
Vol 6 No 2 (2024)  e-ISSN: 2682-8383 

 

 
 
      

Journal of Engineering Technology and Applied Physics (2024) 6, 2, 9:57-65 

https://doi.org/10.33093/jetap.2024.6.2 

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. 

Published by MMU PRESS. URL: https://journals.mmupress.com/index.php/jetap/index 

 

Journal of Engineering Technology 

and Applied Physics 

Evolution of Requirements Engineering in 
Agile Methodology – Literature Review 

Ayesha Anees Zaveri1,*, Juliana Jaafar2, Eiad Yafi3 and Sarama Shehmir4 
1,2Malaysian Institute of Information Technology, Universiti Kuala Lumpur, 50250 Kuala Lumpur, Malaysia. 

3Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Sydney, Australia.  
4Department of Electrical and Computer Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada. 

*Corresponding author: Zaveri.ayesha@s.unikl.edu.my, ORCiD: 0009-0007-7230-1696 
https://doi.org/10.33093/jetap.2024.6.2.9  

Manuscript Received: 31 March 2024, Accepted: 29 April 2024, Published: 15 September 2024 

 

 

Abstract — Requirements Agile approaches have 

transformed engineering. This paper shows how RE in 

Agile software development has evolved from 

documentation-heavy to collaborative, adaptable, and 

customer-focused. Agile was born in the mid-1990s when 

the industry realized it needed to respond to changing 

client needs and market volatility. This evolution 

includes iterative development, client interaction, and 

emphasizing communication above documentation, as 

discussed in the paper. By comparing conventional and 

Agile RE approaches, we demonstrate the benefits of 

adapting to change, working with customers, and 

delivering functional software faster. This analysis 

provides a persuasive description of Agile RE 

implementation methodologies and resources through a 

detailed literature review and real-world experiences. 

User stories and backlog refinement are notable 

techniques. The research finishes by exploring how these 

techniques affect team dynamics, project success, and 

customer satisfaction. RE's Agile difficulties and 

opportunities are also examined. The findings illuminate 

RE methods' successful adaptation to Agile projects' 

dynamic character. Software development is more 

responsive and effective due to this adaptation. 

Keywords— Agile, Agile Methodology, Requirements 

Engineering, Process Models, Agile Software 

Development. 

I. INTRODUCTION 

Agile requirements engineering methodology has 
grown significantly since the mid-1990s, with 
consultants playing a crucial role in its development 
and evolution. The methods discussed here were 
developed to address the demand for greater flexibility 
and adaptability in software development processes, 
specifically concerning evolving requirements and 
customer expectations. Various agile methodologies 
have been designed to accommodate the increasing 

frequency of changes in software requirements. These 
methodologies include Adaptive Software 
Development, Crystal, Dynamic Systems 
Development Method, Extreme Programming, 
Feature-Driven Development, Pragmatic 
Programming, and Scrum. Agile methodologies focus 
on valuing skilled individuals and their relationships 
in software development rather than relying heavily on 
detailed planning, strict processes, and extensive 
reuse. Shifting the focus allows more room for 
collaboration and a remarkable ability to adapt to 
customers' ever-changing needs. This ultimately leads 
to deliverables better suited to meet their specific 
requirements. There has been a noticeable shift 
towards emphasizing collaboration and 
responsiveness to customers' ever-changing needs 
throughout the evolution of requirements engineering 
in agile methodologies. The changing landscape has 
resulted in the implementation of various practices, 
including continuous improvement, development 
centred around customer needs, and active customer 
participation in the requirements-gathering process. In 
addition, there has been a noticeable transition from 
conventional requirements documentation to more 
dynamic and iterative methods, including user stories, 
backlog refinement, and feature prioritization. In 
recent years, the field of requirements engineering has 
undergone significant changes due to the adoption of 
agile methodology. This shift has resulted in a more 
flexible and customer-focused approach, where 
requirements are continuously reviewed and modified 
based on customer input and changing market 
dynamics. Overall, the evolution of requirements 
engineering in agile methodology emphasizes the 
importance of collaboration, responsiveness to 
changing customer needs, and continuous 
improvement. The current shift in the industry has 

https://doi.org/10.33093/jetap.2024.6.2


Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

58 

 

resulted in the implementation of various practices that 
aim to enhance overall performance. These practices 
include continuous improvement, a focus on customer 
needs during development, and early and frequent 
involvement of customers in the requirements-
gathering process.  

Agile software development (ASD) is a 
methodology that offers advantages such as timely 
project completion and enhanced customer 
satisfaction. Its primary objective is to deliver 
corporate value through the iterative delivery of 
software solutions. Hence, the development process is 
executed gradually and evidence-based, conferring the 
benefit of promptly altering the product development 
path. Moreover, these techniques revolve around the 
central role of humans and their interactions [1]. 

As shown in Fig. 1, Agile Software Development 
(ASD) is frequently employed in contexts 
characterized by the need to address elaborate adaptive 
challenges. Agile techniques, such as Scrum, Kanban, 
and Extreme Programming (XP), are frequently 
integrated with Human-Centred Design (HCD) 
activities in developed applications. This integration 
of approaches aims to create a value-driven 
organization wherein systems may be designed and 
developed to meet user requirements effectively by 
providing a favourable user experience (UX) [2]. 

 

Fig. 1. Agile Software Development. 

Requirements engineering refers to the systematic 
and structured approach of identifying and capturing 
stakeholders' requirements and desires and 
transforming them into a comprehensive and mutually 
agreed-upon set of precise requirements. These 
requirements serve as a fundamental foundation for all 
subsequent development endeavours. The primary 
objective of requirements engineering approaches is to 
establish a complete and definite problem statement 
while ensuring the proposed solution's correctness, 
reasonability, and effectiveness [2]. 

Requirements Engineering (RE) in the agile 
methodology is a dynamic and iterative procedure 
encompassing customers' active participation, 
ongoing planning, reevaluating requirements' priority, 
and validating these requirements through incremental 
product delivery [3].  

In the industrial sector, new trends are rapidly 
emerging, accompanied by the volatility of agile 
approaches and technologies. The ongoing 
enhancement of the environment contributes to a 
dynamic and fast-evolving knowledge base within the 
realm of study - the proliferation of agile methods 
within the industrial sector results in shifts in 
organizations' value systems. The emphasis on 
meeting user wants and delivering value has become a 
crucial component in product development, driven 
mainly by the escalating levels of competition across 
several domains [3].  

II. BACKGROUND 

Until the 2000s, software development projects 

were predominantly handled using traditional 

methodologies. This implies that initiatives were 

meticulously designed, precisely defined, and 

systematically organized, resembling the approach 

taken in architectural projects. In contrast to this 

prevailing tendency, a small group of visionary IT 

professionals convened in 2001 to formulate the Agile 

Manifesto. The experts expressed dissatisfaction with 

the rigidity and limitations of traditional project 

management methodologies, which are based on 

certain assumptions. These assumptions include the 

belief that software projects can be thoroughly planned 

from the outset, that project requirements remain 

unchanged throughout the project, and that identifying 

and analyzing key stakeholders and business cases can 

be accurately conducted at the project's inception. In 

essence, the conventional approach to management 

posits that once a project transitions into the 

implementation phase, all crucial aspects have been 

definitively defined, effectively conveyed, and are not 

subject to alteration. Moreover, it expects that the 

project team will execute all tasks precisely as outlined 

in the initial plan. In practice, this scenario is 

applicable only in a limited number of instances, 

primarily for initiatives characterized by minimal 

complexity [4].  

The origins of the Agile technique may be traced 

back to the 1990s, a period characterized by notable 

changes in software development practices. During 

this period, numerous teams experienced 

dissatisfaction with the constraints imposed by 

conventional, plan-driven methodologies, which 

frequently led to the non-fulfilment of deadlines, 

unsuccessful projects, and dissatisfied clientele. The 

Agile methodology is a project management and 

software development technique characterized by its 

iterative and collaborative nature. The concepts above 

prioritize humans and interactions, functional software 

development, active customer engagement, and 

adaptability in response to change. 
In contrast to conventional techniques, Agile 

strongly emphasizes flexibility, adaptability, and 
continuous improvement. The approach encourages 
extensive collaboration among cross-functional teams, 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

59 

 

regular solicitation of customer feedback, and the 
capacity to adapt project needs and priorities 
promptly.  

The Agile Manifesto has served as a catalyst for 
developing diverse Agile approaches and frameworks, 
including Scrum, Extreme Programming (XP), and 
Kanban, among others. The approaches exhibited a set 
of shared concepts and practices, encompassing 
iterative and incremental development, forming self-
organizing teams, regular customer engagement, and 
the ongoing provision of feedback [5].  

The Agile Manifesto, as shown in Fig. 2, was 
officially introduced in 2001, with the participation of 
17 technologists who played a crucial role in its 
drafting. Four key concepts were established for agile 
project management to guide teams in pursuing 
enhanced software development. 

1. The prioritization of individuals and 

relationships over processes and tools 

2. The prioritization of functional software 

development over extensive documentation. 

3. The prioritization of customer participation 

over contract negotiation. 

4. fcAdapting to change rather than adhering 

strictly to a predetermined plan [6, 7].  

It is argued that a linear product development 
approach is unsuitable due to its limited flexibility. 
During the 1990s, various movements emerged in the 
field of software development, focusing on 
lightweight process models such as Scrum [7, 8], 
Extreme Programming (XP) [9], and Feature-Driven 
Development [10]. In 2001, the respective leaders of 
these distinct movements convened to identify shared 
objectives and establish a unified framework for their 
collective endeavours. Consequently, the Agile 
Manifesto was formulated [10]. The agile manifesto 
consists of values supported by 12 principles, as 
outlined in the work [11].  

Despite being formulated in 2001, the Agile 
Manifesto is a guiding framework for agile teams. 
Furthermore, many of its concepts remain highly 
relevant within the contemporary agile community [9- 
11]. 

Agile requirement engineering has few methods. 
Agile Modelling is a method for creating design 
models for documentation. Design models clarify 
project requirements. The first is feature-driven 
development, where team members list and prioritize 
features. Weekly 30-minute discussions evaluate each 
feature. Third, the Dynamic Systems Development 
Method assesses all features and produces a feasibility 
analysis, defining its need. User engagement and 
periodic delivery are its primary goals.  

Extreme Programming, a popular agile method, 
uses small iterations and user feedback. Finally, Scrum 
uses sprints and backlogs. A daily 15-minute meeting 
tracks task progress and discusses today's tasks. Scrum 
is "empirical process control". Therefore, project 
progress may be seen after each sprint. Crystal 
approaches are chosen from various methods for each 
project. In addition, Adaptive Software Development 
incorporates modest, incremental, change-tolerant 
cycles with customers [11, 12]. 

Requirements are the fundamental elements upon 
which all software products are built. As a result, 
Requirements Engineering (RE) assumes a crucial role 
in the system development process. Requirements 
Engineering was previously employed during the 
1970s [13].  

Subsequently, Requirements Engineering (RE) had 
a surge in popularity with the inception of its inaugural 
conferences in the 1990s. The waterfall model, first 
proposed by Royce in 1970, as shown in Fig. 2, is an 
example of a traditional process model that follows a 
sequential approach and begins with an initial design 
phase. Figure 2 illustrates the consecutive steps that 
underlie the phenomenon. At the onset of these 
initiatives, all requirements are synthesized and 
documented in a specification report. Based on the 
available information, the timetable and budget are 
estimated. The software development process involves 
iterations, but he also emphasized a specific point at 
which the requirements analysis is complete. Within 
the industrial context, it is commonly assumed that 
requirements are factual and that any modifications are 
implemented through a rigorous change request 
procedure, typically adhering to conventional process 
models [14, 15]. 

Fig. 3. Sequential phases approach to software development. 

Requirements Engineering (RE) encompasses a 
comprehensive range of operations that involve 
identifying, documenting, and managing 
requirements. Employing systematic and replicable 

Fig. 2. The Agile Manifesto. 

 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

60 

 

methodologies is recommended to guarantee product 
requirements' comprehensiveness, coherence, and 
pertinence. The requirements are compiled and 
documented in a specification document, 
incorporating additional details as the product 
development process progresses [15]. 

The primary emphasis in the existing literature on 
Agile Requirements Engineering (RE) centres around 
the active participation of stakeholders and users. The 
scholarly literature investigates a range of approaches, 
procedures, and techniques that can be employed to 
actively engage stakeholders and users in the Agile 
Requirements Engineering (RE) process. This 
encompasses comprehending the methods for eliciting 
and prioritizing requirements, engaging stakeholders 
in the decision-making process, and ensuring that user 
wants and preferences are sufficiently considered. 

The literature review also investigates the 
difficulties and recommended approaches for 
incorporating Agile techniques into requirements 
engineering practices. This encompasses the 
examination of the scalability and application of Agile 
Requirements Engineering (RE) in vast and 
complicated projects. It also involves effectively 
managing requirements in geographically dispersed 
teams and handling needs that evolve in a dynamic 
environment. Additionally, it entails the establishment 
of traceability and consistency in Agile RE projects 
conducted on a large scale. 

Moreover, the literature review emphasizes the 
necessity for empirical investigations that assess the 
efficacy and consequences of Agile requirements 
engineering practices. Numerous scholarly 
investigations put forth conceptual frameworks, 
models, and recommendations. Yet, there is a need for 
empirical data to substantiate the tangible advantages 
and results derived from the implementation of Agile 
Requirements Engineering (RE) in practical project 
settings. Hence, the primary objective of the literature 
review is to address this disparity by offering 
empirical observations and practical ramifications for 
Agile Requirements Engineering (RE). 

In general, the existing body of research in Agile 
Requirements Engineering mostly centres around the 
active participation of stakeholders and users, tackling 
various issues, recommending optimal approaches, 
and presenting empirical findings to enrich the 
comprehension and implementation of Agile 
methodology within requirements engineering 
procedures [14-16]. 

A study found that requirement phases cause 37% 
of project issues. Requirement engineering should be 
prioritized during project development. When to do 
requirement engineering in agile and traditional 
development differs.  

Agile development requirements and engineering 
techniques vary in each project. Agile requirement 
engineering includes Feasibility Study, Requirement 
Elicitation, Analysis, Documentation, Validation, and 
Management [17, 18].  

First, a feasibility study gathers project details. It 
also assesses if the organization can handle the project 
and whether it has resources. Next, elicitation needs to 
involve stakeholders and agile team members 
discussing system features. Interviewing the customer, 
brainstorming project ideas, using case analysis, and 
using ethnography are used. Finding out how people 
work is done through observation. Another demand-
collecting method is focus groups, where 4-9 people 
from varied backgrounds debate project features [17, 
18]. 

Requirement Analysis also resolves confusing or 
contradictory requirements. Some strategies are Joint 
Application Department, Modelling, and 
Prioritisation. The Joint Application Department is a 
workshop that promotes conflict resolution among 
stakeholders during project development. Modelling 
shortens the design-analysis gap. It shows the project 
status visually. Prioritization assesses essential 
requirements to develop them first. Agile prioritizes 
requirements, implementing new and old requirements 
based on their priority.  

In addition, Requirement Documentation provides 
essential project documentation. Two team members 
document the storyboard and use case features for 
ongoing documentation. However, more 
documentation can help long-term projects. User 
stories document requirements well. According to [4], 
user stories define requirements and estimate work 
succinctly. User stories should be Specific, 
Measurable, Achievable, Relevant, and Time-bound.  

Requirement Validation also includes Acceptance 
Testing to ensure the system meets user needs. 
Required Reviews, Unit Testing, and Evolutionary 
Prototyping are included. Evolutionary prototyping 
adds features in order of priority using user input. 
Lastly, requirement management manages stakeholder 
and project team communication [19]. 

Agile methodologies have demonstrated higher 
success than conventional requirement engineering 
practices. In the agile method, it is possible to modify 
project requirements at any point during its lifecycle. 
In contrast, in traditional requirements engineering, 
gathering requirements occurs at the outset, and any 
further changes introduce a disconnect between the 
documentation and the development process. 
According to a poll done among professionals who 
have firsthand experience with both techniques, the 
findings indicate that agile methodology has more 
remarkable performance in terms of flexibility, 
fostering strong customer relationships, and its ability 
to adapt to change [20].  

Requirement Engineering in Agile projects 
involves a diverse range of tasks and methodologies. 
This study presents a comprehensive literature review 
on several Requirements Engineering (RE) 
methodologies. It offers a critical critique of these 
strategies. Additionally, various methods have been 
suggested for agile project requirements engineering 
(RE). Using automated tools and procedures in agile 
methodologies can enhance the effectiveness of 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

61 

 

requirements engineering (RE). Selecting a suitable 
and previously experienced RE approach is paramount 
in comparable scenarios. User engagement, 
observation, and ethnography are more effective 
methodologies for agile projects prioritizing rapid 
software delivery. According to the survey reported 
[21], the combination of several strategies has the 
potential to yield effective outcomes. Prototyping 
techniques have been found to enhance project 
resources. However, their applicability is constrained 
primarily to small to medium-sized projects [21]. 

One technique considered in the literature is 
crowd-based requirement gathering. This process 
entails the participation of people from diverse 
backgrounds and age cohorts to collect project needs. 
The prioritization of work and resolution of problems 
are typically addressed through voting or engaging in 
talks with a group of individuals. According to a 
survey conducted [22], it has been determined that 
utilizing crowd-based criteria enhances originality and 
diversity. Project teams play a crucial role in the field 
of requirement engineering. 

III. PROBLEM STATEMENT 

The typical or traditional Software Development 
methodology is characterized by a linear progression, 
wherein each process phase follows a sequential order. 
The chosen method is contingent upon reliable 
instruments and consistent expertise. Every project has 
a standardized life cycle encompassing many stages: 
feasibility, planning, design, construction, testing, 
production, and support. The project is 
comprehensively planned, with no allowance for 
modifications to the needs. This technique operates 
under the assumption that time and cost are dynamic 
variables while requirements remain constant. The 
abovementioned factor is the underlying cause of 
traditional project management's budgetary and 
temporal challenges [22]. 

In contrast to traditional systems that prioritize 
upfront planning and emphasize cost, scope, and time, 
Agile management emphasizes cooperation, customer 
collaboration, and adaptability. The Agile approach 
dismisses conventional project management 
approaches due to their perceived drawbacks of being 
burdensome, constraining, and ill-suited for the 
contemporary period characterized by rapidity. Agile 
project management is characterized by an iterative 
approach that seeks to consistently integrate user 
feedback and achieve continuous releases across each 
iteration of the software development project, as 
depicted in the provided Figure. Each task output can 
be considered as a product that is being offered to 
stakeholders. The design of teams and work structures 
is centred on developing products or services that 
directly use customers or clients [23]. 

In agile methodologies, requirements engineering 
(RE) is a dynamic and iterative process in which 
requirements evolve throughout the agile iterations. 
This stands in contrast to the waterfall approach, 
where RE is typically finalized before deployment, 
and any modifications to requirements are usually 

negotiated with the client through a formal change 
management process. Some conventional issues 
associated with requirements engineering are reduced 
customer engagement, excessive scope definition, 
challenges in requirements documentation, and 
communication difficulties [22, 23]. 

The existing body of literature about Agile 
Requirements Engineering (RE) has made notable 
advancements in comprehending the amalgamation of 
Agile techniques with Human-Centred Design (HCD) 
and recognizing the associated issues and practices. 
Nevertheless, there still needs to be more in the 
existing body of scholarly work that necessitates 
further investigation and resolution. 

A significant deficiency exists in prioritizing 
stakeholder and user engagement within Agile 
requirements engineering. Although several studies 
have briefly addressed this topic, there exists a 
requirement for a more extensive study that delves into 
the precise methods, tactics, and tools employed to 
successfully engage stakeholders and users throughout 
the Agile requirements engineering (RE) process. This 
encompasses comprehending the methods for eliciting 
and prioritizing requirements, engaging stakeholders 
in the decision-making process, and ensuring that user 
wants and preferences are sufficiently considered [23, 
24]. 

Another area for improvement lies in the restricted 
emphasis on the scalability and application of Agile 
Requirements Engineering (RE) in large and 
complicated projects. Most extant scholarly works 
have predominantly concentrated on projects of 
limited scope. Consequently, there is a requirement for 
intellectual inquiry that examines the difficulties and 
optimal approaches for implementing Agile 
Requirements Engineering (RE) in more extensive and 
intricate environments. This encompasses proficiently 
managing requirements in distributed teams, 
addressing the evolution of needs in a dynamic 
context, and ensuring traceability and consistency in 
large-scale Agile requirements engineering projects. 

Additionally, it is imperative to conduct further 
empirical research to assess the efficacy and 
consequences of Agile requirements engineering 
practices. Numerous scholarly investigations have put 
forth various frameworks, models, and Agile 
Requirements Engineering (RE) principles. However, 
more empirical data is needed to substantiate the 
tangible advantages and consequences resulting from 
the practical implementation of Agile RE in real-life 
projects. Further empirical research is required to 
confirm the suggested methodologies and offer 
valuable insights into the practical ramifications of 
Agile Requirements Engineering. 

Addressing these deficiencies in the existing body 
of knowledge will enhance the overall comprehension 
of Agile requirements engineering (RE) and furnish 
practitioners with essential insights and 
recommendations for efficiently implementing Agile 
methodology in requirements engineering procedures. 
[18, 25]. 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

62 

 

IV. REQUIREMENTS EVOLUTION IN AGILE 

AND ITS ROLE IN AGILE PROJECTS 

Requirements Engineering is crucial in Agile 
projects, serving as the basis for comprehending and 
handling customer needs and expectations. 

The development of requirements engineering in 
Agile methodology represents a significant shift from 
traditional, inflexible software development 
approaches to a more adaptable and iterative process. 
This shift in approach can be traced back to the mid-
1990s when lightweight Agile methods started to gain 
popularity as a response to the more rigid waterfall-
oriented methods. The critical components of this 
transformation in requirements engineering 
encompass: 

A.  Flexibility and Adaptability: Agile methodologies, 
such as Scrum and Kanban, were designed to easily 
accommodate and adapt to evolving software 
requirements, even during the later stages of 
development. 

B. Customer Focus: Agile methodologies don't just 
prioritize customer collaboration over contract 
negotiation. They put the customer at the heart of the 
development process. This approach ensures 
continuous feedback and guarantees that the final 
product is tailored to their needs, making stakeholders 
feel empowered and integral to the project's success. 

C. Iterative Development: Agile methodologies 
revolutionized the software development process by 
introducing planning, development, and evaluation 
cycles. This fosters a culture of ongoing improvement 
and flexibility in the face of evolving circumstances. 

D. Simplicity and Efficiency: Agile methods strongly 
emphasize delivering functional software in a timely 
and efficient manner, focusing on minimizing 
unnecessary work and documentation. The main goal 
is to maximize the value of the software being 
developed. 

E. Cross-functional Teams: Collaboration is critical in 
Agile requirements engineering. It's all about self-
organizing teams, where software developers and 
project managers are crucial, working closely with 
stakeholders to get the job done. This guarantees a 
more profound comprehension of requirements and a 
quicker adaptation to change, empowering them in the 
process. 

F. Continuous Improvement: Agile methodologies 
don't just promote a constant enhancement culture. 
They inspire it. Teams are encouraged to frequently 
analyze their workflows to discover methods for 
improving efficiency, fostering a sense of inspiration 
and motivation for ongoing enhancement. 

G. Interactive Techniques: The focus has shifted from 
extensive documentation to embracing interactive and 
customer-centric practices like user stories, backlog 
grooming, and feature prioritization. This shift has 
fostered a more collaborative approach to shaping and 
enhancing requirements [18, 24, 25] 

The primary areas of emphasis in Agile Methods 
in Requirements Engineering (RE) include the 
customer, waste in requirements, requirements 
evolution, and non-functional requirements.  

In agile methods, requirements engineering 
emphasizes the involvement of customers and 
stakeholders. The interaction between the 
development team and stakeholders is characterized 
by its complexity, primarily stemming from the 
diverse perspectives held by stakeholders regarding 
the problem at hand. Agile methods address the 
challenge of managing multiple stakeholders by 
consolidating their representation into a single 
individual who acts on behalf of all stakeholders 
throughout the project. The customer needs domain 
expertise and the ability to make critical decisions, 
including product acceptance and prioritizing 
requirements [25, 26]. 

The evolution of requirements in Agile methods 
assumes that gathering all user requirements at the 
outset of a development project is challenging. 
Additionally, these methods acknowledge that 
requirements are subject to change over time due to 
customer preferences or shifts in the technical and 
socio-economic landscape. Agile organizations 
understand that the occurrence of changes is 
unavoidable. As such, they incorporate the 
management of variability into their development 
process. It is acknowledged that the initial stages of a 
project often lack a comprehensive understanding of 
the requirements. The notion of requirements changes. 
The act of making alterations does not incur 
significant expenses. Agile methodologies operate 
under the assumption that the cost associated with 
implementing modifications in a product remains 
relatively stable throughout its lifespan; nevertheless, 
this assumption may not hold in all circumstances. The 
expenses related to implementing changes tend to 
increase dramatically as time progresses. However, 
when development phases are consolidated into brief 
iterations and crucial choices are postponed until the 
last feasible moment, the escalation of costs is 
constrained. Agile techniques employ a contractual 
arrangement known as a variable scope-variable 
pricing contract to handle requirements evolution 
effectively. This implies that the system's incorporated 
features and associated costs undergo evolution. The 
project involves ongoing requirements negotiation 
between the customer and the development team [27, 
28]. 

The management of variability is a crucial aspect 
in various fields and industries. It involves identifying, 
analyzing, and controlling factors that clarify the 
necessary implementation tasks and render the 
sequence of their execution inconsequential. The 
requirements must exhibit a high degree of 
independence. 

At the commencement of each iteration, an activity 
is conducted to collect and prioritize needs. During 
this process, novel requirements are recognized and 
assigned priority. This methodology facilitates the 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

63 

 

identification of the most crucial elements inside the 
current project. Features are mainly introduced based 
on their prioritization rather than their functional 
interdependence.  

Non-functional requirements refer to the aspects of 
a system or software that are not directly related to its 
functionality. Agile methodologies need a universally 
agreed approach for eliciting and maintaining non-
functional needs. These requirements are typically 
gathered implicitly during the process of collecting 
requirements. The significance of outlining non-
functional needs is comparatively less in this context 
owing to the ongoing engagement with the customer. 

Utilizing tools for requirements management in 
Agile methods is also a part of this methodology. The 
essential tools for the task are paper, pencil, and 
pinboards for visualizing ideas and concepts. 
Additionally, UML modelling tools are necessary for 
creating and representing system models. 
Requirements negotiation tools facilitate effective 
communication and agreement on project 
requirements. Lastly, instant messaging applications 
are recommended for seamless and efficient 
communication among team members [26-28]. 

V. METHODOLOGIES AND THEIR GAPS 

Within the realm of research background, one can 
encounter various studies that put forth process models 
about the agile requirements engineering (RE) 
domain. These process models exhibit the ongoing 
management of requirements through the active 
participation of stakeholders and users. The most 
pertinent ones are highlighted here. 

The research proposed developing a process model 
called cross-discipline User Interface and Software 
Engineering (CRUISER) based on the principles of 
Extreme Programming (XP). The method commences 
with an Initial Requirements Up-front Phase (IRUP), 
which yields agile models that articulate user 
requirements using agile techniques such as 
fundamental use cases, scenarios, and prototypes. The 
collected data is analyzed and processed across the 
various stages of the CRUISER framework [26]. 

A case study was undertaken to examine the level 
of user and consumer engagement in the context of 
Agile Software Development (ASD). The author does 
not explicitly assert the proposition of a process 
model. Still, the study's findings demonstrate the 
presence of an implicitly applied process model. Kautz 
incorporates Participatory Design activities within 
Extreme Programming (XP). The agile team can 
identify issues related to misunderstandings of 
requirements at an early stage, preventing them from 
escalating into more significant problems. This is 
achieved by the involvement of an onsite customer and 
the regular review process with users and customers 
[27]. 

The research proposed a metamodel for artefact-
based requirements engineering (RE) that 
encompasses the entire RE domain without focusing 

on any development approach. The metamodel is 
derived from two established requirements 
engineering models utilized in the industry. On the one 
hand, it offers a valuable, comprehensive examination 
of managing artefacts in requirements engineering. In 
contrast, using the metamodel facilitates the 
development of RE process models based on 
enterprises' artefacts [28]. 

Another research proposed the HCD (Human-
Centred Design) process encompasses several 
sequential processes. These steps include planning the 
HCD process, comprehending and specifying the 
design's context, articulating user requirements, 
generating design solutions that align with these 
requirements, and assessing the designs against the 
established criteria. The author proposes a series of 
agile methodologies that can be employed at every 
stage. Furthermore, the author suggests certain 
artefacts produced while implementing agile methods 
[29]. 

The research introduced the process model called 
Mockup-Driven Development (MockupDD). The 
strategy employed by the authors is aligned with the 
principles of Model-Driven Web Engineering 
(MDWE). It has been seamlessly integrated with the 
Scrum methodology. At the onset of MockupDD, an 
initial phase of expeditious requirements collecting is 
conducted, yielding a collection of user stories. Based 
on this, customers and users generate visual 
representations, known as mock-ups, to depict these 
user stories. These mock-ups serve as the basis for the 
subsequent modelling procedure [30]. 

The process model developed in the research is 
derived from a conceptual model called 
Qualitative/quantitative Customer-driven 
Development. The importance of integrating 
qualitative consumer feedback throughout the initial 
phases of development alongside quantitative 
observations in subsequent stages is emphasized. The 
approach by Olsson et al. involves regarding 
requirements as hypotheses that undergo validation 
with customers before the commencement of 
development. Hypotheses are formed based on 
corporate strategy, innovation activities, customer 
input, and continuous validation cycles. 

Upon analyzing the shared characteristics of the 
approaches above, it can be deduced that the studies 
conducted by Memmel et al. (2007), Kautz (2010), 
Maguire (2013), Rivero et al. (2014), and Olsson et al. 
(2015) all encompass process models that delineate the 
modus operandi within the realm of agile requirements 
engineering (RE). These models comprise workflows, 
role descriptions, and agile techniques, elucidating 
how work is conducted in this context [31]. 

The metamodel developed by Méndez Fernández 
et al. (2010) for artifact-oriented requirements 
engineering (RE) is designed to address RE in a broad 
sense rather than being specifically customized to the 
unique requirements of Agile Software Development 
(ASD). Furthermore, their focus is on an artifact-
centred approach. In contrast, our research fosters 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

64 

 

individual collaboration, adopting a more human-
centred perspective. 

Agile requirements engineering (RE) practices and 
approaches enable agile RE patterns. This research 
presented agile requirements engineering patterns. 
Agile requirements engineering patterns were 
developed using a three-phase pattern mining process. 
An agile requirements engineering pattern includes a 
problem and an appropriate agile way to solve it. This 
mapping produced 41 agile requirements engineering 
patterns. a) Evaluation and testing evaluate a product 
or system for quality, functionality, and performance. 
b) A story map organizes and prioritizes user stories or 
needs in product development. It gives a complete 
picture of the goods. c) Product owners represent 
stakeholders and customers in product development. 
They define and prioritize product requirements, 
manage the product backlog, and ensure it meets user 
demands [32]. 

Continuous requirements management involves 
recognizing, documenting, assessing, and prioritizing 
stakeholder needs and expectations throughout a 
project's lifecycle. Agile requirements engineering 
solves this problem. Continuous requirement 
management using instruments. This research 
implements the agile requirements engineering 
metamodel in a Scrum-oriented methodology for 
developing e-government web applications. Agile 
requirements engineering was highlighted in this 
situation. Agile requirements engineering solves 
technical or functional dependencies with other teams 
[32, 33]. 

However, the existing literature needs to offer 
comprehensive concepts at a higher level of 
abstraction. The significance of these generic 
principles in the contemporary business landscape lies 
in their application across various process models 
utilized by firms for diverse teams. This phenomenon 
results in an organization's heightened intricacy, 
mainly when scaled or teams employ sequential 
methodologies such as the waterfall model. To achieve 
this objective, the present study introduces a 
metamodel for agile requirements engineering (RE) to 
effectively manage the inherent complexity. Based on 
the available information, this metamodel for agile 
requirements engineering is the first of its kind [34, 
35]. 

VI. CONCLUSION 

To summarise, the ongoing enhancement of Agile 
methodologies through focused investigation offers 
the potential for substantial advantages to both 
practitioners and scholars. Practitioners can benefit 
from methods proven via empirical evidence, Agile 
frameworks tailored to meet the specific needs of 
different organizations, and advanced tools that make 
the Agile process more efficient and effective. 
However, academics can enhance their 
comprehension of Agile approaches, make valuable 
contributions to the existing knowledge, and stimulate 
innovation in the sector. Researchers can tackle the 
changing difficulties practitioners face by prioritizing 

empirical studies, doing cross-disciplinary research, 
and creating new tools and measurements. The 
collaboration between practice and research will 
create an environment where Agile methodologies can 
adjust to the evolving software development field and 
continue to be leaders in providing exceptional value 
to customers and stakeholders in a complex and 
dynamic world [36]. 

Abbreviations and Acronyms 

ASD – Agile Software Development. 

RE – Requirements Engineering. 

SE – Software Engineering. 

SDLC – Software Development Life Cycle 

ACKNOWLEDGEMENT 

I'd like to thank my university, UniKL, for its 
support in our research. Without our parents, family, 
and friends' support and patience, no attempt can 
succeed. Thanks to Dr Juliana Jaafar and Dr Eiad for 
their unwavering support and guidance while writing 
this paper. I appreciate everyone who helped me 
research this paper. 

REFERENCES 

[1] E. Schön, J. Sedeño, M. Mejías, J. Thomaschewski and M. 
Escalona, “A Metamodel for Agile Requirements Engineering,” 

J. Comput. and Commun., vol. 7, pp. 1-22, 2013. 

[2] N. Saher, F. Baharom and R. Romli, “Guideline for the Selection 
of Requirement Prioritization Techniques in Agile Software 

Development: Empirical Research,” Int. J. Recent Technol. and 

Eng., vol. 8, no. 5, pp. 3381-3388, 2020. 
[3] “Agile Done Right Eliminates The Need for Classical 

Requirements Engineering,”  

https://www.scrum.org/resources/blog/agile-done-right-
eliminates-need-classical-requirements-engineering. 

[10 November 2022] 

[4] A. Muhammad, A. Siddique, M. Mubassher, A. Aldweesh and 
Q. Naveed, “Prioritizing Non-functional Requirements in Agile 

Process using Multi Criteria Decision Making Analysis,” IEEE 

Access, vol. 11, pp. 24631-24654, 2023. 
[5] “Classical Project Management vs Agile Project Management,” 

https://www.visual-paradigm.com/scrum/classical-vs-agile-

project-management/. [2023] 
[6] E. Schön, “A Framework for Modeling and Improving Agile 

Requirements Engineering, Computer Languages and Systems 

Department University of Seville,” PhD Thesis, 2017. 
[7] V. Gaikwad and P. Joeg, “A Case Study in Requirements 

Engineering in Context of Agile,” Int. J. Appl. Eng. Res., vol. 12, 

no. 8, pp. 1697-1702, 2017. 
[8] T. Hirotaka and I. Nonaka, “The New Product Development 

Game,” Harvard Busine. Rev., pp. 137-146, 1986. 

[9] K. Schwaber, “SCRUM Development Process,” in J. Sutherland, 
C. Casanave, J. Miller, P. Patel and G. Hollowell, Business 

Object Design and Implementation, Springer, London, 1997. 

[10] K. Schwaber, “Agile Project Management with Scrum,” 
Microsoft Press, 2004. 

[11] K. Beck and C. Wilson, “Development of Affective 

Organizational Commitment: A Cross-Sequential 
Examination of Change with Tenure,” J. Vocation. Behavior, 

vol. 56, pp. 114-136, 2000. 

[12] W. Laurie, R. Balasubramaniam, C. Alistair, L. Kalle and A. 
Pekka, “Agile Software Development Methods: When and 

Why Do They Work?” in International Federation for 

Information Processing Digital Library, Business Agility and 
Information Technology Diffusion, 2005. 

[13] L. Williams, “What Agile Teams Think of Agile Principles,” 

Communications, vol. 55, pp. 71-76, 2012. 



Vol 6 No 2 (2024)     e-ISSN: 2682-8383 

65 

 

[14] E. Schön, M. J. Escalona and T. Jörg, “Agile Values and Their 

Implementation in Practice,” Int. J. Artif. Intellig. and Interac. 

Multimedia, vol. 3, no. 5, pp. 61-66, 2015. 

[15] I. Sacolick, “A Brief History of The Agile Methodology,” 
InfoWorld, https://www.infoworld.com/article/3655646/a-

brief-history-of-the-agile-methodology.html. [8 April 2022] 

[16] M. D. Richter, J. D. Mason, M. W. Alford, I. F. Burns and H. 
A. Helton, “Software Requirements Engineering 

Methodology,” Technical report, DTIC Document, 1976. 

[17] W. W. Royce, “Managing the Development of Large Software 
Systems,” in Proc. IEEE WESCON, vol. 26, pp. 328-388, 1970. 

[18] L. Andrea De and A. Qusef, “Requirements Engineering in 

Agile Software Development,” J. Emerg. Technol. in Web 
Intellig., vol. 2, no. 3, pp. 212-220, 2010. 

[19] F. Paetsch, A. Eberlein and F. Maurer, “Requirements 

Engineering and Agile Software Development,” in Twelfth 
IEEE Int. Workshops on Enabling Technol.: Infrastruct. for 

Collab. Enterpris., Linz, Austria, pp. 308–313, 2003.  

[20] T. Fatima and W. Mahmood, “Requirement Engineering in 
Agile,” IJ Educat. and Manage. Eng., vol. 4, pp. 20-33, 2019. 

[21] A. Batool, Y. Motla, B. Hamid, S. Asghar, M. Riaz, M. 

Mukhtar and M. Ahmed, “Comparative Study of Traditional 
Requirement Engineering and Agile Requirement 

Engineering,” in 15th Int. Conf. Adv. Commun. Technol., pp. 

1006-1014, 2013. 
[22] R. Tousif Ur, M. N. A. Khan and N. Riaz, “Analysis of 

Requirement Engineering Processes, Tools/Techniques and 
Methodologies,” Int. J. Inform. Technol. and Comput. Sci., vol. 

5, pp. 40-48, 2013.  

[23] G. Umesauda, M. Murad and W. Mahmood, “Crowd-Based 
Requirement Engineering,” Int. J. Educ. and Manage. Eng., vol. 

8, no. 3, pp. 43-53, 2018. 

[24] D. Turk, R. France and B. Rumpe, “Assumptions Underlying 
Agile Software Development Processes,” J. Database Manage., 

vol. 16, no. 4, pp. 62-87, 2005. 

[25] A. Rasheed, B. Zafar, T. Shehryar, N. A. Aslam, M. Sajid, N. 
Ali, S. H. Dar and S. Khalid, “Requirement Engineering 

Challenges in Agile Software Development,” Math. Probl. in 

Eng., vol. 2021, pp. 696695, 2021. 
[26] A. Sillitti and G. Succi, “Requirements Engineering for Agile 

Methods,” Engineering and Managing Software Requirements, 

pp. 309-326, Springer, 2005. 

 

 

 
 

 

 
 

 

 

[27] T. Memmel, F. Gundelsweiler and H. Reiterer, “Agile Human-

Centered Software Engineering,” in 21st British HCI Group 

Annual Conf. People and Comput., Lancaster, UK, 3-7 

September 2007. 
[28] K. Kautz, “Participatory Design Activities and Agile Software 

Development,” in Int. Working Conf. IFIP WG, vol. 318, pp. 

303–316, Springer, 2010. 
[29] M. Fernández, D. Penzenstadler, B. Kuhrmann, M. Broy, “A 

Meta Model for Artefact-Orientation: Fundamentals and 

Lessons Learned in Requirements Engineering,” in D. C. Petriu, 
N. Rouquette, Ø. Haugen, Model Driven Engineering 

Languages and Systems, MODELS 2010, Lecture Notes in 

Comput. Sci., vol. 6395, Springer, Berlin. 
[30] M. Maguire, “Using Human Factors Standards to Support User 

Experience and Agile Design,” in Int. Conf. UAHCI 2013, Las 

Vegas, USA, 2013. 
[31] J. M. Rivero, J. Grigera, G. Rossi, E. Robles Luna, F. Montero 

and M. Gaedke, “Mockup-Driven Development: Providing 

agile support for Model-Driven Web Engineering,” Inform. and 
Softw. Technol., vol. 56, no. 6, pp. 670-687, 2014. 

[32] E. M. Schön, J. Thomaschewski and M. J. Escalona, 

“Identifying Agile Requirements Engineering Patterns in 
Industry by Means of Empirical Research,” in 22nd Europ. 

Conf. Patt. Langua. of Progr., 2017. 

[33] E. M. Schön, T. Jörg and M. J. Escalona, “Agile Requirements 
Engineering: A Systematic Literature Review,” Comput. 

Standar. & Interf., vol. 49, pp. 79-91, 2017. 
[34] E. Kheirkhah and A. Deraman, “Requirements Engineering in 

End-User Computing: A review,” in 2008 Int. Symp. on Inform. 

Technol., Kuala Lumpur, Malaysia, pp. 1-8, 2008. 
[35] A. Gupta, G. Poels and P. Bera, “Using Conceptual Models in 

Agile Software Development: A Possible Solution to 

Requirements Engineering Challenges in Agile Projects,” IEEE 
Access, vol. 10, pp. 119745-119766, 2022. 

[36] A. Hamzah, M. Omar and R. Romli. “The State of The Art of 

Agile Kanban Method: Challenges and Opportunities,” 
Independ. J. Manage. & Product., vol. 12, no. 8, pp. 2535-2550, 

2021. 

 

 

 

 

 

 

 


