
Vol 7 No 2 (2025) e-ISSN: 2682-8383

Journal of Engineering Technology and Applied Physics (2025) 7, 2, 13:101-110

https://doi.org/10.33093/jetap.2025.7.2

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License.

Published by MMU PRESS. URL: https://journals.mmupress.com/index.php/jetap/index

Journal of Engineering Technology

and Applied Physics

Adaptive Strategies to Mitigate DDoS Attacks
in IoT-Devices Through A Moving Target

Defense Approach in SDN

Soomal Qureshi1, *, Hafiz Muhammad Attaullah2, 3, Ayesha Ashraf4 and Rabia Laraib5
1NEDUET, Department of Telecommunications, Karachi, Pakistan.

2Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia.
3Faculty of Computing, Mohammad Ali Jinnah University, Pakistan.

4Université Libre de Bruxelles, Department of Cyber Security, Brussels, Belgium.
5NUST, School of Electrical Engineering and Computer Science, Islamabad, Pakistan.

*Corresponding author: soomalqureshiofficial@gmail.com, ORCiD: 0009-0009-5302-0885
https://doi.org/10.33093/jetap.2025.7.2.13

Manuscript Received: 17 February 2025, Accepted: 13 May 2025, Published: 15 September 2025

Abstract—The surge of IoT devices has

revolutionized the world, but the inherent complexity

and vulnerabilities of these devices pose significant

security risks. Among security challenges, distributed

denial of service (DDoS) attacks stands out as a major

cybersecurity issue aimed at interfering with regular

systems. This paper conducts a gap analysis of existing

research on DDoS attacks in the context of SDN oriented

IoT devices. The research focus is on comparing

algorithms and mitigation strategies proposed in

different research papers and evaluating their efficiency

and cost-effectiveness as previous research efforts have

taken a variety of approaches, some focused on

inexpensive but ineffective procedures, while others

focused on expensive but effective procedures. However,

few studies have investigated both cost and performance

effectiveness simultaneously. The main objective of this

research paper is to evaluate and compare different

strategies proposed in the literature to protect Software

Defined Network oriented IoT devices from DDoS

attacks through an active approach using MTD (Moving

Target Defense) technique. The goal of this strategy is to

protect the network from attacks while remaining cost-

effective through gap analysis to suggest that the Moving

Target Defense technique is less complex than previous

approaches to provide better security measures and

protection against DDoS attacks on networks.

Keywords—IoT, MTD, Cyber-attacks, DDoS, Gap

analysis.

I. INTRODUCTION

IoT devices have completely transfigured the whole

world since they have stepped into the gates of

technology to reside in the world of IT. Moreover, an

exceptional level of connectivity began to outstretch

into this world when IoT devices were integrated

within the Software Defined Networking

environments [1]. This remarkable integration didn’t

only lift up the ramping graph of advancements, it also

stirred up everything in a much simplified and positive

manner. Besides being a beneficial cause, this

advancement led to outgrowing network security

issues which raised a questionable concern in the field

of cybersecurity.

SDN (Software Defined Networks) is a networking

methodology that employs software-driven controllers

or APIs to interact with the underlying hardware

infrastructure, managing and directing network traffic

[2]. The enormous number of vulnerabilities in SDN,

limited resources, and the necessity for speedy

rectification makes identifying criminals increasingly

challenging for defenders and law enforcement

agencies.

https://doi.org/10.33093/jetap.2025.7.2

Vol 7 No 2 (2025) e-ISSN: 2682-8383

102

Among all of the network security issues, DDoS
attack is one of the most rising issues in the domain of
cybersecurity, as shown in Fig. 1 [3]. DDoS attacks are
done by the predators for different sort of their gains,
they actually overflow the traffic of a particular server
so that they can overwhelm that infrastructure with
abnormal traffic, disabling the access for the actual
users to use that particular website. Before the launch
of DDoS attack, an attacker always requires
information regarding the point of entries to the
targeted network (i.e. IP address of those targets). Just
because of the static nature of the entry points in a
targeted network, it becomes much easier for the
attackers to attack smoothly. To mitigate those attacks,
the cybersecurity professionals have lately started to
adopt the swapping strategy known as MTD (Moving
Target Defense) for the attacker’s target points,
ramping the effort scale of the attackers [4 - 8]. MTD
involves continually changing network configurations
so that attackers cannot obtain information about
computer networks, making it more difficult to carry
out targeted attacks.

Moving Target Defense allows a proactive
approach to swiftly change the attack surface of a
system for introducing the unpredictability in the
network of a system, hence mitigating the risk rate of
attack, and escalating the rate of attacker’s efforts [9].

Two years back, Cloud flare, which is such a
significant CDN provider encountered a DDoS
attack in July 2021 which targeted that network with a
peak of 17.2 million requests per second. This attack
was one of the most massive on record and was
allocated to a botnet that exploited weaknesses in IoT
devices of that network [10].

In August of 2021, T-Mobile, a major US
cellphone provider, experienced a network disruption
“DDoS Attack” that made the users unable to call all
for several hours [11, 12]. The company has more than
110 million customers and during that attack, the data
of 37 million people was exposed [13]. GitHub is a
widely used platform of software development
experienced DDoS in 2018 [14 - 16]. This attack
caused the service to go down because of the
continuous disruptions in the network for a time span
of several days. This was one of the major and largest
records at the time and this DDoS attack didn’t involve
any kind of bot because it was a Memcached DDoS
attack, leading to a new strategy which was named as
“Memcached reflection” [7].

II. GAP ANALYSIS

Different researchers opted for different methods
and strategies to mitigate DDoS attacks in a system.
Some of them focused on efficient methodologies,
some of them opted for cost effective methods & very
few of them opted strategical approaches to meet up
with all of the expectations of the user. The main
objective of this research paper is to shed the light on
how to opt for an algorithm for DDoS mitigation by
Moving Target Defense approach which will meet all
of the expectations of the user by following the
phenomenon of gap analysis. Through gap analysis,

different algorithms have been assessed and compared
from one another and the perfect one among them has
been chosen.

Fig. 1. Number of DDoS attacks in recent years [17].

Algorithms are assessed and compared on the basis of
following parameters

• Efficiency

• Cost Effectiveness

Figure 2 demonstrates the flow of selecting

algorithm on the basis of efficiency and cost

effectiveness and Fig. 3 demonstrates how moving

target defense mitigates the DDoS attack following

the use cases.

Fig. 2. Flow of selection strategy for best algorithm.

Vol 7 No 2 (2025) e-ISSN: 2682-8383

103

Fig. 3. Flow of Mitigation Strategy by Moving Target Defense

Approach.

Fig. 4. Detection and mitigation algorithm based on cumulative

statistics and threshold analysis.

The algorithm highlighted in Fig. 4 which has been

chosen above [17 - 18] follows the approach of traffic

monitoring to block the malicious traffic.

III. WORKING STRATEGY

A. Algorithm 1: Proposed Detection and Mitigation

Algorithm

1. Initialization

For the sake of initialization, it sets the values as;
• Initial value of s (statistic) to 0

• Time variable t to 0.

2. Training Set Partitioning

Nodes are represented by n, ranging from 1 to N.

• It breaks down the training set into two subsets:

𝑋n
M1 and 𝑋n

M2.

• Finds the value of 𝐿̅n
(α) based on the partitioned

training sets.

3. Detection and Mitigation Loop

For the purpose of detection and mitigation, the

defined loop works for these conditions:

• While the cumulative statistic st is less than a

predefined threshold h, increment the time

variable t by 1.

• Obtain new data { Xn
t } and compute { Dn

t } based

on the incoming data data.

• Update the node specific statistics sn at time t

using the formula: sn
t = max {sn

t + Dn
t , 0}

• Calculate the camultative statistic st as a sum of

sn over all the nodes (from 1 to N)

4. Attack Declaration

For the declaration of attacks, it declares an attack at

time T = t when the cumulative statistic st exceeds the

predefined threshold h.

5. Mitigation

As it works for the mitigation for DDoS attacks, it does

the below listed works for each node n in the range

from 1 to N:

• Calculate the average statistic 𝑠̅𝑛 based on the

collected data.

• If the average statistic 𝑠̅𝑛 is greater than or equal

to a predefined threshold θ1

Now, for each device j in the range from 1 to d, it does

the following tasks:

• Compute the average distance 𝑦̅𝑛,𝑗 for each device

based on the collected data.

• If the average distance 𝑦̅𝑛,𝑗 is greater than or

equal to a predefined threshold θ2 Then block

traffic from device j.

Table I. Notation table of algorithm.

Vol 7 No 2 (2025) e-ISSN: 2682-8383

104

In summary, this algorithm firstly initializes

variables, partitions the training set, continuously

monitors upcoming data to detect the occurred

changes, attack is declared when an attack is

witnessed, and starts the mitigation procedure by

blocking traffic from certain devices based on

predefined thresholds, the details of algo is discussed

in Table I.

Fig. 5. Optimal selection algorithm for defensive actions using
signaling game strategy.

B. Algorithm 2: Optimal Selection Algorithm Based on
Game Theory

The algorithm in Fig. 5 has been chosen to

implement the strategy for optimal selection [17].

Further details are in Table II.

Table II. Payoff matrix for different actions for the two players.

The payoff matrix depicts the payoffs (rewards or

costs) for all the possible set of actions which are acted

by the 2 players in that game. By considering a case

[6], the 2 players are the sender (S) and the receiver

(R) in a signalling game scenario. The matrix has been

divided into 4 rows, each representing a different

combination of the sender's type (θ) and message (m),

and two columns representing the receiver's possible

actions (a = 0 or a = 1). For example, if the sender is

of type θ = 0 and sends message m = 0, and the receiver

takes action a = 0, the payoff for the sender is -gp(a

negative value indicates ‘a’ cost), and the payoff for

the receiver is 0 (no reward or cost). On the other hand,

if the sender is of type θ = 0 and sends message m = 1,

and the receiver takes action a = 1, the payoff for the

sender is gp-cp (a positive value indicating a reward),

and the payoff for the receiver is ga-gp-ca (a negative

value indicating ‘a’ cost). The main objective of this

payoff matrix is to let the players decide the best set of

actions through the analysis of matrix, maximizing the

expected payoffs in the game on the basis of rewards

and costs.

This algorithm is “Optimal Strategy Selection

Algorithm” which is structured to find the best

defensive actions and their related probabilities for

each and every server in a signaling game scenario.

The simplest breakdown explanation of the algorithm

can be explained as:

• The types of servers can be represented by θ in the

network at time t:
Server 1= θ1, Server 2 = θ2, ……. Server N = θN

S = {θ1, θ2, ……….... θN}

• Status logs of servers l(t) shows the security status

(if it is under attack or not) of each and every server

at time t:

l(t) = {l1, l2, ………... lN}

• The game parameters are assumed for the gains

and costs related to various action.

Parameters = gp, cp, gh, ch, ga, ca

The gamer’s set of decision with probability for each

and every situation will be D(t) = (d, σ), where d is

decision and σ is probability.

D(t) = {(d1, σ1), (d2, σ2),(dN , σN)}

1. Initialization

It initializes the signalling game by giving input at t =

1 & then it sets up the initial Conditions for the

signalling game.

2. Formulating the Payoff Matrix

After then, it creates a matrix to depict the payoffs for

various combinations of actions taken by the sender

and receiver.

3. Iteration Then, iteration begins for each time step
within the range of t = [1………... T}.

4. Calculation of ζ(t)

After the iteration of time steps, it calculates the
parameter ζ(t) which is dependent on that current time
step & the kind of servers which are present at that
moment. After calculating this parameter, this will be
involved in further steps of the calculation.

5. Checking the Server’s Status
Afterwards, it checks the status of the server i (from 1
to N) and determines the type of server for the
determination of suitable action & related probability.

Vol 7 No 2 (2025) e-ISSN: 2682-8383

105

6. Conditions

• If server is honeypot (θi = 0) and the server’s
security is not violated by any attacker yet,
perform IP jumbling/ shuffling to baffle the
attacker and set probability of attacker as ‘1’,
hindering the DDoS attack.

• If server is not honeypot and it is an actual(real)
server (θi = 1) & the difference between the no. of
violated real servers and the number in total of
real servers is greater than or equal to threshold ε,
then start to redirect the hosts dynamically to
relocate attacker's focus to honeypots. After then,
do calculation for the associated probability σi
based on the parameters of the game and ζ(t).

• If the mentioned condition does not occur, then
perform Response Time Adaptation so that the
access of attacker to the real server gets delayed
and do the same calculations for σi and ζ(t), as
mentioned above.

• If nothing happens as mentioned in the above
conditions, then perpetuate the previous decision
D(t) = D(t-1).

7. Result

Lastly, it returns the sets of decisions with
probabilities for each time step in the form of: {(d1,
σ1), (d2, σ2), ... (dN , σN)}. And the details are in
Algorithm 3.

C. Algorithm 3: RYU Controller Packet Processing

Fig. 6. RYU controller-based handling for Moving Target Defense.

The algorithm 3 in Fig. 6 is designed for the
facilitation of dynamic handling and manipulation of
network traffic within a SOFTWARE DEFINED
NETWORK environment by providing flexibility to

manage DNS requests, TCP/UDP packets, and IP
address mappings through the Ryu controller and OF
switches.

Figure 7 demonstrates how the RYU controller
manages the communication between hosts by
handling DNS requests, IP address mappings, and
packet routing, thereby enabling the implementation
of the proposed Moving Target Defense technique [15,
18]. This algorithm is for the implementation of the
host address mutation technique which can be
explained as following:

Step 1
If the checked packet is found to be a DNS request, then
the algorithm starts to check the DNS response. DNS
response provides the mapping between domain names
and IP addresses and then it changes the real (original)
IP address rIP to a virtual address vIP. The mapping is
then stored in a table as Map {rIP, vIP}.

Step 2
If the network packet is a packet of TCP/UDP
protocol, then the algorithm starts to verify if the IP
address of the destination is a real IP address rIP or
not. If it is found to be real then the network packet is
sent towards it.

Step 3
If in case, the IP address of that destination is found to
be a virtual one vIP, then the algorithm verifies the
originality of source IP address (if it is real or not). If
the source IP address is found to real one then the
algorithm varies the IP address of the source to
corresponding vIP and a kind of mapping is created in
between the real and virtual IP Address.

Step 4
The algorithm then checks out the table that shows the
mapping between IP addresses. Then it consumes this
information to configure the correct paths in OF
switches that takes towards the destination.

Step 5
If the network packet is not found to be a DNS request,
TCP, or UDP protocol packet then the algorithm starts
to drop the packet.

Fig. 7. Flow of the proposed detection and mitigation algorithm.

D. Algorithm 4: Shuffle Degree Calculator

1. Initialization

The algorithm fir SDC module shown in Fig. 8 starts

with SDC that initializes a list of H zeros to store the

ne (neighbour edges) for each host and a variable to

store the sum of all the members in ne.

2. Calculation of Neighbour Edges

Vol 7 No 2 (2025) e-ISSN: 2682-8383

106

The algorithm then starts to check through each and

every host in the network to calculate ne for each host.

Then, it iterates through the connections and increases

the neighbour edge count by incrementing it for the

host as per the connections it has with the other

network.

3. Calculation of Shuffling Degrees

After the calculation of ne for each host, the algorithm

then calculates the shuffling degree for each of it by

dividing the neighbour edge count by sum of all of the

neighbour edges in the network.

4. Sending Shuffling Degrees to SID Module

The list of shuffling degrees calculated for each and

every host is then transferred to the SID module and it

uses this information to find the hosts that have to be

shuffled in each and every interval of shuffling.

5. Summary of Algorithm

This Algorithm Actually calculates the neighbour

edges for each host and ratio of each host with the total

connections so that SID Module can be contained

further.

Fig. 8. Algorithm for SDC module for calculating shuffling
probability of hosts.

E. Algorithm 5: Shuffle Interval Detector

The algorithm 5 in Fig. 9 which has been chosen
above is for the implementation of shuffle degree
calculator module procedure [15]. The above SID
Algorithm can be broken down into following steps
for better clarity of the working of whole algorithm
altogether.

1. Initialization
This SID algorithm starts to initialize an empty list
known as top to store/keep the μ + ρ highest degree
hosts. The values of μ and ρ are preliminary defined
parameters that finds the number of hosts which have
to be shuffled in each shuffling interval.

2. Searching for Highest Degree Host

The algorithm then checks through each and every

host in the network to find the host which has the

highest degree. If the host is not actually in the list of

"top" , the algorithm then checks to see if its degree is

greater than the present max. degree. And if it is found

over there, then the host is added to the "top" list.

3. Shuffling the Set of Host
For each interval of shuffling, the algorithm stores an
empty list as λ to store the hosts that have to be
shuffled. The algorithm then checks through all the
hosts in the network and starts to generate a number
randomly between 0 and 1. If the randomly generated
number is less than the shuffling degree of the host,
then the host is summed up to the λ list.

4. Transfer of Set of Hosts to FEG Module
The "λ" list is then sent to the FEG module to set the
linked flow entries. The OpenFlow message that
indicates flow entry timeout is as:
OFPT_FLOW_REMOVED.

5. Summary of Algorithm

This algorithm does iteration after creating an empty

list to store the results. This process is for checking the

host with the most highest neighbour edges repeatedly.

Fig. 9. Algorithm for SID module for selecting hosts based on
shuffling degrees.

Fig. 10. Integrated control mechanism combining SDC and SID for
adaptive host shuffling in MTD systems.

Vol 7 No 2 (2025) e-ISSN: 2682-8383

107

F. Algorithm 6: Integrated SDC-SID Control
Algorithm

Overall, the SID algorithm in Fig. 10 works after
integrating it with SDC Module. SDC Module
calculates ne and d for the further computation of SID
Module to shuffle the hosts one by one by giving high
priority to the hosts with higher number of neighbour
edges as .

IV. TIME COMPLEXITY OF ALGORITHM

USING BIG O NOTATION

For the sake of comparitive analysis of above 5
algorithms, they can be compared with each other on
the basis of their time complexities using big O
notation. Afterwards, their cost effectiveness is also
assessed on their time complexities.

A. Time Complexity of Proposed Detction and

Mitigation Algorithm

The time complexity of algorithm for proposed
detection and mitigation can be calculated by using
Big O notation as follow:

1. From Line 1 to Line 5
The iteration of 2nd to 5th line runs for N times. Here,
N is actually the size of the set. Some of the
computations inside the loop are independent on the
data size like the calculation of: 𝐿̅n

(α). Hence, this
part’s time complexity is O(N).

2. From Line 6 to Line 11
The iteration of while loop is continued until unless
the specified condition is met. In this part, the time
complexity is not dependent on data but it is actually
dependent on the number of iterations repeated in a
certain period of time. If T is denoted as the number
of iterations then the time complexity will be O(T).

3. From Line 12 to Line 23
In these lines of the final loop, iteration is done for N
times.Inside the final loop, the nested loops are from
line 16 to line 12 which will be iterated according to
data dimension d. Therefore, the time complexity of
this part is O(N*d). Overall time complexity is

 [O(N) + O(T) + O(N * d)]

B. Time Complexity of Optimal Selection Algorithm

The time complexity of algorithm for optimal
selection can be calculated by using Big O notation as
follows.

1. Initialization
Initializing of variables and the formation of pay off
matrix are constant time computations, so the time
complexity of this part is O(1).

2. Outermost Loop

The outer most loops run for T times. Here, T is the
number of total time steps from T=1 to T. So, the time
complexity will now be O(T)

3. Innermost Loop
This loop run for N times. Here, N is the number of
total servers. Since the inside calculations of this loop
take constant time so the time complexity will now be
O(N)

4. Overall Time Complexity

By combining the time complexity of overall
algorithm, it can be concluded that the overall
complexity is O (T * N)

C. Time Complexity of RYU Controller ALgorithm

The time complexity of algorithm for Ryu
Controller can be calculated by using Big O notation
as follow:

1. DNS Request
The DNS request processing takes constant time.
That’s why, the time complexity of this part is O (1)

2. TCP and UDP Processing
This part also consumes constant time and hence the
time complexity of this part is stated as O (1)

3. Overall Time Complexity
The overall time complexity can be concluded as O (1)
since the computations take constant time and none of
them depend on the size of data of input packets or the
total number of input packets.

D. Time Complexity of SDC and SID Integrated

Algorithms

The overall time complexity of Shuffling Degree
Calculator algorithm after step by step computations
can be concluded as
 O (H + H * S) (1)
The overall time complexity of Shuffling Interval
Detector algorithm after step-by-step computations
can be concluded as

 O (µ + ρ + H) (2)

So now, the overall time complexity of the integrated
algorithm can be stated by adding the time complexity
of algorithm for SDC and SID. By adding Eq. (1) and
Eq. (2), time complexity of integrated algorithm is

 O (H *S + µ + ρ + H) (3)

, where

 H = total number of hosts

 S = size of 2nd dimension of matrix

 µ = size of the top list

 ρ = constant value at 5
Hence, the time complexity is affected by the matrix
size and the size of the top list.

E. Comparitive Analysis Of Algorithms

1. If the time steps (T) and input size of data (N) are

in a large amount, algorithm for optimal selection:

O (T * N) might have a higher complexity

compared to Algorithm for Proposed Detection and

Mitigation: O(N) + O(T) + O(N*d). However, the

Vol 7 No 2 (2025) e-ISSN: 2682-8383

108

algorithm for Proposed Detection and Mitigation is

still not that much time efficient since it depends

on the size of input data.
2. Algorithm for Ryu controller: O (1) has the highest

efficiency as far as time complexity is concerned

because it is independent on the size of input data.
3. Integrated Algorithm SDC and SID: Eq. (3) is

linearly dependent on hosts and matrix, and along

with that, its efficiency also depends on the values

of µ and ρ.

F. Cost Effectiveness

The cost of the implementation of any algorithm

depends on how much time complexity it holds. The

higher the time complexity, the more cost it will

require and vice versa. So according to this analysis, it

can be stated that algorithm 3 is the most cost-effective

algorithm.

V. RESULTS

A. Results of Time Complexity using Big O Analysis

The algorithms are assessed on the basis of time
complexity analysis by using Big O notation to
represent it and then the further observations are
carried out from it to prove cost effectiveness of that
specified algorithm.

The results display the time complexities of
different algorithms by considering both the larger
data set of hosts (infinite) and smaller data set of hosts
(finite) as in Table III and Table IV. The most
preferable algorithm which will be time efficient for
future cases is denoted by “” and the one which
won’t be time efficient is denoted by “’. For this
analysis, “ts” represents less value of time steps in an
algorithm.

Table III. Time complexity for low size of input data if H = finite.

 Algorithm
Time

Complexity

Proposed Detection and Mitigation 

Optimal Selection 

RYU Controller 

SDC & SID Integrated Algorithm 

Table IV. Time complexity of large size of input data if H = infinite.

Algorithm Time Complexity

Proposed Detection and Mitigation 

Optimal Selection 

RYU Controller 

SDC & SID Integrated Algorithm 

B. Cost Effectiveness using Predictive Analysis

The results display the cost effectiveness using the
predictive analysis of different algorithms by
considering both the larger data set of hosts (infinite)
and the smaller data set of hosts (finite). The most
preferable algorithm, which will be cost-effective for
future cases, is denoted by “” and the one which

won’t be cost-effective is denoted by “” as in Table
V and Table VI.

The predictive analysis for cost effectiveness is
basically carried out by having a look at the directly
proportional relation of time efficiency with cost
effectiveness since more time leads to the usage of
more resources, either it is materialistic consumption
or any other. For this predictive analysis, ts represents
a lesser value of time steps in an algorithm.

Table V. Cost Effectiveness of low size of input data if H = finite

and time steps value = ts.

Algorithm Cost effectiveness

Proposed Detection and Mitigation 

Optimal Selection 

RYU Controller 

SDC and SID Integrated Algorithm 

Table VI. Cost Effectiveness of large size of input data if H = infinite
and time steps value = ts.

Algorithm Cost Effectiveness

Proposed Detection and Mitigation 

Optimal Selection 

RYU Controller 

SDC & SID Integrated Algorithm 

C. Aligned Results of Efficiency and Cost Effectiveness

Table VII. Cost Effectiveness and Time Efficiency of low size of

input data if H = finite.

Table VIII. Cost Effectiveness and Time Efficiency of large size of
input data if H = infinite.

The efficiency and cost-effectiveness of the
evaluated algorithms are compared based on different
input data sizes. When the number of hosts 𝐻 is
relatively small (finite), the results are shown in Table
VII, highlighting that the RYU controller performs
best in both time and cost dimensions. In contrast, for
larger-scale input data (infinite 𝐻), the aligned
outcomes are summarized in Table VIII, where the

Algorithm
Time

Efficiency

Cost

Effectiveness

Proposed Detection and

Mitigation
 

Optimal Selection  

RYU Controller  

SDC and SID Integrated
Algorithm

 

Algorithm
Time

Efficiency

Cost

Effectiveness

Proposed Detection and

Mitigation
 

Optimal Selection  

RYU Controller  
SDC and SID Integrated

Algorithm
 

Vol 7 No 2 (2025) e-ISSN: 2682-8383

109

Fig. 11. Graphical comparison of time efficiency and cost
effectiveness if set of hosts = finite.

Fig. 12. Graphical comparison of time efficiency and cost

effectiveness if set of hosts = infinite.

integrated SDC and SID algorithm demonstrates a
more balanced trade-off.

Further based on the graphical representation of the
comprehensive analysis in Fig. 11 and Fig. 12, the
conclusion drawn is that the RYU Controller
algorithm stands out as an optimal choice for both time
efficiency and cost effectiveness, even when dealing
with an infinite range of input data (hosts). The visual
depiction of the results indicates that the RYU
controller algorithm consistently outperforms others
across various scenarios.

It is essential to acknowledge that the assessment
of time complexity and cost effectiveness of any
specific algorithm is contingent upon a myriad of
conditions and scenarios. The intricacies of real-world
applications, varying data sets, and diverse operational
environments contribute to the nuanced performance
of algorithms. While RYU Controller exhibits notable
performance in the context of this study, it's crucial to
consider the adaptability of algorithms to specific use
cases and the potential impact of different operational
parameters. By assuming that Efficient = 6 & non-
efficient = 0.

 In summary, the choice of the most suitable

algorithm extends beyond a one-size-fits-all approach.

It necessitates an understanding of the specific

requirements, constraints, and conditions within the

intended application domain

VI. CONCLUSION

This gap analysis has been done to determine the
gap between different research to verify the efficiency
of various algorithms for the determination of the most
efficient and cost-effective algorithm. All this research
work has been done to prove that Moving Target
Defense strategy is the most effective and efficient
strategy for the mitigation of DDoS attacks as
compared to other methods. This study comprises of
the comparative analysis of four algorithms of Moving
Target Defense strategy and one algorithm of optimal
selection to reduce or block the unwanted traffic on the
user’s system. Each of the algorithms has been
assessed on the basis of Time Complexity Analysis by
using Big O notation to represent the results.
Furthermore, the Big O notations of each and every
algorithm are compared altogether to find the most
cost-effective algorithm amongst all of them. Overall,
the major objective of this research work was to
analyze the backend working of DDoS attack’s
mitigation to choose an algorithm for the
implementation of Moving Target Defense strategy
successfully by keeping the efficiency and cost-
effective criteria in mind.

ACKNOWLEDGEMENT

The authors would like to thank NED UET and
MMU for its support of their resources, and the
editorial team of JETAP for their valuable feedback
during the review process.

REFERENCES

[1] Y. Zhou, G. Cheng and S. Yu, “An Software Defined Network-

Enabled Proactive Defense framework for DDOS Mitigation in

IoT Networks,” IEEE Trans. Informat. Forens. and Secur., vol.
16, pp. 5366–5380, 2021.

[2] L. F. Eliyan and R. Di Pietro, “DoS and DDoS Attacks in

Software Defined Networks: A Survey of Existing Solutions

and Research Challenges,” Future Generat. Comput. Syst., vol.

122, pp. 149-171, 2021.

[3] F. Nabi, X. Zhou, U. Iftikhar and H. M. Attaullah, “A Case

Study of Cyber Subversion Attack based Design Flaw in

Service Oriented Component Application Logic,” J. Cyber
Secur. Technol., vol.8, no.3, pp. 204-228, 2024.

[4] H. Galadima, A. Seeam, Amar and V. Ramsurrun, “Cyber

Deception Against DDoS Attack using Moving Target Defense

Framework in Software Defined Network IoT-Edge

Networks,”. in 3rd Int. Conf. Next Generat. Comput. Appl.,
Flic-en-Flac, Mauritius, pp. 1-6, 2022.

[5] R. L. Hemanth Kumar, K. P. Bhargava and A. R. Ashok

Kumar, “Mitigation and Detection of DDOS Attacks using

Software Defined Network (SDN) and Machine Learning,” Int.

J. Res. in Appl. Sci. and Eng. Technol., vol. 11, no. 4, pp. 4821–
4829, 2023.

[6] M. M. Oo, S. Kamolphiwong and T. Kamolphiwong, “The

Design of SDN Based Detection for Distributed Denial of

Service (DDoS) Attack,” in 21st Int. Comput. Sci. and Eng.

Conf., Bangkok, Thailand, pp. 1-5, 2017.

[7] H. M. Attaullah, S. Memon, O. F. Erkan and R. Khawar, “IoT

Based Systems and Services: Recent Security Concerns and

Feasible Solutions,” IEEE 1st Karachi Sect. Human. Technol.
Conf., pp. 1-6, 2024.

[8] H. M. Attaullah, R. A. Khan and S. Mughal, “Cyber Security

for Industrial Control System–A Survey,” IKSP J. Emerg.

Trends in Basic and Appl. Sci., vol. 1, pp. 15–21, 2021.

[9] K. Doshi, Y. Yilmaz and S. Uludag, “Timely Detection and

Mitigation of Stealthy DDoS Attacks via IoT Networks,” IEEE

Vol 7 No 2 (2025) e-ISSN: 2682-8383

110

Trans. Depend. and Secur. Comput., vol. 18, no. 5, pp. 2164-

2176, 2021.

[10] M. S. B. Syed, H. M. Attaullah, S. Ali and M. I. Aslam,

“Wireless Communications Beyond Antennas: The Role of

Reconfigurable Intelligent Surfaces,” Engi. Proc., vol. 32, no.

1, pp. 10, 2023.

[11] K. S. Vanitha, S. V. Uma and S. K. Mahidhar, “Distributed

Denial of Service: Attack Techniques and Mitigation,”

in 2017 Int. Conf. Circ., Contr., and Commun., Bangalore,
India, pp. 226-231, 2017.

[12] A. Javadpour, F. Ja’fari, T. Taleb and M. Shojafar,

Mohammad, “A Cost-Effective Moving Target Defense

Approach for DDoS Attacks in Software-Defined Networks,”

in 2022 IEEE Global Commun. Conf., Rio de Janeiro, Brazil,
pp. 4173-4178, 2022.

[13] O. Yoachimik, “Cloudflare Thwarts 17.2M rps DDoS Attack

- The Largest Ever Reported,” The Cloudflare Blog.

[Available online on 19 August 2021]

https://blog.cloudflare.com/cloudflare-thwarts-17-2m-rps-
ddos-attack-the-largest-ever-reported.

[14] K. S. Kumavat and J. Gomes, “Survey of Detection

Techniques for DDoS Attacks,” in 3rd Int. Conf. Intellig.

Eng. and Manage., London, United Kingdom, pp. 657-663,

2022.

[15] C. Gudla and A. H. Sung, “Moving Target Defense Discrete

Host Address Mutation and Analysis in SDN,” in Int. Conf.

Comput. Sci.and Comput. Intellig., Las Vegas, NV, USA, pp.

55–61, 2020.

[16] C. Douligeris and A. Mitrokotsa, “DDoS Attacks and Defense

Mechanisms: A Classification,” in Proc. 3rd IEEE Int. Symp.

Signal Process. and Informat. Technol., Darmstadt,
Germany, pp. 190-193, 2003.

[17] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia and M.

Wright, “A Moving Target Defense Approach to Mitigate

DDoS Attacks Against Proxy-based Architectures,” in IEEE

Conf. Commun. and Netw. Secur., Philadelphia, PA, USA, pp.
198-206, 2016.

[18] T. Mehmood, H. M. Attaullah, M. Ibrahim and M. B. J. Al

Shehry, “Securing AGI-Driven Drone Communications for

Climate Change: A Comprehensive Review of Deep

Learning-Based IDS,” Artificial General Intelligence-Based
Drones for Climate Change, pp. 97-152, IGI Global Scientific

Publishing, 2025.

