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Abstract—Personalized healthcare recommendations 

remain challenging due to diverse patient data, including 

medical history and lifestyle habits. Traditional systems 

struggle to provide real-time, personalized 

recommendations, leading to ineffective treatment. This 

research improves healthcare recommendation systems 

(HRS) using generative AI techniques, specifically 

Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs), to enhance 

personalization, accuracy and adaptability. This study 

explores synthetic data generation to address data 

sparsity and cold-start problems while maintaining 

privacy. Exploratory Data Analysis (EDA) and 

preprocessing methods like feature engineering, 

identification of missing data, normalization and outlier 

detection are part of the research methodology.  

Interpretability is enhanced by data visualization using 

boxplots, histograms and heatmaps.  Although complete 

GAN and VAE implementation was not possible due to 

computational limitations, baseline assessments created 

a fundamental framework.  According to preliminary 

findings, generative models can fill in the gaps in 

customisation.  Potential improvements in prediction 

performance are shown by evaluation criteria including 

Root Mean Square Error (RMSE), accuracy and 

precision.  Despite its drawbacks, this research shows 

that integrating Variational Autoencoders (VAEs) into 

HRS is viable for improved scalability and flexibility.   

Keywords—Recommender system, Healthcare, 

Generative AI, Generative Adversarial Networks, 

Variational Autoencoders. 

I. INTRODUCTION 

Healthcare Recommender Systems (HRS) are 
known to be transformative tools in personalized 
treatment because they are recognized as 
revolutionary instruments in this ever-evolving age. 
These systems can subsequently suggest customized 
treatment programs, medications and lifestyle changes 
that meet each patient's unique health needs by 

combination of their medical history, lifestyle choices 
and personal preferences. Regardless of their 
performance in sectors like retail and entertainment, 
standard recommender systems face challenges due to 
the sensitivity, complexity and dynamic nature of 
medical data.  Therefore, overcome these limitations, 
more advanced Artificial Intelligence (AI) methods 
that generate context-aware and intelligent 
recommendations must be used. 

 In order to increase the precision, adaptability and 
personalization of healthcare recommendations, this 
study investigates the use of generative AI approaches 
such as Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs). Reason being 
GANs allow for better modelling despite the lack of 
real-world data while maintaining patient anonymity. 
However, they are mostly useful in generation of 
synthetic health data to complement training datasets. 
In personalized healthcare, GANs can simulate 
tailored treatment or wellness suggestions by learning 
from complex patterns in patient records. Meanwhile, 
VAEs excel at addressing cold-start problems because 
it creates meaningful latent representations of new 
patients or treatments and facilitates recommendations 
even with sparse historical data. 

Furthermore, the proposed HRS will leverage 
these advanced generative techniques to offer safe, 
effective, personalized recommendations by 
assessment of key patient-specific factors, such as age, 
genetic predisposition, medical conditions and 
lifestyle choices. This strategy seeks to improve 
patient participation, adherence to treatment programs 
and general well-being by emphasizing non-invasive 
advice, including meal plans, exercise 
recommendations and medication reminders. On top 
of that, vigorous data privacy and security 
mechanisms will be integrated to ensure compliance 
with healthcare regulations like (Health Insurance 
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Portability and Accountability Act) HIPAA and 
(General Data Protection Regulation) GDPR. Hence, 
this paper aims to push the limits of personalized 
healthcare by addressing the drawbacks of traditional 
filtering methods and utilizes generative AI to provide 
data-driven, ethical and intelligent recommendations 
that simultaneously enhance patient satisfaction and 
health outcomes. 

II. BACKGROUND & RELATED WORK 

A. Overview of Recommender System 

Recommender systems (RS) are high-level tools 
created to assist users make decisions by 
recommending items based on their preferences and 
behaviours. These systems are highly beneficial in 
multiple industries, such as e-commerce, healthcare 
and entertainment. As for the healthcare domain, an 
emerging trend is the importance of recommendation 
technologies development for patients to monitor and 
maintain their health effectively based on the patient’s 
medical history, genetic traits and lifestyle habits. 
However, with the growth of the emergent user base, 
performance maintenance has become increasingly 
difficult [1]. Additionally, new users or items lack 
sufficient data for effective recommendations, which 
causes a cold start [2] and data sparsity is present when 
uneven distribution of user-item interactions 
complicates the recommendation process [1]. While 
RS significantly enhance user experience by 
personalizing content, they also face ongoing 
challenges that necessitate continuous research and 
innovation to improve their effectiveness and 
efficiency [3]. Therefore, to overcome those 
challenges, future advancements are needed to 
enhance further RS's role in revolutionizing 
healthcare. 

According to Abdullah et al.  [4], HRS focuses on 
providing tailored medical advice based on patient 
conditions and histories. For instance, if a patient is 
diagnosed with a heart disease, the HRS suggests a 
less vigorous exercise routine that is suitable for the 
patient. Moreover, there are RS that are specifically 
targeted to recommend medication to their patients. It 
analyses symptoms and demographics to suggest 
appropriate medications, enhancing patient outcomes 
during critical times [5]. For instance, if a patient is 
iron deficient, the RS suggests a supplement that 
contains ferrous sulphate to treat iron-deficiency 
anaemia after analyzing the patient’s medical history 
and allergies. Furthermore, RS utilizes K-nearest 
neighbour algorithms to suggest rehabilitation 
exercises, achieving high accuracy through user 
feedback [6]. As an illustration, patients suffering 
from stroke attacks may receive at home 
physiotherapy exercises from the RS to regain their 
strength, but if a patient submits negative feedback, 
the RS will constantly try to improve the suggested 
exercise to achieve the best user experience. 

Some of the common methodologies and 
technologies used are machine learning techniques 
and data processing. Algorithms like decision trees 

and K-means clustering are employed to classify and 
analyze patient data, to ensure personalized 
recommendations [4, 5]. Data processing includes data 
cleaning, preprocessing and training the recommender 
engine to improve prediction accuracy [7]. The first 
step in data cleaning, is to maintain accuracy and 
quality by fixing errors and inconsistencies. Data 
preprocessing transforms raw data into a usable format 
for analysis and the final step is training the 
recommender engine. The final step is to build and 
optimize a model to generate accurate and 
personalized recommendations. 

While RS show trust in enhancing healthcare 
services, challenges like cold-start problem is agreed 
by António et al. [6] as well because early iterations of 
RS often struggle with accuracy due to insufficient 
data. Besides, extracting relevant recommendations 
become complex with the vast amount of online health 
information [8]. Similarly, data privacy and algorithm 
bias are becoming a concern as the healthcare domain 
constantly evolves. In essence, continuous 
optimization is vital for future research and 
development of HRS. 

B. Phases in Recommender System 

HRS have evolved in both traditional and 
generative AI approaches throughout the digital age. 
Traditional systems mainly focus on data-driven 
recommendations, unlike generative AI introduces 
innovative methods for personalized healthcare 
solutions. Traditional RS focuses on historical data 
and user preferences, whereas generative AI creates 
new insights and enhances personalization in 
healthcare recommendations, which is a more 
dynamic approach. This shift has both advantages and 
challenges, particularly in ethical considerations and 
data privacy [9]. Figure 1 provides an overview of 
these phases in traditional recommendation process 
whereas Fig. 2 provides an overview of phases in 
generative AI recommendation process. 

 

Fig. 1. Phases in traditional RS. 

The first phase is the data collection phase, 
includes gathering both external and user-specific 
data. This consists information from wearable 
technology as well as information added by users 
themselves such as health goals, symptoms and 
medical history. For instance, wearable gadgets that 
monitor metrics like heart rate, sleep quality, physical 
activity and preferences is crucial for tailoring 
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recommendations [10]. Furthermore, Electronic 
Health Records (EHRs) offer clinical data such as 
laboratory findings, diagnoses and treatment records. 

The second phase is data processing and analysis, 
uses machine learning algorithms to analyze the 
collected data, in order to identify patterns and user 
behaviour. It implements methods like collaborative 
filtering and content-based filtering [10]. The first 
steps involve standardization of formats to achieve 
consistent analysis and data cleaning to remove 
inaccuracies. Subsequently, to identify key trends as 
well as characteristics such as diabetic levels and BMI. 

The final phase involves personalized 
recommendation generation based on the insights 
derived from the data processing and analysis phase, 
which often utilizes hybrid models for improved 
accuracy [10]. In addition to preventative care alerts 
for screenings and individualized treatment programs, 
these recommendations may also involve lifestyle 
changes like food or workout plans. 

 

Fig. 2. Phases in Generative AI RS. 

The first phase, generative AI utilizes algorithms 
like GANs and VAEs to create new medical data, 
which enhances the trained datasets for a better model 
performance [11]. 

The second phase, is by multi-modal patient data 
analysis, generative AI can uncover patterns that lead 
to tailored treatment approaches that improve patient 
outcomes [9]. As a result, a variety of techniques are 
used like clustering to link individuals with similar 
health profiles and matrix factorization for 
interpretation of user interactions. Reason 
being generative AI models mimic human thought 
processes to provide intricate predictions that are 
beneficial.  By correlation revelations like the one 
between sedentary lifestyles and specific health issues, 
these analyses lay the foundation for suggestions that 
are specifically customized to each individual. 

In the recommendation generation phase, the 
effectiveness of the system's recommendations is 
evaluated during the evaluation phase. Accuracy, 
precision and user satisfaction are important criterias 
that guarantee system reliability. This is because 
different recommendation systems are compared 

using techniques like A/B testing and user feedback. 
Similarly, engagement analysis shows how 
successfully users respond to the recommendations.  
This phase is important to verify the system's 
efficiency as well as identify areas in need of 
improvement. 

 The system's continued applicability and 
effectiveness are ensured by the last stage, which is the 
continual learning and improvement phase.  In order 
to ensure accuracy, models are updated to incorporate 
new data and future recommendations are modified in 
response to user comments.  The latest medical 
guidelines and research are incorporated into the 
system.  Furthermore, it continuously adapts to user 
behaviours, preferences and health state changes.  As 
the RS evolves, it becomes more proficient at 
addressing the individual healthcare requirements of 
each user. Thus, it enables them to make sensible 
decisions and enhance their health. 

C. Recommender System Techniques 

1) Traditional RS apply content-based, 
collaborative, hybrid-based and semantic-based 
approaches to enhance user experience and precision 
in EHRs. 

The Content-based filtering technique (CB) 
depends on the use of patient information, which 
includes medical history and personal preferences. In 
order to recommend a service or treatment in 
healthcare based on attributes and the user’s 
preferences [12]. Thus, an exact match with what the 
patient needs is able to be provided [13]. 

Collaborative filtering (CF) is a technique that 
generates recommendations from the behaviours of 
similar users. In the context of healthcare, especially 
personalized medicine and disease management, it has 
been quite effective when dealing with the cold-start 
and sparse-data problems [14].  

The accuracy of the recommendation is improved 
with hybrid-based filtering (HB) by combination of 
CB and CF techniques. It further improves healthcare 
by integration of patient likes and dislikes with the 
attributes of the items for personalized 
recommendations. HB also gives better 
recommendations for medical services by seeding 
semantic relationships [15]. 

Semantic-based filtering techniques improve the 
recommendation by using ontologies and semantic 
relationships between medical conditions and 
treatments [16]. This would address the problems of 
new items and data sparsity, thus improving the 
accuracy of HRS as well as patient satisfaction [17]. 

Despite the fact that these methods significantly 
improve the capabilities of HRS, they also come with 
disadvantages such as possible biases in suggestions 
and privacy issues. Additionally, it brings up concerns 
about patient confidentiality and data security. 
Furthermore, the number and quality of available data 
determine how effective these systems are and these 
factors might vary throughout healthcare settings. 
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2) Generative AI techniques have notable 
benefits over traditional methods. GANs and VAEs 
have become effective tools in HRS. These generative 
models tackle important issues such as the lack of data, 
cold-start issues and the requirement for tailored 
suggestions. GANs and VAEs improve the precision 
and effectiveness of healthcare recommendations as it 
makes use of their distinct capabilities. Thus, it offers 
a more resilient and flexible framework than 
traditional techniques. 

GANs are most useful in synthetic data generation 
to augment small datasets, which is a common issue in 
healthcare. This helps overcome data scarcity and 
improve training without invasion of patient privacy 
[18, 19]. GANs have been applied to enhance the 
accuracy of medical diagnoses, such as detection of 
COVID-19 from chest X-rays, because of their ability 
to generate high-fidelity synthetic images that improve 
model training and validation [20]. Even though the 
data generated by GANs are realistic, they must be 
managed carefully to ensure compliance with privacy 
conditions, which are very important in healthcare 
applications [18]. 

VAEs are effective in overcoming cold-start 
issues by generation of meaningful item 
representations in a continuous latent space. This 
allows the system to make recommendations even for 
new users or items with limited historical data [21]. 
Additionally, VAEs can improve cross-domain 
recommendation systems by capture and transfer of 
user preferences between domains. This enhances the 
system's ability to suggest more relevant medical 
services or products. 

In contrast to traditional RS techniques that often 
struggle with apprehending complex user preferences, 
generative models like VAEs and GANs overcome 
these limitations by modelling user preferences in a 
more nuanced manner [21]. In addition, traditional 
methods that rely heavily on historical data and simple 
filtering techniques are not very flexible compared to 
generative models that offer great scalability in 
managing vast and diverse datasets [10]. Moreover, 
deep learning techniques like GANs and VAEs are 
able to provide more personalized recommendations, 
which are crucial in healthcare for tailoring treatments 
and interventions to individual patient needs [22, 23]. 

Even though GANs and VAEs offer significant 
advancements compared to traditional RS, they also 
have disadvantages such as the need for large 
computational resources and the complexity of model 
training. Moreover, careful consideration of ethical 
and regulatory issues, particularly data privacy and 
security, needs to be taken into account when 
implementation of these models in existing healthcare 
systems. These challenges are important to address to 
fully realize the potential of generative models in 
transformation of HRS. 

 

 

 

Table I.  Summary of Recommender System Techniques. 

Filtering 

Techniques 
Advantages  Limitations 

Content-Based 

(CB) 

Recommends 

items based on the 
characteristics of 

items and user 

preferences [12]. 

Limited to user’s 

historical preferences, 
leading to a lack of 

novelty in 

recommendations. 

Collaborative 
Filtering (CF) 

Effective in 
handling cold-

start and sparse-

data problems by 
leveraging 

community data 

[14]. 

In terms of popularity 
bias, CF tends to 

favour popular items, 

which can overshadow 
niche content. 

Hybrid-Based 

(HB) 

Combines CB and 

CF to enhance 

recommendation 
accuracy and 

address individual 

limitations [15]. 

HB typically requires 

higher computational 

power, adding to the 
system's processing 

requirements. 

Semantic-Based 
(SB) 

Leverages 
semantic 

relationships and 

ontologies to 
enhance 

recommendation 
processes [16]. 

Semantic-based 
filtering requires 

detailed and accurate 

ontology creation. 

Variational 

Autoencoder-

based (VAE) 

VAEs overcome 

cold-start issues 

by creating 
meaningful 

representations in 

latent space [21]. 

VAEs require 

extensive training data 

and computational 
resources, which can 

be a barrier for smaller 

datasets. 

Generative 

Adversarial 

Networks 
(GAN) 

GANs generate 

synthetic data to 

augment small 
datasets, 

improving model 

training without 
compromising 

privacy [18, 19]. 

GANs are known for 

their training 

instability and 
susceptibility to mode 

collapse, where the 

generator produces 
limited diversity in 

outputs. This is a 

significant challenge 
in applying GANs to 

recommendation 

systems. 

D. Related Work 

Pahune and Rewatkar [24] proposed a paper that 
discusses the growing role of generative AI and large 
language models (LLMs) in healthcare that focuses on 
their potential to reform healthcare applications. It 
highlights the use of models like GPT-3, Visual 
ChatGPT, GANs and VAE to address significant 
healthcare challenges. The paper suggests using LLMs 
and generative AI for various healthcare applications 
such as medical text analysis, information extraction 
from EHRs and medical images production. The 
dataset employed is a publicly accessible database 
called "A Multimodal Clinical Dataset," which 
includes masked clinical data from intensive care 
units. This dataset incorporates information from 
EHRs, medical imaging and other modalities. 
Generally, generative AI and LLMs offer powerful 
tools for medical data exploration because they 
improve diagnosis accuracy and the development of 
personalized treatment plans. They have the potential 
to reduce the burden of medical paperwork by creation 
of visit notes, treatment codes and medical summaries. 
These technologies can revolutionize healthcare by 
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providing better healthcare outcomes and improved 
patient experience, which fundamentally impacts 
medical research, diagnosis and patient care. The 
paper acknowledges ethical issues and data privacy 
concerns as significant challenges in the application of 
generative AI and LLMs in healthcare. Reason being 
without human oversight, generative AI applications 
could potentially spread false information or produce 
damaging content at an unprecedented scale. 

In another work, Shambour et al. [16] suggested 
Hybrid Semantic-based Multi-Criteria Collaborative 
Filtering (HSMCCF), which is a medication 
recommendation system to assist patients in locating 
the right drugs for their illnesses. The method makes 
use of a WebMD dataset of patient reviews on 
medications. It has two primary modules: a multi-
criteria filtering module that takes patient preferences 
into account across a number of rating criteria and a 
semantic filtering module that organizes medications 
by medical condition. Unlike the multi-criteria 
module, which increases recommendation accuracy, 
the semantic module deals with data sparsity. In order 
to increase the number of comparable medications 
taken into consideration, a medicine's reputation score 
is also utilized. According to experiments, the 
HSMCCF technique outperforms benchmark methods 
in terms of prediction accuracy and coverage, 
particularly for novel medications with low ratings and 
sparse datasets. 

Roy and Dutta [25] proposed HRS provide 
individualized medical advice based on a patient's 
medical history, lifestyle choices and other attributes. 
Various types of HRS are described, including 
systems for recommending healthcare professionals, 
health status prediction systems, nutrition and physical 
exercise suggestions and diagnosis decision support 
systems. The article then reviews the body of research 
on these several HRS, outlining their methods, 
characteristics, uses and challenges. It draws attention 
to areas that require greater investigation, including 
integrating a wider range of data sources, enhancing 
algorithm openness and customization and carrying 
out thorough assessments of the effect of HRS on 
patient outcomes. Finally, the study offers 
recommendations for enhancing HRS as well as a 
summary of HRS research trends. 

Ooi et al. [7] outlined the framework for the HRS 
that encompasses various RS techniques. The datasets 
used and evaluation metrics are employed in the 
healthcare domain. Moreover, the paper emphasizes 
the significance of accurate medical recommendations 
and the potential of RS to enhance patient care as well 
as decision-making processes. It also presents insights 
into the theoretical framework, dataset, data cleaning 
process, recommender engine and user interface that 
offers a comprehensive overview of the entire system's 
development and evaluation. 

Shambour et al. [17] proposed a hybrid system 
based on content-based and collaborative filtering to 
address the challenge of finding the best-suited doctors 
for patients despite the vast amount of available 

healthcare information. The proposed system 
incorporates a multi-criteria collaborative filtering 
approach to help patients accurately identify doctors 
that align with their preferences. It utilizes multi-
criteria decision-making, whereby doctor reputation 
scores and doctors' content information to improve 
recommendation quality and mitigate the impact of 
data sparsity. Their evaluation results demonstrate the 
effectiveness of the proposed approach with regards to 
predictive accuracy and coverage under extreme levels 
of sparsity. 

Ghebrehiwet et al. [26] proposed the use of 
generative AI, specifically deep generative models 
(DGMs) like GANs and VAEs, to revolutionize 
personalized medicine. These models are used to 
create realistic, privacy-preserving synthetic patient 
data because they can address challenges in data 
collection, costs and privacy in precision medicine. 
The review follows PRISMA guidelines to analyze 
studies from databases such as Scopus and PubMed. It 
focuses on the impact of AI in precision medicine and 
the applications of DGMs in synthetic data generation. 
The paper highlights the use of advanced deep 
learning techniques to produce novel and realistic 
outputs by replicating patterns found in existing data. 
However, the paper does not specify a particular 
dataset used in the studies reviewed. Instead, it 
mentions the use of real-world clinical and genomic 
sources for generating synthetic patient data, such as 
in the case of myeloid malignancies. The evaluation 
metrics include precision and recall, particularly in the 
context of assessing the performance of LLMs like 
ChatGPT in providing treatment recommendations. 
The paper also discusses the use of a synthetic 
validation framework to evaluate the fidelity and 
privacy of synthetic data. 

Generative AI models tackle challenges like data 
scarcity and privacy issues by synthetic patient data 
generation that maintains realism and authenticity. 
These models enhance data analysis and interpretation 
because of advanced precision medicine, which 
improves synthetic data generation, accuracy and 
privacy. LLMs provide valuable complementary 
insights in complex medical fields, such as radiation 
oncology, despite not reaching human expertise levels. 
Thus, the accuracy of foundation models like LLMs in 
digital diagnostics is a noted limitation, as it indicates 
the need for further development to improve 
diagnostic precision. However, there is a need for 
more interdisciplinary research to advance the 
application of generative AI in personalized medicine 
that addresses existing limitations and enhances model 
robustness and generalizability. 

Bengesi et al. [27] proposed a comprehensive 
review of state-of-the-art generative AI models like 
GANs, GPT, Autoencoders, Diffusion Models and 
Transformers. The aim is to fill the gap in 
understanding these models by exploring their 
technical and mathematical foundations, applications, 
challenges and future prospects. The paper examines 
commonly used GAI models, researching into their 
technical and mathematical backgrounds. 
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Additionally, it categorizes tasks, describes 
applications and discusses areas of impact, challenges 
and future prospects. The review includes an 
exploration of the theoretical and mathematical 
foundations of these models. For the Generative 
Pretrained Transformer (GPT), the initial model 
(GPT-1) was trained on the BooksCorpus dataset, 
which consists of over 7,000 unique unpublished 
books in various genres. This dataset allows the model 
to learn from long stretches of contiguous text. The 
paper does not explicitly mention specific evaluation 
metrics used for the models reviewed. However, it 
notes that GPT-4 was compared with state-of-the-art 
models using the Measuring Massive Multitask 
Language Understanding (MMLU) benchmark, which 
covers 57 tasks across various domains. The reviewed 
models, such as GPT-4, exhibit high performance 
comparable to humans in several professional and 
academic benchmarks, including passing bar and 
medical exams. Figure 3 shows the structure of self-
attention architecture of GPT. 

 

Fig. 3. The Self-attention Architecture of GPT [27]. 

Kancharla [28] proposed the use of synthetic test 
data generation through generative AI techniques such 
as Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs) to address 
challenges in healthcare data usage. This approach 
aims to surpass the statistical properties of real 
healthcare data while ensuring patient confidentiality 
and compliance with privacy regulations. The paper 
discusses the use of regularization techniques like 
dropout and weight decay to prevent overfitting during 
the training of generative models. These techniques 
help the models generalize better to unseen data so that 
they perform well in real-world scenarios. The 
synthetic data is iteratively refined based on statistical 
analyses and clinical evaluations to ensure accuracy 
and usefulness. This process supports better decision-
making in healthcare research and practice. Once 
validated, the synthetic data is used in various 
healthcare applications, including machine learning 
model development, software testing and research 
initiatives. Thus, the specific datasets employed in the 
study are not detailed in the provided paper. The focus 
is on synthetic datasets generation that mirror real-
world healthcare data. The paper emphasizes rigorous 
validation through statistical and clinical methods, but 
specific evaluation metrics are not explicitly 
mentioned in the provided contexts, as shown in Fig. 
4. 

 

Fig. 4. The Technical Architecture for the Synthetic Data 
Preparation of Sensitive Healthcare Data [28]. 

Moreover, generative models enhance patient 
privacy by elimination of risks associated with real 
data usage and reduce costs by minimizing the need 
for real data acquisition. Timelines can be shortened 
by instant access to diverse datasets. Additionally, 
generative models facilitate responsible data usage 
and innovation in data-driven decision-making. 
Therefore, there is a need for further refinement of 
algorithms to achieve higher realism in synthetic 
datasets because of ethical implications and potential 
biases in synthetic datasets that could affect clinical 
decision-making. 

Gupta et al. [29] proposed an automatic diagnosis 
system that recommends preventative measures based 
on patient symptoms. This system leverages machine 
learning algorithms, categorical data conversion and 
speech data extraction to enhance diagnostic accuracy. 
The system records patient voice data using a 
microphone and assesses the performance of speech 
recognizers. It was observed that text data often 
provides more accurate results than categorical data. 
The accuracy of the system improves when classifiers 
have access to a large feature vector.  The dataset for 
the current study was taken from Kaggle. The dataset 
includes separate files for symptoms and safety 
measures. The evaluation of Gupta et al.’s method is 
conducted using several metrics, F1-score, Recall, 
Precision and Accuracy. 

The system shows improved accuracy when using 
text data and a large feature vector. Combination of 
both speech and text data, the system provides a more 
comprehensive analysis of patient symptoms. The 
specific limitations of Gupta et al.’s system are not 
explicitly mentioned in the provided contexts. 
However, general limitations in such systems could 
include challenges in handling diverse accents in 
speech data, data privacy concerns and the need for 
large datasets to train machine learning models 
effectively. 

Navin et al. [30] proposed a model of a 
knowledge-based RS that uses adaptive fuzzy logic 
systems to diagnose illnesses and suggest treatments. 
For sub-medical diseases, it offers an architecture 
made up of several parallel "fuzzy blocks" that 
function as fuzzy rule-based classifiers. The outputs of 
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these fuzzy blocks are combined using a rule base by 
a knowledge-based combiner segment to produce 
comprehensive diagnosis and treatment suggestions. 
A sample patient dataset is used to configure and 

assess the system for the diagnosis of fundamental 
lung diseases. The findings are in good agreement with 
professional assessments. 

 

Table II.  Summary of related works. 

References  Findings Evaluation Metrics 

Pahune & Rewatkar [24] 

 

Healthcare: A Growing Role 
for Large Language Models 

and Generative AI 

Medical imaging has significantly improved through the use of generative AI, 

particularly in the analysis of MRI and X-ray data.  More precise diagnoses can 

result from improvement of medical images by GANs.  Research, diagnosis and 
customized treatment are also being advanced by the use of multimodal AI, 

which integrates information from genomes, clinical records and images.  This 

is a significant advancement in the use of natural language processing (NLP) in 
the biomedical field. In contrast, without human oversight, generative AI and 

LLMs may result in inaccuracies or harmful outputs. Thus, it causes ethical and 

data privacy concerns in the healthcare domain. 

MME (Multimodal 

Model Evaluation) 

and SEED-Bench 
for assessing the 

effectiveness of 

multimodal large 
language models 

(MLLMs). 

Shambour et al. [16] 
 

Medicine Recommender 

System Based on Semantic 

and Multi-Criteria Filtering 

Medicine recommendation system called HSMCCF to help patients find 
appropriate medications based on their medical conditions. However, the system 

still faces challenges with limited user feedback and its applicability in the 

industry. 

Accuracy. 

Roy & Dutta [25] 

 
A Survey on Personalized 

Health Recommender 

Systems for Diverse 
Healthcare Applications 

The survey provided an overview of HRS research trends and guidance to 

improve HRS. However, HRS lack transparency, personalization and 
comprehensive evaluations of the real impact on patient after diagnosis. 

Various evaluation 

metrics were 
surveyed. 

Ooi et al. [7] 

 
A Healthcare Recommender 

System Framework 

Proposed the framework for the HRS, encompassing various RS techniques, 

datasets used and evaluation metrics employed in the healthcare domain. 

Similarity score, 

word count. 

Shambour et al. [17] 

 
A Doctor Recommender 

System Based on 

Collaborative and Content 
Filtering 

Used a doctor's reputation score and the substance of their medical practice as 

multiple decision-making factors to improve the quality of their suggestions and 
lessen the impact of data sparsity. 

Prediction coverage, 

RMSE and MAE. 

Ghebrehiwet et al. [26] 

 
Revolutionizing Personalized 

Medicine with Generative 

AI: A Systematic Review 

Generative AI helps solve problems like limited data and privacy concerns by 

generation of realistic synthetic patient data. This improves data analysis, 
supports precision medicine and leads to better treatment outcomes. Models like 

VAEs and GANs assist in identifying important genes, whereas LLMs support 

decision-making in cancer care and radiation therapy. 

Precision and recall,  

Bengesi et al. [27] 
 

Advancements in Generative 

AI: A Comprehensive 
Review of GANs, GPT, 

Autoencoders, Diffusion 

Model and Transformers 

The paper reviews the latest generative AI models like GANs, GPT, 
Autoencoders, Diffusion Models and Transformers. It explains how they work, 

their development and future potential. Generative AI is creating new 

opportunities in fields like business, healthcare, education, entertainment and 
media. The paper also highlights generative AI’s major impact on the 5th 

Industrial Revolution and how it is changing job markets. 

Measuring Massive 
Multitask Language 

Understanding 

(MMLU) 
benchmark. 

Kancharla [28] 

 

Synthetic Test Data 
Preparation using Generative 

AI &amp; Usage in Secured 

Healthcare Practice 

The paper proposes the usage of generative AI methods like GANs and VAEs to 

generate synthetic healthcare data. As it helps overcome data limitations but 

protect patient privacy and follows legal guidelines. Additionally, it covers the 
use of regularization techniques to avoid overfitting, in order the models to work 

well with new real-word data. Further algorithm refinement is needed because 

synthetic datasets may still carry biases and lack realism which may potentially 
affect clinical decisions. 

Rigorous validation 

through statistical 

and clinical 
methods, but 

specific evaluation 

metrics are not 
explicitly mentioned 

in the provided 

contexts. 

Gupta et al. [29] 

 

Detecting Thyroid Disease 
Using Optimized Machine 

Learning Model Based on 

Differential Evolution 

Introduced an automated healthcare system that can successfully take the place 

of a physician at the first stage of diagnosis and contribute to time savings by 

advising the appropriate measures. Some of the challenges mentioned in the 
paper were speech variability, privacy concerns and the need for large and 

diverse datasets to ensure reliable model training. 

Accuracy, precision 

and F1 score. 

Navin et al. [30] 
 

Knowledge Based 

Recommender System for 
Disease Diagnostic and 

Treatment Using Adaptive 

Fuzzy-Blocks 

Disease diagnosis and treatment recommendations using adaptive fuzzy logic, 
which utilizes rule base to provide holistic diagnoses and treatment 

recommendations. 

Expert evaluation. 
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III. THEORETICAL FRAMEWORK 

A. Variational Autoencoder (VAE) 

VAE is a generative model that has been applied 
in RS to overcome challenges such as data sparsity and 
the need for robust latent representations. It is because 
VAEs model the underlying distribution of data using 
a probabilistic framework, they are especially well-
suited to managing the sparse and complex datasets 
that are typical in recommendation settings. In order to 
predict user preferences and increase suggestion 
accuracy, RS use VAEs to create latent representations 
of users and items.  

VAEs are proficient at handling implicit feedback, 
which is often sparse and biased. For instance, the 
VAE-IPS model uses inverse propensity scoring to 
lessen selection bias in implicit feedback because it 
leads to more accurate recommendations [31]. 
Likewise, VAE revisits the annotation of positive and 
negative samples in implicit feedback to enhance 
recommendation performance [32]. 

HRS can enhance patient care and resolution by 
the implementation of VAEs’ generative capabilities 
to generate precise and tailored recommendations. The 
capability of VAEs to model complex distributions 
and produce new data makes it especially useful in the 
healthcare industry because they frequently struggle 
with a lack of labelled data. VAEs are used to create 
personalized healthcare recommendations by 
examination of deep latent representations of user 
profiles and item contents like healthcare providers’ 
description. This approach allows for the extraction of 
implicit relationships between users and items to 
improve recommendation accuracy [33]. Additionally, 
VAEs address the cold-start problem by precise 
estimation of the interest probabilities of newly 
introduced users and resources. This is made possible 
by VAEs' generative nature, which allows them to 
create new data points using learnt distributions [34]. 
Furthermore, in HRS, VAEs facilitate a balance 
between recommendation of known items and 
exploration of new options. This is achieved by 
construction of user-specific subgraphs that capture 
both observed interactions and potential new interests. 

Some of the advantages of using VAEs in HRS are 
effective handling of data sparsity, improved 
recommendation performance and bias mitigation and 
explainability. VAEs are effective in overcoming data 
sparsity, a common issue in healthcare data because of 
amortized inference to generate recommendations 
even with limited data. On top of that, VAEs can be 
extended to generate explainable recommendations, 
which then provides natural language explanations 
that improve user trust and understanding of the 
recommendations [35]. Subsequently, more accurate 
and reliable recommendations are generated with the 
integration of VAEs in HRS compared to traditional 
methods [33]. Besides, VAEs can be trained using 
methods like inverse propensity scoring to reduce 
biases inherent in implicit feedback, such as popularity 

or position bias because it leads to more unbiased 
recommendations [31].  

In an HRS, VAEs streamline the feature extraction 
process. They begin by preprocessing patient data to a 
standard format and then utilize encoder layers to learn 
latent representations of health indicators. The encoder 
maps complex patterns in patient data into a lower-
dimensional latent space, in order to capture essential 
features such as lifestyle factors, medical history and 
biometrics. The decoder then reconstructs patient 
profiles to ensure meaningful feature extraction. The 
recommender engine can evaluate similarities and 
forecast diabetes stages or individualized health 
suggestions thanks to the latent space's output, which 
is a reduced depiction of a patient's health condition. 

B. Generative Adversarial Networks (GAN) 

GANs are a class of machine learning frameworks 
designed to generate new data samples that mimic a 
given dataset. A generator and a discriminator are two 
neural networks that are trained simultaneously 
through adversarial processes. Model training without 
compromising patient privacy can be done by using 
synthetic data. Besides, GANs are used in HRS to 
improve the quality and fairness of recommendations. 
Approaches such as data sparsity and bias in 
healthcare datasets can be overcome by GANs 
implementation.  

Moreover, GANs are used to generate synthetic 
Electronic Health Records (EHRs) that preserve the 
statistical properties of real data while protecting 
patient privacy. This is crucial when training 
healthcare models without compromission of sensitive 
information [36]. Additionally, to generate reasonable 
synthetic health data by correlations and ensure 
accurate subgroup representation, techniques like 
Bias-transforming GANs (Bt-GAN) are developed. 
This helps to reduce bias during healthcare prediction 
generation [37]. Subsequently, to ensure that synthetic 
data generation does not interrupt patient privacy, 
Local Differential Privacy (LDP) is integrated with 
GANs to protect training data from malicious attacks 
[38]. 

In HRS, GANs are implemented to create 
personalized healthcare recommendations by 
combination of user and item features like 
demographics and medical history. For instance, 
conditional GANs are customized to individual needs. 
Furthermore, issues such as data sparsity in HRS can 
be addressed using Variational Collaborative GANs 
(VCGAN) because it leverages auto-encoders to 
produce latent vectors. Thus, improvement of 
correlation between generated samples and real-world 
data [39]. On top of that, in order to improve model 
efficiency and reduce model complexity while 
maintaining accuracy can be achieved with a compact 
GAN [40]. 

Furthermore, it is essential to tackle such issues in 
order to ensure that GANs can be successfully 
integrated within HRS. It is also important to be 
familiar with fairness in healthcare predictions and the 
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construction of fairness. Plus, unbiased synthetic data 
generation method such as Bt-GAN is a notable 
ongoing progress. Therefore, with ongoing research, it 
is anticipated that GANs will continue to play a crucial 
role in enhancing the accuracy and reliability of HRS. 

C. Evaluation Metrics 

In order to guarantee efficacy and dependability in 
clinical contexts, generative AI-based HRS are 
evaluated using a range of criteria. These criteria are 
essential in evaluating how well AI models perform in 
producing precise and practical suggestions for 
patients as well as healthcare providers. The 
evaluation metrics can be categorized into traditional 
performance metrics and those specifically tailored for 
healthcare applications. 

1) Accuracy 

Accuracy measures the number of correct 
predictions made by the model out of all predictions. 
It is a fundamental metric. However, it is not always 
sufficient, especially in imbalanced datasets that are 
common in healthcare domains. For instance, in 
healthcare datasets, the number of positive cases may 
be much smaller than the number of negative cases 
[41]. In such cases, accuracy can be misleading 
because the model predicting the majority class most 
of the time may still appear to perform well. 

2) Precision 

Precision represents the proportion of correctly 
predicted positive cases out of all predicted positive 
cases. It is crucial in healthcare domains to minimize 
false positives. The reason is that a high precision 
score ensures that the model does not incorrectly 
classify negative cases as positive, thereby preventing 
unnecessary treatments or interventions. 

3) Recall (Sensitivity) 

Recall (sensitivity), measures the model’s ability 
to correctly identify all actual positive cases. In 
healthcare, high recall is critical because missing 
actual positive cases (false negatives) can be harmful 
to patient outcomes. Therefore, a model with high 
recall ensures that as many relevant cases as possible 
are identified and the chances of undiagnosed 
conditions are reduced. 

4) F1 Score 

The F1 score is the harmonic mean of precision 
and recall as it provides a balanced measure between 
the two. It is particularly useful when there is an 
imbalance between positive and negative cases, which 
ensures that both false positives and false negatives are 
considered in the evaluation process [42]. 

5) Root Mean Square Error (RMSE) 

As for Root Mean Square Error (RMSE), it is used 
to compare the differences between predicted and 
observed values. It helps forecast ratings for a test 
dataset of user-item pairs for which the rating values 
are already known, which involves calculating the 
RMSE as it is one method for accuracy evaluation. 

Alternatively, the difference between the actual and 
anticipated values would establish the error. The 
RMSE can be calculated by squaring all of the test set 
error values to find the average (or mean) and then 
taking the square root of that average. It is very useful 
for regression tasks in RS for healthcare [7]. The 
computation of RMSE is detailed in Eq. (1) within the 
documentation of the Surprise library. 

𝑅𝑀𝑆𝐸 =  √
1

|𝑅̂|
∑ (𝑟𝑢𝑖 − 𝑟̂𝑢𝑖)

2
𝑟̂𝑢𝑖∈𝑅̂

           (1) 

, where: 

𝑅 ̂ = Number of records 

𝑟𝑢𝑖 = Actual rating of the item i by user u 

𝑟𝑢𝑖 ̂ = Predicted rating of the item i by user u 

Even though these evaluation metrics offer a 
thorough framework for HRS assessments based on 
generative AI, it is important to take each application's 
unique needs and context into account. For instance, 
metrics like recall and precision might be more 
important than others in situations when patient safety 
is the top priority. Furthermore, integration of user-
centred metrics like trust and empathy can enhance the 
review process, which guarantees that AI systems not 
only function well technically but also in harmony 
with moral and human-centred principles in the 
healthcare industry. 

IV. RESEARCH METHODOLOGY 

A. Implementation 

The project is designed for two types of users 
which are the administrator (researcher) and the 
customer (patient). All work will be conducted within 
Jupyter Lab, where the administrator will analyze, 
preprocess and prepare the dataset for model 
development. 

The primary focus is on Exploratory Data Analysis 
(EDA) and data preprocessing using the Diabetes 
Health Indicators Dataset. This involves dataset’s 
structure exploration, missing values identification 
and a cleaned dataset. A well-structured data eases 
model training. The first step will be to load and 
explore the dataset in order to examine its 
characteristics such as size, features and data types. In 
case of any missing values, redundant or inconsistent 
records will be removed to maintain data integrity. 
Additionally, duplicate entries will be recognized and 
dropped to avoid complications during next phase of 
implementation. 

EDA will be done to identify patterns and trends 
within the dataset. Subsequently, descriptive statistics 
such as mean, median, standard deviation and 
skewness will be calculated to summarize the data 
distribution. On top of that, visualization techniques 
like histograms and box plots will be used to analyze 
the spread and variability of key health indicators. 
Correlation analysis using heat maps will help identify 
relationships between various variables and provide 
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insights into which features may be relevant for future 
modelling. Furthermore, outlier detection techniques 
such as Z-score, interquartile range (IQR) and box plot 
analysis will be done to identify and address anomalies 
in the dataset. Figure 5 shows a flowchart of the 
prototype for administrator. 

 

Fig. 5. Flowchart of prototype for administrator.  

Once the dataset has been thoroughly analyzed, it 
will undergo data preprocessing to ensure it is 
optimized for model training. New relevant features 
may be created and existing ones transformed to 
improve the dataset's quality during feature 
engineering. Normalization and standardization 
techniques such as Min-Max Scaling will be applied 
to numerical features to maintain consistency across 
different variables. However, if categorical variables 
are present, it will be converted into numerical 
representations using one-hot encoding or label 
encoding to ensure compatibility with machine 
learning models. As for a balanced representation 
across different health conditions for fair model 

evaluation, the dataset will then be split into training, 
validation and testing sets. 

All data exploration, visualization and 
preprocessing tasks will be conducted within Jupyter 
Lab since no GUI will be developed. The cleaned 
dataset and analysis findings will be saved and well-
documented using markdown cells to maintain clarity 
and reproducibility. Generative AI models such as 
GANs and VAEs will be implemented to develop a 
personalized healthcare recommendation system. The 
final outcome will be a cleaned, well-structured 
dataset along with detailed exploratory analysis, 
ensuring that when generative AI techniques are 
applied, they are trained on high-quality, well-
prepared data, ultimately improving the effectiveness 
of personalized healthcare recommendations. Figure 5 
visualizes a flowchart of the prototype for an 
administrator. 

B. Dataset 

The prototype’s model training dataset is a 
healthcare-related dataset, “Diabetes Health Indicators 
Dataset” on Kaggle. This dataset was cleaned and 
consolidated and it was created from the Behavioural 
Risk Factor Surveillance System 2015 (BRFSS) 
dataset already on Kaggle. The BRFSS is a health-
related telephone survey that is collected annually by 
the Center for Disease Control and Prevention (CDC). 
Each year, the survey collects responses from over 
400,000 Americans on health-related risk behaviours, 
chronic health conditions and the use of preventative 
services. It has been conducted every year since 1984. 
For this project, a csv of the dataset available on 
Kaggle for the year 2015 was used. It is a clean dataset 
of 70,692 survey responses to the CDC's BRFSS2015. 
It has an equal 50-50 split of respondents with no 
diabetes and with either prediabetes or diabetes. The 
target variable Diabetes binary has 2 classes. 0 is for 
no diabetes and 1 is for prediabetes or diabetes. This 
dataset has 21 feature variables and is balanced. This 
original dataset contains responses from 441,455 
individuals and has 330 features. These features are 
either questions directly asked of participants or 
calculated variables based on individual participant 
responses. Table III illustrates the descriptions of 
attributes of the used dataset. 

Table III. Attributes descriptions of the selected dataset. 

Attributes Details Field 

Type 

Diabetes_binary Indicates whether a person 

has diabetes (1) or no diabetes 

(0) 

Integer 

(0/1) 

HighBP Indicates whether a person 
has high blood pressure (1) or 

no high blood pressure (0) 

Integer 
(0/1) 

HighChol Indicates whether a person 
has high cholesterol (1) or no 

high cholesterol (0) 

Integer 
(0/1) 

CholCheck Indicates whether a person 

has checked their cholesterol 
levels in the last 5 years. Yes 

(1), No (0) 

Integer 

(0/1) 

BMI Body Mass Index (BMI) Float 
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Smoker Indicates whether a person 

has ever smoked at least 100 

cigarettes [5 packs = 100 

cigarettes]. Yes (1), No (0) 

Integer 

(0/1) 

Stroke Indicates whether a person 
has history of stroke.  

Yes (1), No (0) 

Integer 
(0/1) 

HeartDiseaseorA
ttack 

Indicates whether a person 
has coronary heart disease 

(CHD) or myocardial 

infarction (MI). Yes (1), No 
(0) 

Integer 
(0/1) 

PhysActivity Indicates whether a person 

practices regular physical 

activity in past 30 days - not 
including job. Yes (1), No (0) 

Integer 

(0/1) 

Fruits Indicates whether a person 

consumes fruit at least once 
per day. Yes (1), No (0) 

Integer 

(0/1) 

Veggies Indicates whether a person 

consumes vegetables at least 

once per day. Yes (1), No (0) 

Integer 

(0/1) 

HvyAlcoholCons

ump 

Indicates whether a person 

heavily consumes alcohol. 

(adult men >=14 drinks per 
week and adult women>=7 

drinks per week). Yes (1), No 

(0) 

Integer 

(0/1) 

AnyHealthcare Indicates whether a person 

has any kind of healthcare 

coverage, including health 
insurance, prepaid plans such 

as HMO, etc. Yes (1), No (0) 

Integer 

(0/1) 

NoDocbcCost Indicates whether a person 

could not see a doctor due to 
cost in the past 12 months. 

Yes (1), No (0) 

Integer 

(0/1) 

GenHlth Self-reported general health 
(1 = excellent, 2 = very good, 

3 = good, 4 = fair, 5 = poor) 

Integer  
(1-5) 

MentHlth Indicates number of mentally 

unhealthy days in the past 30 

days experienced by a person. 

Integer 

PhysHlth Indicates number of 

physically unhealthy days in 
the past 30 days experienced 

by a person. 

Integer 

DiffWalk Indicates whether a person 

difficulty in walking or 
climbing stairs due to health 

issues. Yes (1), No (0) 

Integer 

(0/1) 

Sex Indicates a person’s sex. Male 
(1), Female (0) 

Integer 
(0/1) 

Age Indicates a person’s age 

group. 13-level age category  
(1 = 18-24…9 = 60-64…13 = 

80 or older) 

Integer  

(1-13) 

Education Indicates a person’s education 

level. 6-level education 
category (1 = Never attended 

school or only 

kindergarten…6 = College 

graduate) 

Integer  

(1-6) 

Income Indicates a person’s income 

level. 8-level income scale (1 
= less than $10,000…5 = less 

than $35,000…8 = $75,000 or 

more) 

Integer  

(1-8) 

C. Exploratory Data Analysis (EDA) 

Before the dataset is cleaned, the first step involves 
analyzing and exploring the raw dataset. This 

beginning phase allows us to understand the structure 
of the dataset before working on it. 

● Step 1: Identifying the shape of the raw 
dataset (refer Figure 6). 

 

Fig. 6. The shape of raw dataset. 

● Step 2: Calculating skewness and plot 
histograms to analyze key health indicators (refer 
Figures 7 & 8). 

 

Fig. 7. The skewness of key indicators. 

 

Fig. 8. Histograms of key indicators. 

● Step 3: Use the correlation heatmap to 
analyze the relationship of each attribute (refer Figure 
9). 

 

Fig. 9. The Correlation Heatmap of each attribute. 
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D. Data Cleaning 

The next step involves data cleaning. This essential 
phase uses a streamlined pipeline to ensure the data is 
properly prepared and optimized for subsequent 
training steps. 

● Step 1: Handling missing data (refer Figure 
10). 

 

Fig. 10. Missing data in each attribute. 

● Step 2: Remove duplicated data (refer Figure 
11). 

 

Fig. 11. The removal of duplicated data. 

● Step 3: Converting all data to integers (refer 
Figure 12). 

 

Fig. 12. The conversion of all data to integer. 

● Step 4: Checking for outliers using boxplot 
(refer Figure 13). 

 

Fig. 13. The Outliers using boxplot. 

● Step 5: Compute the Interquartile Range 
(IQR) and remove outliers (refer Figure 14). 

 

Fig. 14. The IQR and removed outliers. 

E. Healthcare Recommender System (HRS) 

After the data preprocessing process, the VAEs 
and GANs modelling techniques are now prepared to 
be fitted into the RS. Combining VAEs with GANs in 
a RS allows leveraging the strengths of both: VAEs 
utilize a probabilistic framework to model complex 
distributions, whereas GANs enhance healthcare 
recommendations by generating realistic synthetic 
data while protecting patient privacy, making them 
particularly effective in tailored healthcare 
recommendations. In addition, there are multiple 
helpful built-in features to construct a RS, such as 
train-test split and various metrics. This model 
performance is evaluated using various evaluation 
metrics as shown in Fig. 15. 

 

Fig. 15. Model performance comparison between VAE and GAN. 

Furthermore, the dataset is divided into train, 
validation and test sets. The proportions for these sets 
are 60%-20%-20%. The ‘stratify’ parameter ensures 
that the splits of the dataset maintain the same 
distribution of certain categories as the original 
dataset. Specifically, the dataset is being stratified 
based on the Diabetes_binary attribute to preserve the 
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proportion of diabetic and non-diabetic individuals 
across the splits. VAEs are implemented to generate 
synthetic health data and refine personalized 
healthcare recommendations for model training. This 
is because after evaluating the model performance in 
Fig. 15, VAEs outperforms GANs in all key metrics 
such as accuracy, precision, recall, F1 score and has a 
lower RMSE score, which indicates better prediction 
and less error. Subsequently, the algorithm is trained 
using the training set and the validation set is used to 
compare the performances between the models. The 
model with the best performance will then be used in 
the test set. Precision, accuracy and RMSE are the 
primary metrics used to assess the models’ 
effectiveness in achieving accurate recommendations. 

In order to have an enhanced visualization, 
dashboards are developed to represent relationships 
between health indicators efficiently. Histograms and 
box plots will be used to analyze the spread and 
variability of key health indicators. Correlation 
analysis using heatmaps will help identify 
relationships between different variables. Therefore, it 
provides insights into which features may be relevant 
for future modelling and to reveal complex 
connections between health attributes, which aids a 
clearer understanding of disease patterns and risk 
factors. 

V. CONCLUSION 

This review offered insightful information about 
the limitations of traditional recommendation methods 
that emphasize the necessity of VAEs and GANs to 
enhance personalized medical recommendations. 
VAEs were leveraged to address cold-start issues, 
whereas GANs were utilized for data augmentation 
and enhancing the diversity of generated 
recommendations.  

One possible avenue for further research is hybrid 
methods combining VAEs and GANs with knowledge 
graphs for richer contextual understanding of patient 
information and more accurate recommendations. 
Also, domain-specific eXplainable AI (XAI) 
approaches for generative models might help build 
confidence in personalized medical recommendations 
by making them transparent enough for doctors and 
patients to understand and verify the proposed 
treatments easily. 
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