/CANCERS15051535.
M. Koziarski, B. Cyganek, B. Olborski, Z. Antosz, M. Zydak, B. Kwolek, P. Wasowicz, A. Bukala, J. Swadzba, P. Sitkowski., “DiagSet: a dataset for prostate cancer histopathological image classification,” 2021.
URL:https://arxiv.org/abs/2105.04014v1 (Accessed: 23, Jun, 2023).