
Vol 7 No 1 (2025) e-ISSN: 2682-8383

Journal of Engineering Technology and Applied Physics (2025) 7, 1, 2:7-14
https://doi.org/10.33093/jetap.2025.7.1
This work is licensed under the Creative Commons BY-NC-ND 4.0 International License.
Published by MMU PRESS. URL: https://journals.mmupress.com/index.php/jetap/index

Journal of Engineering Technology

and Applied Physics

An Improved Convolutional Neural Network
(CNN) for Disease Detection and Diagnosis

for Multi-crop Plants

Florence Choong Chiao Mei* and Bryan Ng Jan Hong

Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia.
*Corresponding author: f.choong@hw.ac.uk, ORCiD: 0000-0002-6958-8725

https://doi.org/10.33093/jetap.2025.7.1.2

Manuscript Received: 17 March 2024, Accepted: 8 July 2024, Published: 15 March 2025

Abstract — Agriculture is one of the largest sectors that

contribute to the economic growth of countries, including

Malaysia. However, plant diseases affect the quality of the

harvest and impede farmers’ maximum yield output.

Therefore, early detection of diseases in plants is vital to

curb infection, reduce food waste, and reduce their carbon

footprint. However, many detection methods are complex,

require high computational power and time to perform the

required analysis and focus only on a particular species or

strain of the disease. These requirements would likely deter

most users in remote areas or poorer economic states. This

paper proposes a convolutional neural network to determine

multi-class plant diseases that is memory efficient, has a

small trainable parameter number, and is compact enough to

work even on mobile devices. The plant images were pre-

processed to ensure that they were validated accurately and

to minimise overfitting. Then, the proposed convolutional

neural network was trained using a publicly available dataset

consisting of 54306 images, followed by validation and

testing. Finally, the completed model is saved, and the data

obtained is transferred to a cloud network using wireless

sensor networks. The proposed method obtained 96.87%

accuracy with 100 epoch training iterations, rivalling famous

architectures such as VGG16 and MobileNetV2. The

experimental results demonstrate the feasibility and

robustness of the method for disease detection in multi-crop

plants.

Keywords—Plant disease, Agriculture, Convolutional

neural network, Image processing, Wireless sensor

network

I. INTRODUCTION

Agriculture is one of the largest sectors that
contribute to the economic growth of countries,
including Malaysia. Increasing the crop yield and
global trade of agricultural products is crucial to
meeting the demands of the population and ensuring
food security. However, plant diseases impede

farmers’ maximum yield output, earning fewer returns
and fewer profits for their harvest. Research has shown
that plant-borne diseases and pests could deprive the
population of 82% of cotton and 50% of other crops
[1]. Plant diseases could also directly affect human
health by contaminating human food with toxic
compounds [2].

Plant disease detection and diagnosis have become
at the forefront of agricultural research due to their
devastating effects. Attempts at automating plant
disease detection and decision-making have been
carried out throughout the years. However, there is a
general lack of appropriate knowledge regarding the
management of plant diseases [3]. The most common
disease management methods include insecticides
and pesticides. Although they offer a higher yield and
improved quality of crops, the chemicals used in these
deterrents pose a potential risk to humans or other life
forms. Long-term exposure to these chemicals can
lead to disastrous health effects such as immune
suppression, hormone disruption, and cancer.

Deep learning is a technique that is widely
researched and implemented rapidly in the agricultural
industry. It can help to patch the gaps that exist in
previous disease detection methods and produce
highly accurate results [4]. Image processing is one of
the most common methods for implementing deep
learning technology [5, 6]. For example, images of
diseased plants can accurately determine what disease
they are suffering from, the colour of their leaves, the
spots that they have, and other discerning features of
healthy leaves. However, many research approaches
focus on a particular species or strain of the disease,
which tends to ignore glaring factors such as
interactions between species of the same phenotype or
other potentially harmful diseases that could affect the

Vol 7 No 1 (2025) e-ISSN: 2682-8383

8

same crops. The severity of the disease is often
overlooked, as each disease stage comes with different
symptoms and effects, bearing different outcomes at
different discovery and treatment times.

A study using deep learning with artificial
intelligence using the MDFC-ResNet training
algorithm, a refined algorithm based on ResNet was
proposed [7]. ResNet is one of the many architectures
that are available in image processing. It works by
allowing users to stack building blocks of
convolutional layers. The study obtained an accuracy
of 93.96%, increasing up to 5.31% from conventional
algorithms. MDFC-ResNet employed three stages of
disease recognition, feature extraction, and
compensation layers to achieve these results. A more
compact solution, such as the mobilenetv2 algorithm,
may be implemented to reduce computational power.
Another related work proposed a convolutional neural
network (CNN) for rice leaf diseases, and results have
shown that mobilenetv2 performed the best among the
small architectures tested, boasting a 97.96% accuracy
rate [8]. However, smaller neural networks contain
less space for feature extraction, leading to less
accurate, fine-tuned results. K-means clustering is
another popular method of feature extraction. It
separates the healthy parts of the leaves from the
diseased parts through RGB colour channels [9]. In
other related work, Thenmozi employed MATLAB
to generate pictures with segmented features of
healthy and diseased portions of leaves from
sugarcane crops [10]. Insects that are the most
damaging to these crops are sugarcane pyrilla, Pyrilla
perpusilla; sugarcane whitefly, Aleurolobus
barodenis; and sugarcane aphids, Melanaphis
sacchari. The results indicate that general shapes can
be obtained from the classification process to help
with pest identification.

Although deep learning is a promising method, the
barrier to entry into deep learning remains a challenge
for farmers in rural areas or those who are not as
technologically adept. In addition, having several
different convolutional layers will require significant
processing power to produce usable results, leading to
a higher cost. The computational size required will
pose a problem with the availability of the solution in
more rural markets. Smaller architectures can be
explored to reduce the computational space needed for
feature extraction or high-definition images. However,
the lack of features in an image processing algorithm
means that minute details may not be considered,
leading to less accurate results. Therefore, this paper
focuses on disease detection and diagnosis occurring
on plant leaves caused by insect-borne diseases. The
data sample collected covers various valuable crops,
such as potatoes, tomatoes, and cotton. The novelty of
this research lies in its versatility. A lightweight yet
robust solution is proposed. A smaller CNN works to
be memory efficient, compact enough to work even on
mobile devices, and accessible to virtually anyone. In
addition, the research considers multi-variant disease
detection, where different diseases can affect the same
type of crop.

II. METHODOLOGY

A large-scale, pre-trained database, ImageNet, was
used which covers a wide range of insect-borne
diseases. Using an extensive database allowed for a
more economical CNN design, as the model weight
training and image selection processes are completed
beforehand. A dataset from Kaggle consisting of
54306 images were used to train CNN to identify 14
different crop species bearing 26 different diseases.
The flowchart of the system is shown in Fig. 1.

Fig. 1. Flowchart of the proposed system.

The images were pre-processed to ensure that
they are validated accurately, and overfitting is
minimized. Overfitting is a phenomenon that occurs
when the training model generalises the data it receives
and makes predictions based on unseen patterns. An
image that is affected by external factors such as noise
will limits the system’s true potential and creates
biases. This effect can cause a falsely high accuracy
rating on the dataset portion of the dataset but a poor
one on the validation dataset [11]. Generally, this can
be solved using a larger dataset, but that would mean
sacrificing cost- effectiveness for extra computational
power. Data augmentation works by creating new yet
similar images to prevent the model from generating
patterns from unseen data. The most common methods
include image transformations, including flipped
images, reversed images, mirrored images, and
duplicated images. Figure 2(a) shows a sample image
taken from the dataset while Figs. 2(b) - (h) shows the
augmented images. The images were resized to 256 ×

Vol 7 No 1 (2025) e-ISSN: 2682-8383

9

256 pixels to ensure that the training of the model does
not consume substantial amounts of computational
space and power. Critical and discerning features are
extracted after the images have been augmented.

Fig. 2. Original image (a) compared to augmented images (b)-(h).

A. Training the CNN Model

The dataset is split between 80/20 for training and
validation respectively as it is found that this split
ensures that the model will identify pictures that are
not part of the original training dataset. Also, this
provides the model with a fair comparison for
recognising the data and have sufficient new data for
validation testing. The learning rate is set within the
ranges of 0.01 to 0.0001. A lower learning rate will be
used when training the top layers of the classifier and
fine-tuning the model for specific results. A higher
learning rate is reserved for more general, low-
specificity layers. Next, CNN is built around the needs
of the images and tested for the best accuracy. To
further enhance the model’s efficiency, CNN
undergoes transfer learning to fine-tune the image
categories to obtain better results. After all the data is
ready, the model is trained using machine learning
algorithms, such as AlexNet, VGG16, and
MobileNetV2.

During training, the CNN model is represented by
Eq. (1). The features are categorized into four-
dimensional tensors and two-dimensional matrices,
respectively. The dimensions of the tensors must
match, as the image processing workflow in the layers
will not function if the matrices in the system are not
compatible. At this stage, the output of the
convolutional layers serves as the input for subsequent
layers.

 (1)

, where

 and

are the training dataset and original images used for
training respectively, x is the input, y is the predicted
output, b is the bias and W is the weight. The output h1
of the 1-th layer is given by Eq. (2).

 (2)

The final output after the images is fitted through
all the convolutional layers is given by Eq. (3).

Softmax represents the activation function that is
implemented on CNN. Activation functions are
responsible for how well the algorithm can recognize
and train the dataset.

 (3)

The training samples represented by Eq. (4) can be
duplicated when fed into the CNN via image
translation, noise interference, and image mirroring. In
addition, data augmentation is also performed before
training the data to allow the training data size to be
directly modified without changing the training
iteration times. Each test image is augmented with
images using the same data augmentation parameters.
Eq. (5) represents the prediction results of the
augmented images.

 (4)

 (5)

Once the training is completed, the model is rerun
with the validation dataset to ensure the difference in
accuracy is not significant. Following that, the
completed model will be saved, and the data obtained
will be transferred to a cloud network using Zigbee
wireless sensor networks (WSNs). The information
can be accessed remotely and easily by farmers to
ensure that the best solutions can be applied to tackle
diseases.

B. Feature Extraction

Feature extraction is a necessary part of image
processing. The primary purpose of feature extraction
is to segment and identify the most crucial parts of an
image from each pixel and represent that in a resized
image fit for the chosen image classification
algorithm. This paper focused on HSV (Hue,
Saturation, Value) categorization. HSV categorization
allows for greater flexibility between different
intensities of colour instead of focusing on a variety of
colours. HSV is preferred because plant leaf diseases
tend to have a limited colour spectrum. Therefore,
focusing on the intensity of the brown or dark spots
provides a more accurate analysis of the severity of the
disease. Once the colour categorization is selected,
colour information is extracted using colour moments
(CM). CM requires the mean, standard deviation, and
variance of colour, which are calculated using Eqs. (6)
- (8).

 (6)

 (7)

 (8)

Vol 7 No 1 (2025) e-ISSN: 2682-8383

10

where fij is the colour value of the colour components
of the individual image pixels and μi, σi, γi (i=1,2,3)
represent the mean, standard deviation, and variance
respectively.

C. Neural Network Architecture

After the images have been pre-processed and
segmented, they are fed into a deep convolutional
neural network (DCNN), as shown in Fig. 3.

Fig. 3. A DCNN structure with hidden layers and units.

This model consists of input, hidden, and output
layers. Each layer is wholly connected to the other and
holds individual weight values that add to the output.
The weights are then randomly initialized and updated
using the Stochastic Gradient Descent (SGD) and a
standard instance using Keras libraries hosted in
Tensorflow. SGD performs parameter updates with
every training epoch, alleviates redundancy by
computing gradients at every instance, and refreshes
the parameters faster. As the images are passed
through the different layers, more features are
extracted and become more detailed, as shown in Fig.
4. The hyperparameters tuned for the DCNN, training
and validation are provided in the Results section.

Fig. 4. The stages of the leaf images through a DCNN network.

D. Data Transfer Using Wireless Sensor Networks

Once the model is trained, saved, and all

instances have been recorded, the information is

transferred to the cloud for easy, remote access.

WSNs will be employed to facilitate the intelligent

disease detection of this system. WSNs are nodes

interconnected by either cellular or Wi-Fi, which will

allow users to control and monitor essential

parameters such as ambient temperature, soil

moisture, humidity, and air pressure. These nodes

contain sensors such as temperature and soil

moisture sensors to monitor the environment at

selected intervals. Once the sensors have detected a

change, the data will be updated live on the cloud

network.

The wireless network connection uses an XBee

Module, which is an embedded solution that utilizes

the standard IEEE 802.15.4 networking protocol for

fast, real-time data transfer to a cloud IoT platform

[12]. The main microcontroller responsible for

controlling the sensors in each WSN is an Arduino

Mega ATMega2560. An Amazon-based cloud

storage solution, AWS Quicksight, is used alongside

Tensorflow, which is the primary image processing

software. Figure 5 shows the block diagram of the

WSNs connected to the Quicksight database, where

real-time IoT data is hosted.

Fig. 5. Online data transmission.

III. RESULTS AND DISCUSSION

A. Model Training

After the images are fed through the neural
network, the model’s parameters are configured for
training. First, the images were fed through a pooling
layer containing the image’s dimensions [13]. Its
primary function is to down-sample a high-
dimensional image without changing the depth. Max
pooling is used to reduce the size of the processed
feature map to allow faster and more compact results.
The dropout layer implemented is customary for
improving generalization and reducing overfitting,
especially in larger datasets, by randomly disabling a
proportion of neurons during training, encouraging the
network to learn better and produce the most optimal
results. For smaller datasets, a higher dropout rate is
selected while a lower dropout rate is selected for
larger datasets. Different dropout values have been
tested to obtain the best results, as shown in Fig. 6.
These values were selected based on the choice of the
hyperparameters and the end goal of the model. For
example, a dropout rate of 0.2 indicates that there is a
20% chance of a neuron being dropped.

Vol 7 No 1 (2025) e-ISSN: 2682-8383

11

Fig. 6 Comparison of dropout values from 0.2 to 0.8.

It can be observed that a dropout value of 0.2
brings the highest validation test accuracy. Using this
dropout value, the images are fed through the final
dense layer, connecting all convolutional and pooling
layers and merging them into a single output. ReLu
was used as the activation function for multi-class
operations. The batch size, which determines how
many iterations per epoch the model will run, is also
determined using trial and error for the best results.
Batch sizes affect how quickly or slowly a dataset will
converge. Smaller batch sizes suffer from high
overfitting rates, but larger batch sizes take longer to
converge and require more computational power [14].
Figure 7 displays the batch sizes attempted for this
research.

Fig. 7 Batch size comparison from 64 to 160.

A batch size of 64 is ideal for this study, producing
up to 97.8 % accuracy on validation tests. The dataset
is relatively small compared to other big data
analysers. The CNN chosen is more compact than
standard DCNN, which means faster convergence can
lead to better results. Epochs are defined as the number
of times the model will be run through the entire
training dataset. Generally, the more iterations a model
goes through, the more accurate it gets. From Fig. 8, it
can be observed that the trend remains true until
around 1000 epochs, when the accuracy rate starts to
plateau. The plateauing is caused by the training
dataset and validation dataset reaching convergence
and learning everything about the dataset.

The dataset was divided between training and
validation using an 80/20 split, respectively, to give
the model a fair chance of recognizing the data and
have enough new data for validation testing. The
learning rate was set within the range of 0.01-0.0001.
A lower learning rate is used when training the top
layers of the classifier and fine-tuning the model for
specific results as the neural network goes deeper. A
higher learning rate is reserved for more general, low-

specificity layers. Table I shows the hyperparameters
that have been tuned for this research.

Fig. 8 Epochs iteration comparison from 10 to 3000.

Table I. Hyperparameters tuned for DCNN.
Parameters Value

Training Epochs 3000

Learning Rate 0.01-0.0001

Batch sizes 64

Training test size 54306

Validation set size 3900

Test set size 1950

Dropout value 0.2

B. Model Testing

The PlantVillage dataset, which is available on
Kaggle, was used for testing [15]. The training model
used is based on the VGG16 structure. It is a custom-
built CNN that consumes less memory as compared to
a traditionally trained learning model architecture.
Figure 9 shows the structure of CNN.

Fig. 9. Convolutional neural network layout.

The total number of trainable parameters in this

CNN structure amounted to 2,257,984. Compared to

traditional models such as AlexNet and GoogLeNet, it

is a much more compact solution to image processing.

The dataset was resized to fit the batch size of

256×256×3 to facilitate uniform image recognition.

The dataset has been divided into 15 different classes,

and the final dense layer of the network has 15 nodes.

Each CNN layer increased by 16 as the network got

more complex than the last fully connected layer. A

3×3 convolutional layer structure was used instead of

Vol 7 No 1 (2025) e-ISSN: 2682-8383

12

5×5 to reduce the computational complexity. Table II

shows the comparison between different CNN

architectures and their trainable parameters.

Table II. CNN architectures and their trainable parameters.

The dataset has been pre-trained on the extensive

ImageNet database with its included weights. Then,

the dense layers were trained with random weights

initialized during the sequence. ImageNet is an

extensive free-access database hosting 3.2 million

images in over 5,000 categories. Since the dataset is a

multi-class problem, the categorical_crossentropy loss

function was used.

The PlantVillage dataset contained 54306 images
across 15 different vegetable classes, including
healthy tomato, potato, and pepper bell leaves. Some
of the leaf images were infected with early and late
blight diseases, bacterial spots, and mold. The training
samples were augmented to increase the number of
samples in the original data set. After a series of pre-
processing steps, such as denoising the original leaf
disease images, 26 images were randomly selected
from each category for 90°, 180°, and 270° rotations,
up- and-down swapping, and left-right swapping for
data augmentation. The augmented images were used
as training samples for the proposed CNN model.

Figure 10 shows the accuracy of the trained model.
It can be observed that it grows exponentially in just
300 training steps. The pre-trained weights from
ImageNet were frozen in the convolutional layer,
allowing the top layers of the classifier to be trained,
which allowed for a quick training time and high
accuracy. Other image processing techniques, such as
VGG16 and InceptionV3, were tested using the same
dataset as well. These algorithms are more complex,
and different hyperparameters had to be adjusted
before they could be used. Training from scratch for
these complex algorithms achieved at least 80 %
accuracy, but it was less satisfactory than the proposed
CNN network. Fine-tuning improved all training
networks' accuracy and even outperformed some
baseline training models. Fine-tuning helped improve
training times by using pre-trained weights from
established datasets like ImageNet.

Table III shows the performance obtained by
different training methods. Although the proposed
CNN does not have the best performance, the training
time is the shortest and requires the least
computational power among the CNN models tested,
using 3GB of RAM throughout the training and
classification periods. Although VGG16 yielded the
highest accuracy, it is a large, sequential-type model

that requires complex 5×5 convolutional filters and
many fully connected layers. The proposed CNN uses
a simple network and lower-order convolutional
filters, keeping accessibility in mind.

Fig. 10. Tensorflow trained model.

Table III. Comparison between learning methods and CNN Models

CNN Model Training

Methods

Validation

Accuracy

Training

time
(Second)

VGG16 Train from

scratch

89.19% 385.728

Transfer
learning

86.52% 301.902

Fine tuning 97.12% 251.011

Inception V3 Train from

scratch

91.17% 385.661

Transfer

learning

72.09% 311.735

Fine tuning 96.37% 261.872

MobileNetV2 Train from
scratch

78.84% 390.025

Transfer

learning

77.52% 334.976

Fine tuning 96.12% 285.431

NasNetMobile Train from
scratch

79.98% 392.726

Transfer

learning

78.21% 347.561

Fine tuning 96.95% 299.165

Proposed

CNN

Trained

using

ImageNet

86.52% 126.716

Fig. 11. First convolutional neural layer.

Figure 11 shows the first convolutional layer of the
proposed CNN network. The bacteria light class
contains 16 two-dimensional images of size 256×256,
resized in the hyperparameters as mentioned earlier.
The first layer of any convolutional network tends to be
the general layer, saving regional features of an image
instead of segmented details. Activations retain all
previous input from the images in the previous layer.
Some of the filters remain blank because they were not
activated. Figure 12 demonstrates that the last layer

CNN Number of Parameters

VGG16 138 million

Inception V3 23.8 million

MobileNetV2 2.3 million

NasNetMobile 4.3 million

Proposed CNN 2.2 million

Vol 7 No 1 (2025) e-ISSN: 2682-8383

13

uses all learned features and activations, leaving no
blank spaces.

Fig. 12. Final convolutional layer with all activated filters.

Fig. 13. Accuracy and loss comparisons after 100 epochs.

Fig. 14. Model predictions for the plant village dataset.

To enhance the accuracy rate of the proposed CNN,
more training parameters were fine-tuned to achieve
better results. Figure 13 shows the results of the

proposed CNN after 100 epochs of training sessions.
The overall accuracy of the proposed CNN increased
from 86.52% to 96.87% after fine-tuning and training
for over 100 epochs. However, after the 20th epoch,
accuracy started plateauing, as did the loss.

Figure 14 shows the predicted leaves from each
class in a grid of 30. The model works as expected and
can predict multiple classes and be displayed in grid
form. Tensorflow was used to train a machine learning
model to predict the dataset. Overfitting is also a
glaring issue when it comes to enormous datasets. One
way to optimize overfitting would be to work with
smaller training datasets of about 1000–1200. Data
augmentation is also an effective way to alleviate
overfitting. It involves extracting more information
from the initial dataset to further classify each image
from each other to ensure that the learning model
performs well, even in challenging data situations.
Some of the methods considered include geometric
transformations, cropping, flipping, and rotation.

IV. CONCLUSION

This paper sets out to reinvigorate image
classification methods for insect-borne diseases in
plants. A comparison of some of the most common
image processing techniques was pitted against the
proposed CNN, with better depth performance and
feature-packed layer networks from higher
computational algorithms. It is also shown that a
simple CNN, pre-trained on ImageNet and fine-tuned,
can also provide similar accuracy results at 96.87% as
rival other algorithms. In addition, the CNN network
has a small trainable parameter number, which keeps
memory usage low and makes the solution easily
accessible. Furthermore, the simple and user-friendly
interface allows new users unfamiliar with
agrotechnology to handle image processing
technology without the steep learning curve usually
associated with it. It also reduces the amount of
manual work required to be done by farmers, provides
real-time updates on the condition of the crops, and
gives them complete control over their field from
anywhere in the world.

Future work will involve extending the use of the
model by training it for plant disease recognition on
more expansive land areas, combining aerial photos of
orchards and vineyards captured by drones with CNN
for object detection. Image data from a smartphone
may be supplemented with location and time
information for additional improvements in terms of
accuracy. In addition, with the increasing number and
quality of sensors on mobile devices, accurate
diagnoses via the smartphone can be performed.
Combined with the excellent prospects of IoT
technology and its flexible array of neural
convolutional networks, these steps will improve the
technology’s practicality and penetration in practice.

Vol 7 No 1 (2025) e-ISSN: 2682-8383

14

ACKNOWLEDGEMENT

The authors appreciate the support from Heriot-

Watt University Malaysia for providing the facilities,

and financial support for this research.

REFERENCES

[1] S. Chakraborty and A. C. Newton, “Climate Change, Plant
Diseases and Food security: An Overview,” Plant Pathol., vol.
60, no. 1, pp. 2-14, 2011.

[2] Al-Sadi and M. Abdullah, “Impact of Plant Diseases on Human
Health,” Int. J. Nutrit., Pharmacol., Neurol. Disea., vol. 7, no.
4, pp. 21-22, 2017.

[3] H. Dun-chun, Z. Jia-sui and X. Lian-hui, “Problems, Challenges
and Future of Plant Disease Management: from an Ecological
Point of View,” J. Integrat. Agricul., vol. 5, no. 4, pp. 705-715,
2016.

[4] M. B. I. Reaz, F. Choong, M. S. Sulaiman, F. Mohd-Yasin and
M. Kamada, “Expert System for Power Quality Disturbance
Classifier,” IEEE Trans. Power Deliver., vol. 22, no. 3, pp.
1979-1988, 2007.

[5] A. Imtiaz and P. K. Yadav, “A Systematic Analysis of Machine
Learning and Deep Learning Based Approaches for Identifying
and Diagnosing Plant Diseases,” Sustain, Operat. and Comput.,
vol. 4, pp. 96-104, 2023.

[6] B. Punam and G. Pushkar, “Plant Disease Detection Using
Hybrid Model Based on Convolutional Neural Network.” Artif.
Intellig. Agricul., vol. 5, pp. 90-101, 2021.

[7] H. Wei-Jian, J. Fan, D. Yong-Xing, L. Bao-Shan, X. Naixue and
E. Bekkering, “MDFC-ResNet: An Agricultural IoT System to
Accurately Recognise Crop Diseases,” Special Sect. Data
Mining for Internet of Things, vol. 8, no. 6, pp. 115287- 115298,
2020.

[8] P. K. Sethy, N. K. Barpanda, A. K. Rath and S. K. Behera,
“Deep Feature-based Rice Leaf Disease Identification using
Support Vector Machine,” Comput. and Electron. Agricul.,
vol. 175, no. 8, pp. 1-9, 2020.

[9] K. Usha, S. J. Prasad and G. Mounika, “Leaf Disease Detection:
Feature Extraction with K-means clustering and Classification
with ANN,” in Third Int. Conf. Comput. Methodol. and
Commun., pp. 1095-1098, 2019.

[10] K. Thenmozhi and S. Reddy, “Image Processing Techniques for
Insect Shape Detection in Field Crops,” in Proc. Int. Conf.
Invent. Comput. and Informat., pp. 699-704, 2017.

[11] Q. Zheng, M. Yang, X. Tian, N. Jiang and D. Wang, “A Full
Stage Data Augmentation Method in Deep Convolutional
Neural Network for Natural Image Classification,” Discr. Dyna.
Nat. and Soc., vol. 2020, pp. 1-11, 2020.

[12] D. H. G. Shweta and B. Saraf, “IoT Based Smart Irrigation
Monitoring and Controlling System,” in 2nd IEEE Int. Conf.
Recent Trends in Electron. Informat. & Commun. Technol., pp.
815- 819, 2017.

[13] P. J. Arun and G. Geetharamani, “Identification of Plant Leaf
Diseases using a Nine- layer Deep Convolutional Neural
Network,” Computers & Electrical Engineering, vol. 76, no. 4,
pp. 323-338, 2019.

[14] I. Kandel and M. Castelli, “The Effect of Batch Size on the
Generalizability of the Convolutional Neural Networks on a
Histopathology Dataset,” ICT Express, vol. 6, no. 4, pp. 312-
315, 2020.

[15] H. Xiao, K. Rasul and R. Vollgraf, “Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning
Algorithms,”, arXiv, pp. 1-6, 2017.

