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     Abstract—Boundary layer control (BLC) is 

essential for enhancing an aircraft's overall 

performance, stability, and efficiency. It contributes to 

increased lift generation, decreased drag, and improved 

flying stability when controlled appropriately. The 

review outlines the challenges and recent advances in 

BLC techniques within the context of aerodynamic flow. 

This is to provide a clear understanding of advantages 

and limitations associated with different BLC strategies. 

The traditional BLC techniques, including suction, 

blowing, and vortex generators, have limitations and 

drawbacks that can cause major repercussions. The 

review compares the modern developments in BLC while 

high-lighted key challenges such as energy cost, 

durability and scalability. Suggestions for future 

improvement include hybrid control systems that 

combine passive and active elements, model predictive 

control (MPC), artificial intelligence (AI), and real-time 

monitoring via the Internet of Things (IoT) to overcome 

these constraints. From this comparative and forward-

looking approach, a better airplane performance and 

sustainability flying can be resulted through increasingly 

intelligent and effective BLC systems. 

Keywords—Hybrid control system, Model Predictive 

Control (MPC), Artificial Intelligence (AI), Sustainability. 

 

I. INTRODUCTION  

In aerodynamics, "aerodynamic flow" refers to the 

movement of air around an object, while a "boundary 

layer" is a thin layer of air that directly touches the 

object's surface, experiencing significant friction due 

to its interaction with the solid surface as in Fig. 1.  

 
Fig. 1. Boundary layers in laminar and turbulent aerodynamic flows 

[1]. 
 

 

Fig. 2. The generation of lift based on Bernoulli’s Principle [2]. 

The boundary layer significantly impacts a lifting 

surface, like an aerofoil, by influencing the pressure 

distribution around the wing, which directly affects the 

amount of lift generated which can be explained by 

Bernoulli’s Principle. A thick or turbulent boundary 

layer can lead to flow separation, causing a substantial 
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loss of lift and increased drag, potentially resulting in 

a stall condition if severe enough as in Fig. 2.  

II.  FACTORS AFFECTING BLC 

The skin friction can be reduced by maintaining 

the boundary layers in the laminar state, thus, the 

methods of controlling the behaviour of fluid flow 

within the boundary layers, namely Boundary Layer 

Control (BLC) is the key component for reaching 

optimized aerodynamic performance [3]. There are 

few main factors affecting the BLC including flow 

velocity, pressure gradient, surface geometry 

Reynolds number, temperature and viscosity.  

In the aspect of surface geometry, the desired 

geometry and shape of the surface are those created 

laminar flow. The curvature, surface roughness and 

shape influence the layer behaviour. In the recent 

study [4], geometric parameters such as height and 

spacing were assessed to study the boundary layer 

behaviour of a NACA4415 airfoil using vortex 

generators to explore the passive flow control.  In 

general, smooth, gradual contours help to maintain 

attached flow meanwhile sharp edges and sudden 

changes of geometric angle can cause flow separation. 

Reynolds number (RN) is the ration of inertial to 

viscous forces within a fluid and it indicated the 

laminar or turbulent nature of a flow. The higher 

values of the RN, the higher rate of turbulent of the 

flow. To emphasize the significance of RN in BLC 

application, Shi’s research group analysed the 

aerodynamic characteristics of a new variable inlet 

guide vane by varying RN and clearance flows [5]. 

The effect of RN can be investigated using direct 

numerical simulations nowadays, especially on very 

high velocity of flight, boundary layers on supersonic 

aircrafts which the real-time condition may be 

complicated to be measured [6].  

In addition, flow velocity plays an important role 

in affecting the type and behaviour of the boundary 

layers. The shear will be increased and the separation 

of boundary layers will be narrowed when the velocity 

of the fluid is high [7]. Pressure gradient also another 

factor to be encountered in BLC. In a favourable 

pressure gradient, the pressure decreases moving 

downstream to keep the flow attached and vice versa 

in an adverse pressure gradient to lead to flow 

separation. Julian et al. [8] conducted experimental 

and numerical analysis on porous bleed control for 

supersonic and subsonic flows with managing the 

adverse pressure gradients. The findings in the same 

study validate the experimental and numerical results 

are similar in controlling boundary layers for porous 

bleed in supersonic condition while the flow 

momentum near the wall is improved by boundary-

layer bleeding. Temperature and viscosity of flow 

closely related to pressure that affect the density of the 

air and resulted the viscosity accordingly. In their 

study, the porous bleed systems are analysed by 

varying thermal condition which concluded that 

viscosity of fluid is reduced on surfaces and fluids at 

higher temperature and this may delay the separation 

[8]. This findings in agreement with the theory by 

Gordon [9]. He also mentioned about higher ambient 

turbulence could trigger transition of turbulence in the 

boundary layers prematurely at higher ambient 

turbulence in free stream.  

On the other hand, other factors can affect the BLC 

based on wall motion or vibration, surface suction or 

blowing rate which may slightly or more affect the 

boundary layers accordingly in aerodynamic 

performance [8, 10, 11]. The factors that affecting 

BLC are displayed in Fig. 3. 

 

Fig. 3. Factors that must be concerned in the boundary layer control 
(BLC) system. 

III. THE IMPORTANCE AND ADVANTAGES 

OF BLC 

Boundary layer control on an aircraft is critically 

important for improving aerodynamic performance, 

fuel efficiency, and overall flight safety. Maintaining 

a proper control over boundary layers prevents fluid 

from separating before reaching its planned earliest 

departure point. Boundary layer control functions as 

the essential basis for modern aerodynamic design 

work that achieves top operational performance 

standards for different purposes [11]. Border layer 

control has a fundamental impact that exceeds the 

reduction of drag and increased lift performance to 

support environmentally safe operations. It reflects 

directly BLC play a role in sustainable future. 

Effective BLC procedures implemented by 

engineers reduce aircraft drag rates and maximize fuel 

efficiency by preventing flow separation before its 

designated exit point. Suction-based platforms within 

laminar flow control systems expand laminar flow 

coverages across larger areas to decrease skin friction 

drag levels [12]. These drag reduction techniques lead 

to significant savings in fuel expenses while reducing 

greenhouse gas emissions that occur in commercial 

airplane operations. In short, the importance and 

advantages of BLC is summarized in Table I.  
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IV. THE EFFECTS OF FAILURES IN BLC  

Stability issues and problems in controlling can be 

resulted by the failure of boundary layer control. The 

root cause of stability issues of aircraft mainly 

depending on airflow patterns which directly reflected 

on boundary layers during take-off, landing 

conditions, and high-speed flight operations [13]. 

When boundary layer not under control and 

separation takes place, aircraft will not safe to fly 

because it causes unexpected handling problems, 

including structural buffeting, lost control surface 

responsiveness, and potential stall situations. Flight 

control becomes challenging due to these adverse 

effects, raising the chances of flight instability and 

accidents for pilots [14]. Thus, it is vital to have a good 

BLC system. 

In general, it produces damaging effects that put 

stress on the overall aircraft structure When aircraft 

experience boundary layer control failure. The 

unpredicted separation of airflow from aircraft 

surfaces causes unbalanced pressure distributions, 

creating higher amounts of structural loads [15]. The 

unexpected loads from boundary layer control failure  

 

 
Table I. Importance and advantages of BLC in aviation. 

Key element Importance Effect of control Advantage Reference 

Drag reduction The boundary layer contributes 
to skin friction drag and pressure 
drag 

By managing the 
boundary layer (e.g. 
delaying flow 
separation) 

Total drag is reduced, improving 
fuel efficiency and performance 

[16, 17] 

 

Delay of Flow 
Separation 

Flow separation causes a sudden 
increase in drag and possible 
loss of lift 

Techniques like 
suction, blowing, or 
vortex generators 

Keeping the boundary layer 
attached to the surface longer, 
maintaining lift and preventing 
stall 

[14, 18, 19] 

 

Enhanced Lift A more stable boundary layer 
can improve the effectiveness of 
high-lift devices (flaps, slats) 

Allows aircraft to 
take off and land at 
slower speeds 

Improving low-speed performance 
and short-field capability 

[20 - 22]  

Improved 
Maneuverability 

and Control 

Uncontrolled boundary layer 
separation can lead to control 
surface ineffectiveness 

Ensures consistent 
airflow over control 
surfaces (like ailerons 
and rudders) 

Enhancing pilot control [23, 24] 
 

Fuel Efficiency Lower drag  Less thrust is needed Fuel savings and reduced 
operating costs 

[25, 26]  

Thermal 
Management 

(particular at high 
speed) 

At supersonic speeds, the 
boundary layer influences 
surface heating 

Advanced BLC 
system helps to 
manage thermal loads 

Prevent structural damage [15, 27] 

 

Passenger Comfort Boundary layer control over the 
fuselage and wings 

Laminar flow control 
smooths airflow and 
reduce aerodynamic 
noise 

Less buffeting, fewer sudden 
motions, improving ride quality 
and more pleasant cabin 
environment 

[28, 29] 

 

Operational and 
Safety Risks 

Reduced stall risk during take-
off and landing at critical safety 
phases 

Delaying flow 
separation keeps lift 
high at low speeds 

Stall recovery and improved 
Control During Emergencies 

[30] 

shorten the lifespan of essential aircraft parts, 

requiring aircraft maintenance and component repairs 

to happen more frequently. Exposure to such 

conditions eventually destroys the airframe integrity, 

creating operational costs that increase along with no 

safety threats to passengers [31]. Proper boundary 

layer control establishes one of the crucial 

requirements to lower aircraft structural stress and 

extend aircraft service longevity. 

The failure of maintaining BLC integrity creates 

cabin noise which cause negative effects on passenger 

[32]. Off-stable airflow patterns near the aircraft 

surface produce turbulence that results in vibration and 

drastic altitude changes. These disturbances produce 

an uncomfortable experience, resulting in both 

passenger motion sickness and elevated feelings of 

anxiety [29]. Controlled airflow provides passengers 

with a more stable experience while decreasing 

complaints, which improves airline reputation. 

The safety of operations and running costs suffer 

detriment due to these issues. The associated 

breakdown of boundary layer control systems creates 

greater stress on aircraft structure and reduces comfort 

levels for passengers [30]. Aerospace engineers and 

maintenance personnel need to establish a reliable 

boundary layer management system that defends flight 

performance while ensuring aviation safety. Boundary 

layer control greatly affect the safety because it 

determines aircraft performance output alongside 

operational risk management [33]. 
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V. LIMITATIONS AND CHALLENGES OF 

CONVENTIONAL BOUNDARY LAYER 

CONTROL SYSTEM 

Conventional boundary layer control methods, 

including suction, blowing, vortex generators, and 

compliant surfaces have been used to manipulate 

boundary layer behaviour. Despite their various 

merits, there are serious limitations and challenges in 

terms of efficiency, implementation, and long-term 

sustainability in the conventional boundary layer. 

High energy consumption is a major drawback of 

most conventional BLC techniques, such as suction 

and blowing, which involve the consumption of high 

amounts of energy. For instant, suction-based systems 

rely on vacuum pumps or compressors, which have 

very high-power consumption and are therefore 

inefficient for use over long periods of flight [34]. 

Complexity and maintenance issues arise as 

implementing traditional boundary layer control 

mechanisms often adds complexity to aircraft 

structures. Suction and blowing systems involve 

additional ductwork, pumps, and sensors, increasing 

the chances of mechanical failure and maintenance 

requirements [35]. Weight penalty is another 

significant challenge, as all conventional boundary 

layer control systems lead to increased weight due to 

components such as piping, pumps, and actuators, 

raising the gross weight of the aircraft [36]. This added 

weight greatly offsets any drag reduction advantages 

attained, making most of these systems inefficient in 

practical use today.  

Limited effectiveness under adverse conditions is 

another concern, as almost all conventional boundary 

layer control systems are ineffective in changing 

atmospheric conditions [37]. such as turbulence, icing, 

or contamination effects from dust and debris. 

Suction-based techniques might have clogged 

perforations, and their effectiveness is diminished at 

high-altitude conditions. Cost constrictions also 

present a major challenge, as traditional boundary 

layer control systems can be quite expensive to 

implement and maintain [38]. Since such techniques 

require supplementary mechanical means and energy 

input, their operation has been especially costly for 

commercial aviation and application in industries. 

Integration with modern aircraft designs remains a 

challenge, as modern aircraft are designed with strict 

weight and energy efficiency considerations. 

Integrating traditional boundary layer control [39]. 

techniques without compromising either the structural 

integrity or the performance of the aircraft remains an 

ongoing issue. Environmental impact is another 

concern, as most conventional methods in boundary 

layer control require high-pressure air or fluid 

injection, creating potential environmental hazards 

[34]. Key issues with such systems include noise 

pollution and inefficiency in energy utilization.  

The conventional boundary layer control systems 

have played an important part in aerodynamics by 

providing techniques for drag reduction and 

performance improvement. However, they are 

associated with several disadvantages, including high 

energy consumption, weight penalties, cost 

constraints, technical challenges, integration issues 

with modern aircraft and environmental hazards as 

summarized in Fig. 4. Advancement and improved 

techniques are required to overcome the challenges. 

 

Fig. 4. The limitations of the conventional boundary layer control 
(BLC) system. 

VI. RECENT ADVANCEMENT IN THE 

BOUNDARY LAYER CONTROL 

Boundary control systems have evolved 

tremendously over time, beginning with manual 

tuning methods and later transforming into intelligent 

and adaptive technologies. Such systems are vital for 

engineering applications in aerospace, fluid dynamics, 

and structural engineering. The progression in 

boundary control systems has primarily been driven by 

demands for efficiency, reliability, and adaptability in 

complex and dynamic scenarios. 

The alternative emerging technologies such as 

active flow control, plasma actuators, and bio-inspired 

aerodynamic design methods place increasing 

competition on conventional boundary layer control 

techniques. These emerging technologies are 

considered possibly more effective, lightweight, and 

less costly for some missions than the older concepts. 

The new imbedded technologies and recent 

advancement in BLC is listed in Table II for insight of 

the advancement based on recent studies. By relating 

Table II with Fig. 4, most of the challenges are 

expected to be overcome by research study into smart 

materials, adaptive control systems, and energy-

efficient methods of actuation in the quest to improve 

the effectiveness and efficiency of boundary layer 

control techniques. 

VII.  CONCLUSION 

The review underscores the important roles of 

BLC in enhancing aerodynamic performance of 

aircraft. The BLC system offers notable advantages in 

terms of drag reduction, improved lift and flow 

stability meanwhile it provides significant limitations 
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such as high energy consumption, weight penalties, 

cost constraints, technical challenges, integration 

issues with modern aircraft and environmental 

hazards. The past failures demonstrate the practical 

barriers in achieving consistent control especially 

under dynamic conditions. The recent advancements 

in MPC, AI, and bio-inspired design offer promising 

solutions to overcome these limitations. These 

developments signal a shift toward more intelligent, 

adaptive, and sustainable BLC systems, paving the 

way for broader implementation in aeronautical and 

engineering designs. It is aimed to continue further 

research and study to improve and develop towards 

sustainability. 

 

 

Table II. The advancements and advantages of BLC. 

Advancement Description Advantages Example References 

Model predictive 
control (MPC) 

Mathematically 

optimizes system 

performance 

Greater accuracy 

Higher effectiveness in the 

application of aircraft 
aerodynamics 

Applies MPC to control large-scale 

motions in turbulent boundary layers 

over airfoils 
Integrate machine learning-based 

MPC to BLC 

[40, 41] 

Artificial 
intelligence (AI) 

and Machine 
Learning 

AI-driven systems 

analyze data and self-

optimize control 

strategies 

High adaptability, learns 

patterns, reduces 

inefficiencies 

Utilize AI control system on synthetic 

jets and genetic algorithm-based 

control unit to achieve drag reduction 

[42] 

 

Internet of Thing 
(IoT) and real-

time monitoring 

Wireless sensors 

monitor boundary 

conditions for 
autonomous 

adjustments 

Faster response reduced 

maintenance costs 

Lightweight real-time detection 

network model which is suitable for 

IoT embedded devices to overcome 
the limited computing resources and 

increase real-time monitoring 

efficiency.  
Modular and scalable end-to-end 

architecture tailored for real-time 

maintenance in IoT settings, data 
processing and machine learning 

lifecycle management 

[43 - 45] 

 

Vortex 
generators 

Advanced boundary 
layer control devices 

with vortex generators 

helps decrease pressure 
differential for lift 

maintenance 

Enhance aircraft safety 
during landing and takeoff  

Enabling efficient complex 

flight movements 

Non-operating flow surfaces linked to 
this regeneration system generate 
additional lift power while stopping 
airflow stalling 

 

[46] 

Systemic 
boundary layer 
control methods 

Sharp control 
techniques to interact 

shockwaves with 

boundary layers 

High efficiency  
Reliability through 

minimized impact forces 

Better energy output for 
renewable technologies   

Promote durability of 
turbine blades 

Enable UAVs to maintain stability 
during fluid flow changes 

Installation of adaptive BLC systems 

featuring built-in sensors and 
actuators  

[47, 48] 

Bio-inspired 
renewable 

energy 

Enhanced wind 

turbines, which 

decreased the usage of 
fossil energy sources 

Saving fuel expenses 

Reducing airborne 

pollutants 

Modifying wind turbine blade designs 

by mimicking of dragonfly wings 

which can delay stall and reduce post-
stall behaviours 

[49] 
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