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Abstract—This study investigates the soliton 

propagation in a one-dimensional discrete system 

characterized by the Discrete Nonlinear Schrödinger 

Equation (DNLSE). The DNLSE is a fundamental model 

in wave phenomena, encompassing a broad spectrum of 

physical systems ranging from optics to fluid dynamics. 

The analytical study employs the variational 

approximation (VA) method to thoroughly examine the 

process and essential parameters governing soliton 

evolutions, such as width, center-of-mass position, and 

linear and quadratic phase-front corrections are 

determined and graphically interpreted. The results 

show that an increase in linear phase-front correction 

corresponds to an increase in both the soliton’s initial 

velocity and propagation distance. 

Keywords—Discrete soliton, Nonlinear Schrödinger 

equation, Discrete system, Nonlinear partial differential 

equation, Variational approximation method. 

I. INTRODUCTION 

A discrete system is a system made up of a set of 
discrete points or lattices in which the values of the 
variables are often integers or other discrete values and 
they can only carry these exact values. The so-called 
discrete soliton, which is generated from a balancing 
effect of self-trapping nonlinearity and discrete 
diffraction mediated by the linear coupling of 
neighbouring sites, is a stable and localized wave that 
is practical in physical applications just as its 
continuous counterparts. At a particular time, the 
system’s state is specified by the distinct variables at 
each site and any change in those variables may be 
influenced by the values at other sites [1].  Discrete 
systems are practically found in broad applicability 
such as in micromechanical cantilevers [2], Bose-
Einstein Condensates (BEC) with a deep optical lattice 

[3, 4], electrical transmission lines [5] and 
Deoxyribonucleic acid (DNA) molecular chains [6, 7] 
where discrete solitons have been observed. Indeed, 
nonlinear optics was the first set of experimental 
studies that aroused significant intrigue in the research 
of discrete soliton, according to Kevrekidis [8]. 

Meanwhile, self-induced regime is a crucial 
concept in studying nonlinear wave equations, 
particularly within the discrete system of nonlinear 
Schrödinger equation (NLSE). It explains how 
solitons evolve in a discrete medium without external 
influences, driven by the interaction between the self-
focusing effect of nonlinearity and spreading effect of 
dispersion phenomena. Researchers have focused on 
understanding the self-induced phenomena in wave 
field dynamics and control within nonlinear media [9] 
and weakly coupled optical waveguides [10].  

This work focuses on the single discrete soliton 
propagation dynamics within self-induced regime, 
where its motion is primarily governed by the 
interplay of nonlinear and dispersive effects without 
the influence of external potential. The findings 
presented in this section lay the groundwork for 
understanding soliton behaviour in isolated systems, 
serving as a baseline for future studies involving 
perturbations or external influences. 

II. THE MODEL OF MAIN EQUATION 

The model of the main equation adopted for this 
study is based on the one-dimensional discrete NLSE 
with cubic and quintic terms, as modified from 
Balakin et al. [11]: 
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, where 
n(t)  denotes the complex wave function at 

a discrete site n  for time t. The coupling 

coefficient c, also referred to as the diffusion rate [12], 
quantifies the interaction strength between 
neighbouring lattice sites, while k and g represent the 
strengths of cubic and quintic nonlinearities, 
respectively. The real-valued parameters c, k and g 
remain constant as the lattice structures are equipped 
with identical sites and equal spacing between them. 

The quantity 
2

n  may have different physical 

representations based on the systems applied. In 

particular, the quantity 
2

n  signifies the electric 

field intensity within the n-th waveguide in the context 
of waveguide arrays, studied by Lederer in 2008 [13], 
which can be seen in Fig. 1, whereas the term is 
associated with the density of on-site particle at the 
lattice site n in the discrete systems of BEC. 
Consideration is given to the positive coefficient of 
nonlinearities (k, g > 0), which indicates the nonlinear 
focusing behaviour in optics or attractive interactions 
among atoms in the condensate. This characteristic 
enables the system to exhibit bright matter-wave 
solitons that have a pulse-like shape. 

 

Fig. 1. An array of optical waveguides. 

Two dynamical invariants known as the wave-field 
power (i.e. the norm) and the Hamiltonian (i.e. the 
energy) are conserved in the setting of Eq. (1) such that 
the power is given by 
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typically referred to as the norm of the system. In 
particular, the behaviour of the wave beams is greatly 
influenced by the value of P which acts as a controlling 
parameter for the entire system. Through deliberate 
manipulation of P, one can modulate the 
characteristics of the radiation to meet the desired 
outcomes for different applications effectively. The 
Hamiltonian is also expressed by 
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These two conserved quantities are crucial in the 
dynamics of discrete soliton to ensure the consistency 

of its shape and amplitude over time without having 
radiative losses or dissipation. The next section 
discusses the variational analysis of the soliton’s 
governing equation which produces the approximate 
systems of ordinary differential equations (ODEs) for 
the soliton variational parameters. 

III. VARIATIONAL APPROXIMATION 

METHOD 

This study emphasizes the use of the VA method 
as a key analytical tool for solving the nonintegrable 
Eq. (1), as numerical approaches may not fully 
describe the physical interpretation of the process. 
This method serves as the primary tool for examining 
the behaviour and interaction of the soliton wave 
beams scattering process, including their scattering 
dynamics within the cubic-quintic discrete NLSE. 
This investigation proceeds in the case of static states 
of the one-dimensional system Discrete NLSE. 
Initially, the main Eq. (1) is tackled using the VA 
method to derive analytical solutions for the evolution 
of soliton parameters, essential for characterizing the 
soliton scattering phenomenon.  

VA method stands out as a key theoretical 
approach for studying non-integrable equations with 
soliton characteristics, dating back to its initial 
application by Anderson (1983) [14]. Anderson first 
employed this method to examine soliton behaviour 
within a significantly perturbed NLSE, particularly in 
nonlinear optics. 

Essentially, the VA method provides approximate 
solutions grounded on particular assumptions 
requiring an appropriate trial function (ansatz) as the 
initial guess for the wave function. In this work, the 
wave function is initially assumed to resemble a 
Gaussian function profile in [15], 
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 In this context, 0( ),  ( ),  ( )a t x t t  and ( ) t  denote 

the effective width, center-of-mass position, and the 

linear and quadratic phase-front corrections of the 

soliton, respectively. The main partial differential 

equation (PDE) is then converted into an ordinary 

differential equations system which describes the 

above soliton parameters’ evolution. 

IV. RESULTS AND DISCUSSION 

A. Variational Analysis of PDE 

In the framework of nonlinear wave equations, it is 
beneficial to employ the variational approach to 
provide an approximate depiction of the evolution of 
the wave beams, particularly in scenarios where 
traditional analytical techniques fall short. Below is 
the Lagrangian of the system for the Cubic-Quintic 
DNLSE in Eq. (1) as the initial parameter for this 
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approach,
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, where nL  denotes the Lagrangian density. Through 

the application of the Poisson summation formula 

applied to the continuous argument function F(x), i.e., 
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the Lagrangian presented in Eq. (5) is restructured into 

a more practical form given by 
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which further facilitates calculation process within this 
continuous approximation approach, considering the 
discrete nature of the system. The wave function, 

( , )x t in Eq. (7) depends on the continuous variable 

x with the time evolution variable t. In this case, it is 
assumed that the initial pulse is taken in the form of a 
Gaussian function with time dependent parameters as 
in Eq. (4), is adopted as the trial function. 
    Then, the effective Lagrangian is calculated with 
spatial integration of the above Lagrangian density in 

Eq. (7) such that 2
 

−
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=  
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Equation (8) can be further simplified by 
combining the fifth and sixth terms, leading to the 
reduced lagrangian below, 
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Equation (9) can be modified to produce a set of 
motion equations describing the ansatz parameter 
evolutions. Particularly, these equations are generated 
using the Euler-Lagrange equation  

0,
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− = 
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d L L

dt q q
                      (10) 

in order to obtain the equations for the parameters. 
Upon formulating the equation for each parameter, a 
set of motion equations describing each ansatz 
parameter evolution is produced. The equations are 
represented as below: 
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, where Eqs. (11) – (14) represent the evolution of the 
soliton width, center-of-mass position, linear and 
quadratic phase-front corrections, respectively, during 
the soliton propagation. This system of variational 
equations for soliton parameters is obtained to 
describe the soliton scattering by external potential.  

     Analysis of the above system indicates that Eq. (12) 
represents the velocity of the soliton throughout the 
propagation process. This connection follows from the 
fundamental definition of velocity as the time 
derivative of position. Therefore, the following 
relationship is deduced, 

                    
2 2

2

1

0 42 sin .



− −

= =
a

a
dx

v c e
dt

                 (15) 

Equation (13) conveys the linear phase-front 

correction’s independence on coordinate t, indicating 

consistency throughout the propagation process such 

that 0 = . Equations (11) – (14) are then interpreted 

numerically to observe the behaviour of soliton’s 

propagation through the system in the absence of 

external potential. The observation involves 

configuring the waveguide lattice with site 200=n  

and monitoring the process over a time span of 

300=t . The numerical setup assumes a coupling 
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strength of 1=c  between adjacent lattice sites. Equal 

values are also assigned to the nonlinearity 

coefficients with 1= =k g . The soliton parameters 

are initialized as (0) 3=a , 0 (0) 50=x , (0) 0 =  to 

minimize the number of free variables in the numerical 

simulations. The value of parameter   is adjusted to 

observe its influence on power, initial velocity and the 

propagation process as a whole.  

 The scattering results in the system of discrete 

cubic-quintic NLSE in the self-induced regime are 

illustrated in Fig. 2. Initial analysis in Fig. 2(a) 

indicates that the soliton remains stationary over time 

at the lattice site 50=n  when 0 = . Subsequent 

observation in Fig. 2(b) reveals a notable change in the 

soliton’s behaviour as the value of   is incrementally 

increased to 0.1. In this condition, the soliton 

demonstrates the ability to propagate with a velocity 

of 0.194197=v and a corresponding power of 

1.28114=P  whereby the center-of-mass position 

surpasses 100=n  at the end of the observed time 

interval 300=t . 

Further observation, as depicted in Fig. 2(c), shows 

a significant advancement in soliton motion when   

is further increased to 0.5. Specifically, the center-of-

mass position traverses the entire lattice site, reaching 

200=n  within a considerably shorter time at 160.=t  

Here, the soliton’s velocity notably increases to 

0.932583=v , accompanied by a slight decrease in 

power to 1.15379=P . The recorded patterns 

emphasize a progressive increment in soliton’s 

velocity and propagation distance as the linear phase-

front correction parameter   is elevated from 0.1 to 

0.5. Consequently, the time required for the soliton to 

travel the same distances is decreased. Despite the 

variations in velocity and power, the soliton’s width 

remains unchanged throughout the entire propagation 

path in all scenarios, as visually depicted in the left 

panels of Fig. 2. This suggests that the soliton 

maintains its stability and is freely propagating.  

In this study, the variables such as velocity, power, 

time and linear phase-front correction are expressed in 

dimensionless (scaled) units, which is standard 

practice in variational analysis of discrete NLSEs. The 

scaling enhances the universality of the results, 

allowing them to be interpreted across a broad range 

of physical systems, such as nonlinear optical lattices 

and Bose-Einstein condensates.  

 

 
 

Fig. 2. The dynamics of the soliton width (left panel) and center-of-mass position (right panel) over time t described by the ODE systems for 

Eqs. (11) and (12). Parameters used are (a) 0 = , (b) 0.1 = and (c) 0.5 = . 
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The scaling procedure is grounded on characteristic 

system parameters, including the inter-site lattice 

spacing, coupling strength, and nonlinear interaction 

coefficients. By adopting these dimensionless 

formulations, the results remain independent of 

specific physical units, thereby facilitating more 

generalized and scalable interpretations of the soliton 

dynamics under investigation. 
The study has revealed that the soliton’s velocity 

and propagation distance increased with linear phase-
front correction  . The findings highlight the 

importance of VA approaches for faster results and a 
deeper perception of the system’s physical aspects. 
The findings also shed light on understanding and 
harnessing wave behaviour across different 
disciplines, paving the way for innovative applications 
in those leveraging soliton-driven systems. 

V. CONCLUSION 

The behaviour of soliton propagation within the 
self-induced regime was investigated in the 
framework of the discrete cubic-quintic NLSE through 
the VA method. The study took place by considering 
different initial values for the soliton parameter of 
linear phase-front correction   obtained from the 

variational analysis to see the impacts on soliton 
propagation. The findings showed that the soliton 
exhibited static behaviour when   is zero, 

considering the initial velocity being zero. An increase 
in   prompted the soliton to move with velocity 

increasing proportionally. 
The observed soliton dynamics are consistent with 

trends reported in related studies on discrete nonlinear 
Schrödinger systems using variational methods by 
Anderson in 1983 [14] and Lederer et al. in 2008 [13]. 
The VA method has proven successful since its first 
application by Anderson. In his paper, he analyzed the 
soliton evolutions in the NLSE within the context of 
optical fibers by utilizing the Gaussian trial function 
and a procedure based on Ritz optimization. Later, [16 
- 21], among others, utilized the same approach to 
investigate the interaction of the continuous NLSE 
solitons in the presence of an external potential. The 
VA method enables the computation of approximate 
solutions for essential soliton parameters such as the 
width, amplitude, center-of-mass position, nonlinear 
frequency chirp and other parameters. These 
parameters are instrumental in providing insights into 
the wave propagation dynamics, thus offering the 
opportunity for in-depth analysis of soliton scattering 
phenomena. Although direct numerical simulations of 
the full discrete NLSE were not included in this paper, 
the VA method’s results are qualitatively aligned with 
findings from such simulations in previous literature. 
A more detailed quantitative comparison with 
numerical integration of the original PDE system is 
planned for future work to validate the accuracy 
further. 

The discrete system of nonlinear equations is 
particularly significant to our understanding and 
modelling of a wide range of physical phenomena. The 
behavior of soliton propagation within the self-

induced regime was investigated through the 
framework of the discrete cubic-quintic nonlinear 
Schrödinger equation using the variational 
approximation (VA) method. By considering various 
initial values for the linear phase-front correction 
parameter obtained via VA, the study revealed a clear 
correlation between this parameter and the soliton's 
initial velocity and propagation distance. The results 
demonstrated that an increase in the linear phase-front 
correction leads to a corresponding increase in the 
soliton’s speed and distance traveled, while 
maintaining its shape and stability throughout the 
propagation. 

Beyond the theoretical insights, the findings also 
offer a meaningful practical implication. In the context 
of optical waveguide arrays, where solitons represent 
localized optical pulses, the ability to modulate the 
linear phase-front correction allows for dynamic 
control over pulse velocity and localization. This 
capability is fundamental for the realization of optical 
switching and signal routing functions in photonic 
devices. Consequently, the outcomes of this research 
contribute not only to the understanding of nonlinear 
wave dynamics in discrete media but also to the 
advancement of nonlinear optical circuit design and 
soliton-based technologies in integrated photonic 
systems. 

Furthermore, the study on the numerical 
simulations of discrete systems utilizing the discrete 
nonlinear equations forms the basis for numerical 
simulations of complex systems. In particular, 
researchers are able to explore the behaviour of 
nonlinear systems, study bifurcations, and analyze the 
stability of solutions in a computationally efficient 
manner, leading to advancements in technology and 
scientific understanding. For instance, Lazar et al. [22] 
had investigated the Pacemaker and Implantabel 
Cardioverter Defibrillator (ICD) Troubleshooting 
advanced technology where the different formations 
of continuous and discrete systems are presented. 
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