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Abstract — Agriculture is one of the largest sectors that 

contribute to the economic growth of countries, including 

Malaysia. However, plant diseases affect the quality of the 

harvest and impede farmers’ maximum yield output. 

Therefore, early detection of diseases in plants is vital to 

curb infection, reduce food waste, and reduce their carbon 

footprint. However, many detection methods are complex, 

require high computational power and time to perform the 

required analysis and focus only on a particular species or 

strain of the disease. These requirements would likely deter 

most users in remote areas or poorer economic states. This 

paper proposes a convolutional neural network to determine 

multi-class plant diseases that is memory efficient, has a 

small trainable parameter number, and is compact enough to 

work even on mobile devices. The plant images were pre-

processed to ensure that they were validated accurately and 

to minimise overfitting. Then, the proposed convolutional 

neural network was trained using a publicly available dataset 

consisting of 54306 images, followed by validation and 

testing. Finally, the completed model is saved, and the data 

obtained is transferred to a cloud network using wireless 

sensor networks. The proposed method obtained 96.87% 

accuracy with 100 epoch training iterations, rivalling famous 

architectures such as VGG16 and MobileNetV2. The 

experimental results demonstrate the feasibility and 

robustness of the method for disease detection in multi-crop 

plants. 

Keywords—Plant disease, Agriculture, Convolutional 

neural network, Image processing, Wireless sensor 

network 

I. INTRODUCTION 

Agriculture is one of the largest sectors that 
contribute to the economic growth of countries, 
including Malaysia. Increasing the crop yield and 
global trade of agricultural products is crucial to 
meeting the demands of the population and ensuring 
food security. However, plant diseases impede 

farmers’ maximum yield output, earning fewer returns 
and fewer profits for their harvest. Research has shown 
that plant-borne diseases and pests could deprive the 
population of 82% of cotton and 50% of other crops 
[1]. Plant diseases could also directly affect human 
health by contaminating human food with toxic 
compounds [2]. 

Plant disease detection and diagnosis have become 
at the forefront of agricultural research due to their 
devastating effects. Attempts at automating plant 
disease detection and decision-making have been 
carried out throughout the years. However, there is a 
general lack of appropriate knowledge regarding the 
management of plant diseases [3]. The most common 
disease management methods include insecticides 
and pesticides. Although they offer a higher yield and 
improved quality of crops, the chemicals used in these 
deterrents pose a potential risk to humans or other life 
forms. Long-term exposure to these chemicals can 
lead to disastrous health effects such as immune 
suppression, hormone disruption, and cancer. 

Deep learning is a technique that is widely 
researched and implemented rapidly in the agricultural 
industry. It can help to patch the gaps that exist in 
previous disease detection methods and produce 
highly accurate results [4]. Image processing is one of 
the most common methods for implementing deep 
learning technology [5, 6]. For example, images of 
diseased plants can accurately determine what disease 
they are suffering from, the colour of their leaves, the 
spots that they have, and other discerning features of 
healthy leaves. However, many research approaches 
focus on a particular species or strain of the disease, 
which tends to ignore glaring factors such as 
interactions between species of the same phenotype or 
other potentially harmful diseases that could affect the 



Vol 7 No 1 (2025)  e-ISSN: 2682-8383 

8 

 

same crops. The severity of the disease is often 
overlooked, as each disease stage comes with different 
symptoms and effects, bearing different outcomes at 
different discovery and treatment times. 

A study using deep learning with artificial 
intelligence using the MDFC-ResNet training 
algorithm, a refined algorithm based on ResNet was 
proposed [7]. ResNet is one of the many architectures 
that are available in image processing. It works by 
allowing users to stack building blocks of 
convolutional layers. The study obtained an accuracy 
of 93.96%, increasing up to 5.31% from conventional 
algorithms. MDFC-ResNet employed three stages of 
disease recognition, feature extraction, and 
compensation layers to achieve these results. A more 
compact solution, such as the mobilenetv2 algorithm, 
may be implemented to reduce computational power. 
Another related work proposed a convolutional neural 
network (CNN) for rice leaf diseases, and results have 
shown that mobilenetv2 performed the best among the 
small architectures tested, boasting a 97.96%   accuracy 
rate [8]. However, smaller neural networks contain 
less space for feature extraction, leading to less 
accurate, fine-tuned results. K-means clustering is 
another popular method of feature extraction. It 
separates the healthy parts of the leaves from the 
diseased parts through RGB colour channels [9]. In 
other related work, Thenmozi employed MATLAB 
to generate pictures with segmented features of 
healthy and diseased portions of leaves from 
sugarcane crops [10]. Insects that are the most 
damaging to these crops are sugarcane pyrilla,            Pyrilla 
perpusilla; sugarcane whitefly, Aleurolobus 
barodenis; and sugarcane aphids, Melanaphis 
sacchari. The results indicate that general shapes can 
be obtained from the classification process to help 
with pest identification. 

Although deep learning is a promising method, the 
barrier to entry into deep learning remains a challenge 
for farmers in rural areas or those who are not as 
technologically adept. In addition, having several 
different convolutional layers will require significant 
processing power to produce usable results, leading to 
a higher cost. The computational size required will 
pose a problem with the availability of the solution in 
more rural markets. Smaller architectures can be 
explored to reduce the computational space needed for 
feature extraction or high-definition images. However, 
the lack of features in an image processing algorithm 
means that minute details may not be considered, 
leading to less accurate results. Therefore, this paper 
focuses on disease detection and diagnosis occurring 
on plant leaves caused by insect-borne diseases. The 
data sample collected covers various valuable crops, 
such as potatoes, tomatoes, and cotton. The novelty of 
this research lies in its versatility. A lightweight yet 
robust solution is proposed. A smaller CNN works to 
be memory efficient, compact enough to work even on 
mobile devices, and accessible to virtually anyone. In 
addition, the research considers multi-variant disease 
detection, where different diseases can affect the same 
type of crop. 

II. METHODOLOGY 

A large-scale, pre-trained database, ImageNet, was 
used which covers a wide range of insect-borne 
diseases. Using an extensive database allowed for a 
more economical CNN design, as the model weight 
training and image selection processes are completed 
beforehand. A dataset from Kaggle consisting of 
54306 images were used to train CNN to identify 14 
different crop species bearing 26 different diseases. 
The flowchart of the system is shown in Fig. 1. 

Fig. 1. Flowchart of the proposed system. 

The images were pre-processed to ensure that  
they are validated accurately, and overfitting is 
minimized. Overfitting is a phenomenon that occurs 
when the training model generalises the data it receives 
and makes predictions based on unseen patterns. An 
image that is affected by external factors such as noise 
will limits the system’s true potential and creates 
biases. This effect can cause a falsely high accuracy 
rating on the dataset portion of the dataset but a poor 
one on the validation dataset [11]. Generally, this can 
be solved using a larger dataset, but that would mean 
sacrificing cost- effectiveness for extra computational 
power. Data augmentation works by creating new yet 
similar images to prevent the model from generating 
patterns from unseen data. The most common methods 
include image transformations, including flipped 
images, reversed images, mirrored images, and 
duplicated images. Figure 2(a) shows a sample image 
taken from the dataset while Figs. 2(b) - (h) shows the   
augmented images. The images were resized to 256 × 
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256 pixels to ensure that the training of the model does 
not consume substantial amounts of computational 
space and power. Critical and discerning features are 
extracted after the images have been augmented. 

 

Fig. 2. Original image (a) compared to augmented images (b)-(h). 

A. Training the CNN Model 

The dataset is split between 80/20 for training and 
validation respectively as it is found that this split 
ensures that the model will identify pictures that are 
not part of the original training dataset. Also, this 
provides the model with a fair comparison for 
recognising the data and have sufficient new data for 
validation testing. The learning rate is set within the 
ranges of 0.01 to 0.0001. A lower learning rate will be 
used when training the top layers of the classifier and 
fine-tuning the model for specific results. A higher 
learning rate is reserved for more general, low-
specificity layers. Next, CNN is built around the needs 
of the images and tested for the best accuracy. To 
further enhance the model’s efficiency, CNN 
undergoes transfer learning to fine-tune the image 
categories to obtain better results. After all the data is 
ready, the model is trained using machine learning 
algorithms, such as AlexNet, VGG16, and 
MobileNetV2. 

During training, the CNN model is represented by 
Eq. (1). The features are categorized into four-
dimensional tensors and two-dimensional matrices, 
respectively. The dimensions of the tensors must 
match, as the image processing workflow in the layers 
will not function if the matrices in the system are not 
compatible. At this stage, the output of the 
convolutional layers serves as the input for subsequent 
layers. 

   (1) 

, where 

 and  

are the training dataset and original images used for 
training respectively, x is the input, y is the predicted 
output, b is the bias and W is the weight. The output h1 
of the 1-th layer is given by Eq. (2). 

                       (2) 

The final output after the images is fitted through 
all the convolutional layers is given by Eq. (3). 

Softmax represents the activation function that is 
implemented on CNN. Activation functions are 
responsible for how well the algorithm can recognize 
and train the dataset. 

              (3) 

The training samples represented by Eq. (4) can be 
duplicated when fed into the CNN via image 
translation, noise interference, and image mirroring. In 
addition, data augmentation is also performed before 
training the data to allow the training data size to be 
directly modified without changing the training 
iteration times. Each test image is augmented with 
images using the same data augmentation parameters. 
Eq. (5) represents the prediction results of the 
augmented images. 

                      (4) 

 

                                (5) 

 

Once the training is completed, the model is rerun 
with the validation dataset to ensure the difference in 
accuracy is not significant. Following that, the 
completed model will be saved, and the data obtained 
will be transferred to a cloud network using Zigbee 
wireless sensor networks (WSNs). The information 
can be accessed remotely and easily by farmers to 
ensure that the best solutions can be applied to tackle 
diseases. 

B. Feature Extraction 

Feature extraction is a necessary part of image 
processing. The primary purpose of feature extraction 
is to segment and identify the most crucial parts of an 
image from each pixel and represent that in a resized 
image fit for the chosen image classification 
algorithm. This paper focused on HSV (Hue, 
Saturation, Value) categorization. HSV categorization 
allows for greater flexibility between different 
intensities of colour instead of focusing on a variety of 
colours. HSV is preferred because plant leaf diseases 
tend to have a limited colour spectrum. Therefore, 
focusing on the intensity of the brown or dark spots 
provides a more accurate analysis of the severity of the 
disease. Once the colour categorization is selected, 
colour information is extracted using colour moments 
(CM). CM requires the mean, standard deviation, and 
variance of colour, which are calculated using Eqs. (6) 
- (8). 

                               (6) 

 

                                             (7) 

                 (8) 
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where fij is the colour value of the colour components 
of the individual image pixels and μi, σi, γi (i=1,2,3) 
represent the mean, standard deviation, and variance 
respectively. 

C. Neural Network Architecture 

After the images have been pre-processed and 
segmented, they are fed into a deep convolutional 
neural network (DCNN), as shown in Fig. 3. 

 

Fig. 3. A DCNN structure with hidden layers and units. 

This model consists of input, hidden, and output 
layers. Each layer is wholly connected to the other and 
holds individual weight values that add to the output. 
The weights are then randomly initialized and updated 
using the Stochastic Gradient Descent (SGD) and a 
standard instance using Keras libraries hosted in 
Tensorflow. SGD performs parameter updates with 
every training epoch, alleviates redundancy by 
computing gradients at every instance, and refreshes 
the parameters faster. As the images are passed 
through the different layers, more features are 
extracted and become more detailed, as shown in Fig. 
4. The hyperparameters tuned for the DCNN, training 
and validation are provided in the Results section. 

 

Fig. 4. The stages of the leaf images through a DCNN network. 

D. Data Transfer Using Wireless Sensor Networks 

Once the model is trained, saved, and all 

instances have been recorded, the information is 

transferred to the cloud for easy, remote access. 

WSNs will be employed to facilitate the intelligent 

disease detection of this system. WSNs are nodes 

interconnected by either cellular or Wi-Fi, which will 

allow users to control and monitor essential 

parameters such as ambient temperature, soil 

moisture, humidity, and air pressure. These nodes 

contain sensors such as temperature and soil 

moisture sensors to monitor the environment at 

selected intervals. Once the sensors have detected a 

change, the data will be updated live on the cloud 

network.  

The wireless network connection uses an XBee 

Module, which is an embedded solution that utilizes 

the standard IEEE 802.15.4 networking protocol for 

fast, real-time data transfer to a cloud IoT platform 

[12]. The main microcontroller responsible for 

controlling the sensors in each WSN is an Arduino 

Mega ATMega2560. An Amazon-based cloud 

storage solution, AWS Quicksight, is used alongside 

Tensorflow, which is the primary image processing 

software. Figure 5 shows the block diagram of the 

WSNs connected to the Quicksight database, where 

real-time IoT data is hosted. 

 

Fig. 5. Online data transmission. 

III. RESULTS AND DISCUSSION 

A. Model Training 

After the images are fed through the neural 
network, the model’s parameters are configured for 
training. First, the images were fed through a pooling 
layer containing the image’s dimensions [13]. Its 
primary function is to down-sample a high-
dimensional image without changing the depth. Max 
pooling is used to reduce the size of the processed 
feature map to allow faster and more compact results. 
The dropout layer implemented is customary for 
improving generalization and reducing overfitting, 
especially in larger datasets, by randomly disabling a 
proportion of neurons during training, encouraging the 
network to learn better and produce the most optimal 
results. For smaller datasets, a higher dropout rate is 
selected while a lower dropout rate is selected for 
larger datasets. Different dropout values have been 
tested to obtain the best results, as shown in Fig. 6. 
These values were selected based on the choice of the 
hyperparameters and the end goal of the model. For 
example, a dropout rate of 0.2 indicates that there is a 
20% chance of a neuron being dropped. 
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Fig. 6 Comparison of dropout values from 0.2 to 0.8. 

It can be observed that a dropout value of 0.2 
brings the highest validation test accuracy. Using this 
dropout value, the images are fed through the final 
dense layer, connecting all convolutional and pooling 
layers and merging them into a single output. ReLu 
was used as the activation function for multi-class 
operations. The batch size, which determines how 
many iterations per epoch the model will run, is also 
determined using trial and error for the best results. 
Batch sizes affect how quickly or slowly a dataset will 
converge. Smaller batch sizes suffer from high 
overfitting rates, but larger batch sizes take longer to 
converge and require more computational power [14]. 
Figure 7 displays the batch sizes attempted for this 
research. 

 

Fig. 7 Batch size comparison from 64 to 160. 

A batch size of 64 is ideal for this study, producing 
up to 97.8 % accuracy on validation tests. The dataset 
is relatively small compared to other big data 
analysers. The CNN chosen is more compact than 
standard DCNN, which means faster convergence can 
lead to better results. Epochs are defined as the number 
of times the model will be run through the entire 
training dataset. Generally, the more iterations a model 
goes through, the more accurate it gets. From Fig. 8, it 
can be observed that the trend remains true until 
around 1000 epochs, when the accuracy rate starts to 
plateau. The plateauing is caused by the training 
dataset and validation dataset reaching convergence 
and learning everything about the dataset.  

The dataset was divided between training and 
validation using an 80/20 split, respectively, to give 
the model a fair chance of recognizing the data and 
have enough new data for validation testing. The 
learning rate was set within the range of 0.01-0.0001. 
A lower learning rate is used when training the top 
layers of the classifier and fine-tuning the model for 
specific results as the neural network goes deeper. A 
higher learning rate is reserved for more general, low-

specificity layers. Table I shows the hyperparameters 
that have been tuned for this research. 

 

Fig. 8 Epochs iteration comparison from 10 to 3000. 

Table I. Hyperparameters tuned for DCNN. 
Parameters Value 

Training Epochs 3000 

Learning Rate 0.01-0.0001 

Batch sizes 64 

Training test size 54306 

Validation set size 3900 

Test set size 1950 

Dropout value 0.2 

 

B. Model Testing 

The PlantVillage dataset, which is available on 
Kaggle, was used for testing [15]. The training model 
used is based on the VGG16 structure. It is a custom-
built CNN that consumes less memory as compared to 
a traditionally trained learning model architecture. 
Figure 9 shows the structure of CNN. 

 

Fig. 9. Convolutional neural network layout. 

The total number of trainable parameters in this 

CNN structure amounted to 2,257,984. Compared to 

traditional models such as AlexNet and GoogLeNet, it 

is a much more compact solution to image processing. 

The dataset was resized to fit the batch size of 

256×256×3 to facilitate uniform image recognition. 

The dataset has been divided into 15 different classes, 

and the final dense layer of the network has 15 nodes. 

Each CNN layer increased by 16 as the network got 

more complex than the last fully connected layer. A 

3×3 convolutional layer structure was used instead of 
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5×5 to reduce the computational complexity. Table II    

shows the comparison between different CNN 

architectures and their trainable parameters.  

 
Table II. CNN architectures and their trainable parameters. 

 

The dataset has been pre-trained on the extensive 

ImageNet database with its included weights. Then, 

the dense layers were trained with random weights 

initialized during the sequence. ImageNet is an 

extensive free-access database hosting 3.2 million 

images in over 5,000 categories. Since the dataset is a 

multi-class problem, the categorical_crossentropy loss 

function was used. 

The PlantVillage dataset contained 54306 images 
across 15 different vegetable classes, including 
healthy tomato, potato, and pepper bell leaves. Some 
of the leaf images were infected with early and late 
blight diseases, bacterial spots, and mold. The training 
samples were augmented to increase the number of 
samples in the original data set. After a series of pre-
processing steps, such as denoising the original leaf 
disease images, 26 images were randomly selected 
from each category for 90°, 180°, and 270° rotations, 
up- and-down swapping, and left-right swapping for 
data augmentation. The augmented images were used 
as training samples for the proposed CNN model. 

Figure 10 shows the accuracy of the trained model. 
It can be observed that it grows exponentially in just 
300 training steps. The pre-trained weights from 
ImageNet were frozen in the convolutional layer, 
allowing the top layers of the classifier to be trained, 
which allowed for a quick training time and high 
accuracy. Other image processing techniques, such as 
VGG16 and InceptionV3, were tested using the same 
dataset as well. These algorithms are more complex, 
and different hyperparameters had to be adjusted 
before they could be used. Training from scratch for 
these complex algorithms achieved at least 80 % 
accuracy, but it was less satisfactory than the proposed 
CNN network. Fine-tuning improved all training 
networks' accuracy and even outperformed some 
baseline training models. Fine-tuning helped improve 
training times by using pre-trained weights from 
established datasets like ImageNet. 

Table III shows the performance obtained by 
different training methods. Although the proposed 
CNN does not have the best performance, the training 
time is the shortest and requires the least 
computational power among the CNN models tested, 
using 3GB of RAM throughout the training and 
classification periods. Although VGG16 yielded the 
highest accuracy, it is a large, sequential-type model 

that requires complex 5×5 convolutional filters and 
many fully connected layers. The proposed CNN uses 
a simple network and lower-order convolutional 
filters, keeping accessibility in mind. 

 

Fig. 10. Tensorflow trained model. 

Table III. Comparison between learning methods and CNN Models 

CNN Model Training 

Methods 

Validation 

Accuracy 

Training 

time 
(Second) 

VGG16 Train from 

scratch 

89.19% 385.728 

Transfer 
learning 

86.52% 301.902 

Fine tuning 97.12% 251.011 

Inception V3 Train from 

scratch 

91.17% 385.661 

Transfer 

learning 

72.09% 311.735 

Fine tuning 96.37% 261.872 

MobileNetV2 Train from 
scratch 

78.84% 390.025 

Transfer 

learning 

77.52% 334.976 

Fine tuning 96.12% 285.431 

NasNetMobile Train from 
scratch 

79.98% 392.726 

Transfer 

learning 

78.21% 347.561 

Fine tuning 96.95% 299.165 

Proposed 

CNN 

Trained 

using 

ImageNet 

86.52% 126.716 

 

 
Fig. 11. First convolutional neural layer. 

Figure 11 shows the first convolutional layer of the 
proposed CNN network. The bacteria light class 
contains 16 two-dimensional images of size 256×256, 
resized in the hyperparameters as mentioned earlier. 
The first layer of any convolutional network tends to be 
the general layer, saving regional features of an image 
instead of segmented details. Activations retain all 
previous input from the images in the previous layer. 
Some of the filters remain blank because they were not 
activated. Figure 12 demonstrates that the last layer 

CNN Number of Parameters 

VGG16 138 million 

Inception V3 23.8 million 

MobileNetV2 2.3 million 

NasNetMobile 4.3 million 

Proposed CNN 2.2 million 
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uses all learned features and activations, leaving no 
blank spaces. 

 

Fig. 12. Final convolutional layer with all activated filters. 

 

Fig. 13. Accuracy and loss comparisons after 100 epochs. 

 

Fig. 14. Model predictions for the plant village dataset. 

To enhance the accuracy rate of the proposed CNN, 
more training parameters were fine-tuned to achieve 
better results. Figure 13 shows the results of the 

proposed CNN after 100 epochs of training sessions. 
The overall accuracy of the proposed CNN increased 
from 86.52% to 96.87% after fine-tuning and training 
for over 100 epochs. However, after the 20th epoch, 
accuracy started plateauing, as did the loss. 

Figure 14 shows the predicted leaves from each 
class in a grid of 30. The model works as expected and 
can predict multiple classes and be displayed in grid 
form. Tensorflow was used to train a machine learning 
model to predict the dataset. Overfitting is also a 
glaring issue when it comes to enormous datasets. One 
way to optimize overfitting would be to work with 
smaller training datasets of about 1000–1200. Data 
augmentation is also an effective way to alleviate 
overfitting. It involves extracting more information 
from the initial dataset to further classify each image 
from each other to ensure that the learning model 
performs well, even in challenging data situations. 
Some of the methods considered include geometric 
transformations, cropping, flipping, and rotation. 

IV. CONCLUSION 

This paper sets out to reinvigorate image 
classification methods for insect-borne diseases in 
plants. A comparison of some of the most common 
image processing techniques was pitted against the 
proposed CNN, with better depth performance and 
feature-packed layer networks from higher 
computational algorithms. It is also shown that a 
simple CNN, pre-trained on ImageNet and fine-tuned, 
can also provide similar accuracy results at 96.87% as 
rival other algorithms. In addition, the CNN network 
has a small trainable parameter number, which keeps 
memory usage low and makes the solution easily 
accessible. Furthermore, the simple and user-friendly 
interface allows new users unfamiliar with 
agrotechnology to handle image processing 
technology without the steep learning curve usually 
associated with it. It also reduces the amount of 
manual work required to be done by farmers, provides 
real-time updates on the condition of the crops, and 
gives them complete control over their field from 
anywhere in the world.  

Future work will involve extending the use of the 
model by training it for plant disease recognition on 
more expansive land areas, combining aerial photos of 
orchards and vineyards captured by drones with CNN 
for object detection. Image data from a smartphone 
may be supplemented with location and time 
information for additional improvements in terms of 
accuracy. In addition, with the increasing number and 
quality of sensors on mobile devices, accurate 
diagnoses via the smartphone can be performed. 
Combined with the excellent prospects of IoT 
technology and its flexible array of neural 
convolutional networks, these steps will improve the 
technology’s practicality and penetration in practice.  
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