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Abstract — Light Detection and Ranging (LiDAR) 

refers to a range imaging method for distance objects 

based on the principle of laser ranging. LiDAR 

environmental mapping technology is often highly 

praised for its precise mapping information with 

intricate features for various detection or tracking based 

applications. The research proposes a novel method for 

independently identifying and filtering noise clusters in 

2-Dimensional (2D) LiDAR scans based on 2 distinct 

clustering algorithms of K-Means and Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN). Results show DBSCAN to be the better 

choice as it is more robust and resistance to noise and 

outliers in the dataset and is capable of identifying 

clusters of any shape making it more versatile. 

Furthermore, to address the issue of dead zones present 

in LiDAR scanning, an innovative solution based on 

interpolating the discontinuous spatial results of the 

LiDAR scanning result to further reconstruct a 3-

Dimensional (3D) viewing model by stacking multiple 

copies of 2D LiDAR scanning results with varying 

elevation is demonstrated by the results of the study to 

be a viable economical alternative for 3D LiDAR 

mapping.     

Keywords—2D LiDAR Scanning, K-means, Density-

Based Spatial Clustering of Applications with Noise 

(DBSCAN). 

I. INTRODUCTION  

In recent years, Light Detection and Ranging 
(LiDAR) technology has become essential across 
numerous industries, being highly valued for its 
versatility and accuracy in efficiently capturing 
detailed spatial data. The technology works by 
constantly emitting a pulsed infrared laser from its 
sensor, while at the same time measuring the time it 
takes for the same exact beam to be received by the 

receiving sensor after reflecting off a surface, such as 
a wall or occlusion in the scanning environment [1]. 
LiDAR sensors are capable of making highly precise 
measurements for example, an independent research 
found that when studying terrain mapping using 
LiDAR technology on a location with a difference of 
elevation of 15 cm, the LiDAR sensor was capable of 
attaining a result with localisation error as low as 8.14  
cm with a mapping error of only 8.43 cm at a 4 cm 
map resolution [2]. 

LiDAR technology is shaping up to become an 
essential tool in various industries owing to its ability 
to accurately capture detailed spatial data. One 
prominent example is the natural resource 
management industry, LiDAR technology is ideal for 
accurately measure the terrain, vegetation density and 
canopy structure [3]. Besides that, LiDAR technology 
is also inseparable from high precision industries, such 
as the construction and engineering industry. The 
ability to recreate accurate and detailed topological 
maps is indispensable for engineers to assess slope 
stability and also detect hidden geological features [4]. 
Following that, LiDAR technology can also be used to 
carry out vital topological surveys like floodplain 
mapping to help risk management agencies monitor 
and evaluate the risk of a flood occurring during 
monsoon season [5]. Lastly, one of the more obscure 
industries that benefit from the advancement of 
LiDAR technology is the mining industry. With the 
help of LiDAR sensors to provide reliable elevation 
data and assist in performing infrastructure surveys 
engineers can now use the various information 
collected to optimise the tedious resource extraction 
process [6]. 
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Although LiDAR mapping techniques are widely 
considered to be among the best options for 
environmental ranging and mapping, the technology is 
still immature and faces the challenge of optimization 
to deliver accurate, detailed, and precise spatial 
representations [7]. While it is undeniable that current 
modern day LiDAR technology is capable of 
providing a rich point cloud data with high spatial 
resolution, its performance can be easily  hindered by 
external factors such as environmental occlusions, 
sensor noise, and data inconsistencies. Addressing 
these challenges is paramount to ensure that LiDAR 
technology mapping can consistently deliver a high 
level of reliability without compromising its accuracy 
under varying environmental circumstances. 
Ultimately resulting in LiDAR based solutions having 
improved flexibility in detection, further broadening 
the potential applications of LiDAR technology. 

The primary goal of this study is to push the 
boundaries of 2-Dimensional (2D) LiDAR mapping 
by tackling the identified challenges posed by 
environmental factors and exploring innovative 
alternatives for a more accessible and economical 
approach to 3-Dimensional (3D) environmental 
mapping. This study introduces a novel approach to 
noise/outlier detection and filtering based on iterative 
clustering algorithms to reduce false detection and 
noise in the scanning dataset caused by unpredictable 
environmental factors. Additionally, the study also  
proposes an ingenious idea to portray multiple 2D 
LiDAR scanning results in a sequential manner where 
the 2D LiDAR scan results are stacked atop one 
another to form a layered 3D view model of the 
scanning environment, with an emphasis on 
scalability, precision, and consistency. 

The following sections of the paper will discuss in 
greater detail in regards to the effectiveness of 
different clustering algorithms at independently 
identifying the noise clusters in the 2D scan result 
using K-means and Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithms, 
the viability of interpolating discontinuous spatial 
results in LiDAR scanning and to compare the 
practicality of a 3D view model compiled from 
multiple 2D LiDAR scans recorded with varying 
elevation (z-axis) positions.  

II. METHODOLOGY 

A. 2D LiDAR Scanning Dataset Collection  

RPLiDAR A2M12 is used to collect the scanning 
results of indoor environment to produce the dataset 
for this research. The operational concept of 2-D 
LiDAR mapping is largely based on the principle of 
laser triangulation ranging. During the LiDAR 
scanning cycle, the RPLiDAR optical transmitter 
sensor will be intermittently emitting a modulated 
infrared laser beam through the optical window of the 
LiDAR sensor in whatever direction the sensor is 
presently facing. When the laser beam is reflected off 
a surface or object, the reflected signal is then 
subsequently captured by the receiver module of the 

sensor. The sensor will record the time interval 
between transmitting and receiving the signal to 
compute the distance between the sensor and the 
object.  

 

Fig. 1. 2D LiDAR scanning result of the indoor test environment. 

Table I. Table detailing the scanning issues for each area. 

Area Scanning Issues 

Area 1 

False detection of dead zone corner, Area 
5 which is visible in the reflection of the 
mirror in Area 3. Sensor incorrectly 
identifies the distance for the points. 

Area 2 

Undefined and jagged edges, caused by 
the clothes hanger affixed to the door. 
LiDAR is unable to trace the outline of the 
clothes hanger from its position. 

Area 3 

The position of the mirror, the sensor only 
plots the points after detecting the 
reflected laser beam from its receiver 
lens, the mirror cannot be mapped. 

Area 4 
Has sporadically detected points along the 
flat wall due to occlusions. 

Area 5 

The corner is located in the scanning dead 
zone of the current LiDAR position, 
blocked due to the position of the closet 
edge obstructing the laser. 

Area 6 
Half of the door is unidentified as the 
protruding door frame is blocking the 
LiDAR laser. 

 
Following that, each reflected point is logged as an 

individual entry in a text file, along with various 
details such as the corresponding distance, angle, and 
scan quality of the point. All the recorded parameters 
are used to visualise the LiDAR scanning result on a  
Polar plot. According to the specification document, 
the hardware system of the LiDAR sensor is capable 
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of performing high-speed sampling operations, being 
able to capture data at a maximum rate of 16,000 times 
per second at the maximum rotational speed of 15 
Hertz (Hz). Figure 1 shows the raw 2D LiDAR 
mapping result captured under nighttime conditions 
with a rotational speed of 10 Hz. Observing the image, 
6 different LiDAR scanning issues are identified in the 
indoor test scanning environment selected (in Table I) 
for this research. 

The research proposes a series of methodical 
processes to help improve the 2D LiDAR scanning 
result. Figure 2 shows the proposed flowchart of 
LiDAR signal processing for the 2D interpolation and 
3D reconstruction process. 

 

Fig. 2. Flowchart of LiDAR signal interpolation and reconstruction. 

B. Comparing Effectiveness of Clustering Algorithm 

The 2D LiDAR scanning dataset is used to 
evaluate the performance of the K-means and 
DBSCAN algorithms. Before the process can begin, 
the 2D LiDAR scanning result has to be transferred 
from a Polar coordinate plot format to a Cartesian 
coordinate plot format, where the y-axis corresponds 
to the distance measurement and the x-axis 
corresponds to the angular measurement in degrees.  

Converting the point cloud data from Polar 
coordinates to Cartesian coordinates makes it easier to 
observe the trends in the LiDAR dataset. As now the 
Polar plot diagram unfolds in the form of a Cartesian 
plot, with the data trend signifying the spatial 
information of the scanning environment. This is a 
fundamental first step of the proposed solution before 
any data processing method can be carried out. The 
reason being that in Cartesian coordinates, the spatial 
information will be easier to extrapolate; furthermore, 
most of the mathematical function used in the research 
operates on the basis of Cartesian coordinate system. 
The aim of the signal processing solution is to assist in 
interpolating the LiDAR echo signals while at the 
same time excluding the noise and outliers from the 

scanning result, making cleaner and more spatially 
accurate reconstruction of LiDAR signals. 

The two different clustering algorithm which was 
chosen by the research are the K-Means clustering and 
DBSCAN clustering. These two iterative clustering 
methods were chosen as they have a highly contrasting 
theoretical basis for clustering data. K-Means 
clustering functions by grouping data points together 
based on the point’s relative distance from its nearest 
cluster centroid. Contrary DBSCAN operates by 
grouping nearby neighbouring points into dense 
clusters while excluding points in sparse regions 
(noise) by setting a distance threshold (ε) for which the 
algorithm will search for neighbouring point [8]. 

K-Means algorithm is a common clustering 
algorithm used in machine learning and data mining 
for identifying patterns within large datasets [9]. It 
works by first randomly selecting a specified number 
of centroids in a dataset. Each point is then assigned to 
their nearest centroid, by measuring the distance in 
Euclidean. Once all points are assigned a cluster, all 
centroids are recalculated with the new centroid being 
computed as the mean of all points in the cluster [10]. 
The process is then carried out iteratively until there 
are no more significant changes to the centroid. 
Convergence is then achieved with each data point 
being grouped in a specific cluster and final locations 
of the centroids being from the last averaging iteration. 

The DBSCAN machine learning algorithm works 
by grouping together data points that are closely 
packed and identifies points that lie alone in low-
density regions as outliers [8]. The algorithm starts 
with identifying a core point by the minimum number 
of neighbour points surrounding it. It then forms a 
cluster starting from the core point, constantly 
expanding by adding neighbouring core points. Points 
without sufficient neighbouring points are determined 
as the border points, which are located at the edge of 
clusters. While any points not reachable from any core 
point with the distance threshold will be considered as 
noise points or outliers in the dataset. This process will 
be repeated until all points in the dataset are either 
assigned to a cluster or marked as noise [11]. 

C. Resolving Dead Zones in LiDAR Scans 

Dead zone areas are present in the 2D LiDAR 
results caused by the limited FOV and position of the 
LiDAR sensor. The main reason causing this 
particular issue to arise in scanning result is due to the 
mechanical design of the 2D LiDAR sensor.  

A simple 2D LiDAR sensor works by having a pair 

of optical emitter and receiver constantly rotating 360° 
on the sensor’s central fixed axis. Theatrically, if the 
sensor is placed in a room without any objects 
blocking the path of the laser, the sensor will capture 
the shape of the surroundings without the issue of 
discontinuous spatial information. However, if an 
object or occlusion happens to be located in between 
the position of the sensor and the wall, the path of the 
laser will be obstructed by the edges of the object. 
Since the position of the LiDAR sensor is fixed during 
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operation, the area unreachable by the laser will be 
represented as a discontinuous line in the final result, 
where the spatial information of that dead zone is 
ambiguous and left up for debate.  

To improve the overall comprehensiveness of the 
LiDAR scanning results, this research proposes a 
novel solution by combining the mapping information 
of first scan with a secondary LiDAR scan taken from 
a more advantageous position in the same environment 
to fill in the lack of spatial information in the primary 
scan which was blocked due to limited FOV caused by 
the mechanical design of the 2D LiDAR sensor. 

D. Compiling Multiple 2D Scans into a 3D View 

Model 

This part aims to examine the viability and 
effectiveness of a 3D environment mapping view 
model made by stacking multiple copies of 2D LiDAR 
scanning results. Each individual 2D LiDAR scans are 
sampled at varying elevation levels with the LiDAR 
sensor fixed on a laboratory scissor, to accurately 
measure and record the elevation information.  

When the LiDAR datasets from the processor of 
the sensor is passed on to the MATLAB script, each 
individual LiDAR scan is recorded sequentially in  a 
matrix and processed by the script to remove any noise 
clusters present in the LiDAR scanning dataset. Then 
all the LiDAR scans are plotted on their respective z-
axis positions to construct a 3D digital representation 
of the scanning environment. 

III. RESULTS & DISCUSSIONS 

A. Results of Comparing Clustering Algorithms 

 

Fig. 3. K-Means clustering result for 2D LiDAR scanning result. 

From Fig. 3, the K-Means clustering algorithm is 
shown to be capable of successfully independently 
identifying and separating 2 out of the 3 noise clusters 
from the rest of the 2D LiDAR scanning dataset. The 
condition of success is defined as the ability of the 
clustering algorithm to independently classify and 
group the noise points into their own respective cluster 
separating the noise points from the rest of the LiDAR 
scanning dataset.  

The result visualised in Fig. 3, shows the K-Means 
clustering algorithm capable of sorting the points in 
Noise Cluster 2 and Noise Cluster 3 into their own 
individual distinct clusters with their respective 

centroids as these two noise clusters are determined by 
the algorithm to be located far away from any other 
cluster centroids of the data graph of the 2D LiDAR 
scanning dataset.  

Conversely, for the case of Noise Cluster 1 the 
noise points are determined by the K-Means clustering 
algorithm to be grouped together with the nearest 
cluster centroid from the graph of the 2D LiDAR 
scanning dataset; Implying that the clustering 
algorithm failed to independently segregate the noise 
points in Noise Cluster 1 apart for the rest of the 
dataset by forming a separate cluster centroid for the 
noise points in Noise Cluster 1. Thus, signifying that 
the K-Means algorithm is confusing the Noise Cluster 
1 to be a part of the LiDAR scanning dataset, while it 
is actually a by-product of the noise in the LiDAR 
scan.   

 

Fig. 4. DBSCAN clustering result for 2D LiDAR scanning result. 

From Fig. 4, the DBSCAN clustering algorithm is 
shown to be capable of successfully independently 
identifying all 3 noise clusters in the 2D LiDAR 
scanning dataset and classifying them into distinct, 
separate clusters apart from the spatial information of 
the scanning environment. Through observation, it is 
concluded that the algorithm forms groups based on 
the proximity of the points from each other; forming 
several densely populated clusters in the final 
clustering result while also being flexible at filtering 
out outlier points from the dataset as noise.  

In Fig. 4, each of the 3 noise clusters under 
observation are capable of being sorted by the 
DBSCAN algorithm into their own separate clusters 
which will be referred to as “Group” in the following 
section, which each individual LiDAR point referred 
to as “observations”. One of the unique characteristics 
of the DBSCAN algorithm is to be able to accurately 
group and label outlier points make it the optimal 
solution for handling noise. 

The following Figs. 5, 6 and 7 will provide more 
clarity with detailed magnified views of the 3 noise 
cluster locations to better visually contextualise the 
minute differences between the two clustering results. 
The varying outcome observed from the two clustering 
algorithms is caused by their contrasting theoretical 
operation principle. 
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Fig. 5. Comparing the clustering results from the two clustering 

algorithms on Noise Cluster 1. 

In Fig. 5, the data points in Noise Cluster 1 and 
their clustering information can be better observed. 
From Fig. 5(a) the result of the K-Means algorithm the 
sporadic outlier points of Noise Cluster 1 is grouped 
by the algorithm to be a member of nearest cluster 
centroid “Colour 13”. Thereby, failing to form its own 
separate cluster centroid in the centre of the outlier 
points, causing the algorithm to falsely identify it as a 
part of the LiDAR scanning data point. Conversely, in 
Fig. 5(b) the clustering result of the DBSCAN 
algorithm which forms groups based on the basis of 
density of data points can successfully determine that 
Noise Cluster 1 is spare and far apart enough to be 
identified as noise points. Therefore, DBSCAN is able 
to clearly distinguish and separate the Noise Cluster 1 
apart from the rest of the LiDAR scanning data points.  

 

Fig. 6. Comparing the clustering results from the two clustering 

algorithms on Noise Cluster 2. 

Figure 6 is a more detailed visual comparison of 
the K-Means and DBSCAN clustering results for 
Noise Cluster 2. In Fig. 6(a) after the K-Means 
algorithm achieved convergence and terminated the 
iterations, Noise Cluster 2 is determined to have 
sufficient outlier points and located far enough from 
the other centroids to qualify for its very own cluster 
centre. This is the ideal clustering result, as now all the 
noise points in Noise Cluster 2 are grouped together 
under a single classification of “Colour 22”, while also 
separating it apart from the rest of the LiDAR scanning 
data points. Contrarily, in Fig. 6(b) the DBSCAN 
algorithm also recognises Noise Cluster 2 as “Group 
5”, a cluster independent from the rest of the LiDAR 
scanning data points. Hence, achieving the desired 
result of grouping together outlier points and 
segregating it from the rest of the data points. This 
desired clustering outcome makes it simpler to filter 
out the Noise Clusters present in the dataset by 
eliminating the clusters containing the outlier points, 
choosing to retain only the data points with the spatial 
information from the 2D LiDAR scan.  

 

Fig. 7. Comparing the clustering results from the two clustering 

algorithms on Noise Cluster 3. 

Lastly, Fig. 7 compares the K-Means and 
DBSCAN clustering result images of Noise Cluster 3. 
The clustering result for Nosie Cluster 3 is similar to 
the result presented in Noise Cluster 2. With both 
clustering algorithms able to independently identify 
and separate the outlier points of Noise Cluster 3 apart 
from the rest of the LiDAR scanning data points, 
satisfying the design conditions for this process. 

In Fig. 7(a), the K-Means algorithm identifies 
Noise Cluster 3 has enough population and is far away 
enough to justify having its own cluster centroid. This 
essentially groups together all the outlier points in 
Noise Cluster 3 under the classification of a new 
group, “Colour 6”. While in Fig. 7(b), the DBSCAN 
algorithm is capable of segmenting the outlier points 
in Noise Cluster 3 from the rest of the LiDAR scanning 
data points. Interestingly, the outlier points in the 
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upper part Noise Cluster 3 has been classified by the 
algorithm as “Group 1”; while the lower part of Noise 
Cluster 3 is categorised as “Group 9”. The 
differentiates the Noise Cluster 3 as a cluster 
independent from the rest of the LiDAR scanning data 
points which contain the spatial information of the 
scanning environment.  

In conclusion, the results for this section has 
proven that the DBSCAN clustering algorithm is a 
more effective solution than the K-Means clustering 
algorithm for independently identifying noise points 
as separate clusters apart from the other points with 
spatial information about the environment. The reason 
being that the more flexible DBSCAN algorithm has 
the advantage of being more proficient at handling 
noise and locating clusters of arbitrary shapes since it 
doesn't assume any specific shape. Compared to K-
Means algorithm which requires to specify the number 
of centroids beforehand as it groups points based on 
the proximity to the centroid, essentially forming rigid 
spherical clusters.  

B. Supplementing Primary LiDAR Scan with 

Another LiDAR Scan 

 

Fig. 8. Comparison of the LiDAR scan before and after the 

MATLAB signal processing. 

Figure 8 illustrates the LiDAR scanning results 
before and after the dead zone reconstruction process. 
Figure 8(a) shows the 2 LiDAR scanning result before 
the signal processing, the LiDAR scans are visualised 
on a Polar plot with the primary LiDAR scan result in 
blue and the second supplementary LiDAR scan result 
in red. Results show the two LiDAR scan results are 
not centred, as the position of the LiDAR sensor is 
shifted from its original position to record the 
secondary LiDAR scan result in red.  

Therefore, the MATLAB solution aims to compute 
the gap between the 2 LiDAR scans in terms of the x 
and y dimensions of the Cartesian coordinates to 
translate the 2 LiDAR scans onto a shared centre. The 
solution also includes the use of the Structural 
Similarity Index (SSIM) function to correct any 
angular shift error between the two LiDAR scans in an 
attempt to align both LiDAR scans before combining 
the two LiDAR point cloud inputs into one complete 
singular result similar to the result shown in Fig. 8(b).  

C. 3D View Model from Multiple 2D LiDAR Scans  

 

Fig. 9. 3D view model of the combined multiple 2D LiDAR scans 

plotted using a 3D scatter plot function. 

Figure 9 is a visualisation of the 3D view model of 
the scanning environment plotted using the LiDAR 
point cloud from each individual layer of 2D LiDAR 
scan. The 3D reconstruction of the environmental 
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mapping information is recorded in the form of a 
matrix and is visualised using the 3D scatter plot 
function in MATLAB.  

Figure 9(a) is a simple top-down view of the 
completed 3D LiDAR view model in the x and y 
dimensions of the Cartesian coordinate plane. The top-
down view shown in the image is in accordance with 
the previous Polar plot results after combining the 2 
LiDAR scanning inputs, therefore the 3D 
reconstructed model of the scanning environment is 
inferred to be an accurate visual representation of the 
spatial information. Following that, Fig. 9(b) is the 
front view of the 3D view model of the scanning 
environment. The result of the front view of the 3D 
model is in line with expectations as the 3D view 
model is formed by recording multiple 2D LiDAR 
scanning results at varying elevation levels with the 
sensor at a fixed origin point, giving it a stacked 
layering appearance. Lastly, Fig. 9(c) shows a two- 
point view of the 3D view model, the figure 
visualising the scanning environment with a high 
degree of accuracy in the third dimensional space and 
also representing the scanning environment in an easy 
to understand and simplistic manner. 

The 3D view model helps to present the scanned 
environment in a more dimensional and sized based 
perspective with more user-friendly viewing options 
instead of visualising the spatial information of the 
scanning environment in a vague and ambiguous 2D 
plane. Furthermore, the constructed 3D view model 
information could be stored in the form of a matrix for 
a variety of different future uses which requires a 
digital 3D reconstruction of the environment.  

IV. CONCLUSION 

The research proposes a more readily accessible 
alternative to 3D LiDAR mapping technology by 
stacking multiple 2D LiDAR scans forming a view 
model focused on dimensionality and scalability. To 
improve the accuracy of each individual 2D LiDAR 
scan result, the DBSCAN clustering algorithm was 
applied to the scanning dataset to independently 
identify and isolate the noise clusters in the scanning 
dataset. Furthermore, to address the discontinuous 
spatial issue of the LiDAR scan caused by limited 
FOV, the primary scan result is supplemented with a 
secondary LiDAR scan of the environment from a 
position with a better view of the dead zone. Lastly, 
the research aims to represent the recorded spatial data 
of the scanning environment in the form of a 3D view 
model, this helps to improve visualising the scanning 
result by presenting them in perspective relative to the 
scale and dimension of the objects in the environment. 
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