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Abstract—The surge of IoT devices has 

revolutionized the world, but the inherent complexity 

and vulnerabilities of these devices pose significant 

security risks. Among security challenges, distributed 

denial of service (DDoS) attacks stands out as a major 

cybersecurity issue aimed at interfering with regular 

systems. This paper conducts a gap analysis of existing 

research on DDoS attacks in the context of SDN oriented 

IoT devices. The research focus is on comparing 

algorithms and mitigation strategies proposed in 

different research papers and evaluating their efficiency 

and cost-effectiveness as previous research efforts have 

taken a variety of approaches, some focused on 

inexpensive but ineffective procedures, while others 

focused on expensive but effective procedures. However, 

few studies have investigated both cost and performance 

effectiveness simultaneously. The main objective of this 

research paper is to evaluate and compare different 

strategies proposed in the literature to protect Software 

Defined Network oriented IoT devices from DDoS 

attacks through an active approach using MTD (Moving 

Target Defense) technique. The goal of this strategy is to 

protect the network from attacks while remaining cost-

effective through gap analysis to suggest that the Moving 

Target Defense technique is less complex than previous 

approaches to provide better security measures and 

protection against DDoS attacks on networks. 

Keywords—IoT, MTD, Cyber-attacks, DDoS, Gap 

analysis. 

 

I. INTRODUCTION  

IoT devices have completely transfigured the whole 

world since they have stepped into the gates of 

technology to reside in the world of IT. Moreover, an 

exceptional level of connectivity began to outstretch 

into this world when IoT devices were integrated 

within the Software Defined Networking 

environments [1]. This remarkable integration didn’t 

only lift up the ramping graph of advancements, it also 

stirred up everything in a much simplified and positive 

manner. Besides being a beneficial cause, this 

advancement led to outgrowing network security 

issues which raised a questionable concern in the field 

of cybersecurity. 

SDN (Software Defined Networks) is a networking 

methodology that employs software-driven controllers 

or APIs to interact with the underlying hardware 

infrastructure, managing and directing network traffic 

[2]. The enormous number of vulnerabilities in SDN, 

limited resources, and the necessity for speedy 

rectification makes identifying criminals increasingly 

challenging for defenders and law enforcement 

agencies. 
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Among all of the network security issues, DDoS 
attack is one of the most rising issues in the domain of   
cybersecurity, as shown in Fig. 1 [3]. DDoS attacks are 
done by the predators for different sort of their gains, 
they actually overflow the traffic of a particular server 
so that they can overwhelm that infrastructure with 
abnormal traffic, disabling the access for the actual 
users to use that particular website. Before the launch 
of DDoS attack, an attacker always requires 
information regarding the point of entries to the 
targeted network (i.e. IP address of those targets). Just 
because of the static nature of the entry points in a 
targeted network, it becomes much easier for the 
attackers to attack smoothly. To mitigate those attacks, 
the cybersecurity professionals have lately started to 
adopt the swapping strategy known as MTD (Moving 
Target Defense) for the attacker’s target points, 
ramping the effort scale of the attackers [4 - 8]. MTD 
involves continually changing network configurations 
so that attackers cannot obtain information about 
computer networks, making it more difficult to carry 
out targeted attacks. 

Moving Target Defense allows a proactive 
approach to swiftly change the attack surface of a 
system for introducing the unpredictability in the 
network of a system, hence mitigating the risk rate of 
attack, and escalating the rate of attacker’s efforts [9]. 

Two years back, Cloud flare, which is such a 
significant CDN   provider encountered a   DDoS    
attack in July 2021 which targeted that network with a 
peak of 17.2 million requests per second. This attack 
was one of the most massive on record and was 
allocated to a botnet that exploited weaknesses in IoT 
devices of that network [10]. 

In August of 2021, T-Mobile, a major US 
cellphone provider, experienced a network disruption 
“DDoS Attack” that made the users unable to call all 
for several hours [11, 12]. The company has more than 
110 million customers and during that attack, the data 
of 37 million people was exposed [13]. GitHub is a 
widely used platform of software development 
experienced DDoS in 2018 [14 - 16]. This attack 
caused the service to go down because of the 
continuous disruptions in the network for a time span 
of several days. This was one of the major and largest 
records at the time and this DDoS attack didn’t involve 
any kind of bot because it was a Memcached DDoS 
attack, leading to a new strategy which was named as 
“Memcached reflection” [7].  

II. GAP ANALYSIS 

Different researchers opted for different methods 
and strategies to mitigate DDoS attacks in a system. 
Some of them focused on efficient methodologies, 
some of them opted for cost effective methods & very 
few of them opted strategical approaches to meet up 
with all of the expectations of the user. The main 
objective of this research paper is to shed the light on 
how to opt for an algorithm for DDoS mitigation by 
Moving Target Defense approach which will meet all 
of the expectations of the user by following the 
phenomenon of gap analysis. Through gap analysis, 

different algorithms have been assessed and compared 
from one another and the perfect one among them has 
been chosen. 

Fig. 1. Number of DDoS attacks in recent years [17]. 

Algorithms are assessed and compared on the basis of 
following parameters  

• Efficiency 

• Cost Effectiveness 

Figure 2 demonstrates the flow of selecting 

algorithm on the basis of efficiency and cost 

effectiveness and Fig. 3 demonstrates how moving 

target defense mitigates the DDoS attack following 

the use cases. 

Fig. 2. Flow of selection strategy for best algorithm. 
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Fig. 3. Flow of Mitigation Strategy by Moving Target Defense 

Approach. 

 

 
Fig. 4. Detection and mitigation algorithm based on cumulative 

statistics and threshold analysis. 

The algorithm highlighted in Fig. 4 which has been 

chosen above [17 - 18] follows the approach of traffic 

monitoring to block the malicious traffic. 

III. WORKING STRATEGY 

A. Algorithm 1: Proposed Detection and Mitigation 

Algorithm 

1. Initialization 

For the sake of initialization, it sets the values as;  
• Initial value of s (statistic) to 0  

• Time variable t to 0. 
 

2. Training Set Partitioning 

Nodes are represented by n, ranging from 1 to N. 

• It breaks down the training set into two subsets: 

𝑋n
M1 and 𝑋n

M2. 

• Finds the value of 𝐿̅n
(α) based on the partitioned 

training sets. 
 

3. Detection and Mitigation Loop 

For the purpose of detection and mitigation, the 

defined loop works for these conditions: 

• While the cumulative statistic st is less than a 

predefined threshold h, increment the time 

variable t by 1. 

• Obtain new data { Xn
t } and compute { Dn

t } based 

on the incoming data data. 

• Update the node specific statistics sn at time t 

using the formula: sn
t = max {sn

t + Dn
t , 0} 

• Calculate  the camultative statistic st as a sum of 

sn over all the nodes (from 1 to N)  
 

4. Attack Declaration 

For the declaration of attacks, it declares an attack at 

time T = t when the cumulative statistic st exceeds the 

predefined threshold h. 
 

5. Mitigation 

As it works for the mitigation for DDoS attacks, it does 

the below listed works for each node n in the range 

from 1 to N:  

• Calculate the average statistic 𝑠̅𝑛 based on the 

collected data.  

• If the average statistic 𝑠̅𝑛 is greater than or equal 

to a predefined threshold θ1 

 

Now, for each device j in the range from 1 to d, it does 

the following tasks:  

• Compute the average distance 𝑦̅𝑛,𝑗 for each device 

based on the collected data. 

• If the average distance   𝑦̅𝑛,𝑗 is greater than or 

equal to a predefined threshold θ2 Then block 

traffic from device j. 
 

Table I. Notation table of algorithm. 
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In summary, this algorithm firstly initializes 

variables, partitions the training set, continuously 

monitors upcoming data to detect the occurred 

changes, attack is declared when an attack is 

witnessed, and starts the mitigation procedure by 

blocking traffic from certain devices based on 

predefined thresholds, the details of algo is discussed 

in Table I. 

 

Fig. 5. Optimal selection algorithm for defensive actions using 
signaling game strategy. 

 

B. Algorithm 2: Optimal Selection Algorithm Based on 
Game Theory 

The algorithm in Fig. 5 has been chosen to 

implement the strategy for optimal selection [17]. 

Further details are in Table II.  

Table II. Payoff matrix for different actions for the two players. 

 

The payoff matrix depicts the payoffs (rewards or 

costs) for all the possible set of actions which are acted 

by the 2 players in that game. By considering a case 

[6], the 2 players are the sender (S) and the receiver 

(R) in a signalling game scenario. The matrix has been 

divided into 4 rows, each representing a different 

combination of the sender's type (θ) and message (m), 

and two columns representing the receiver's possible 

actions (a = 0 or a = 1). For example, if the sender is 

of type θ = 0 and sends message m = 0, and the receiver 

takes action a = 0, the payoff for the sender is -gp(a 

negative value indicates ‘a’ cost), and the payoff for 

the receiver is 0 (no reward or cost). On the other hand, 

if the sender is of type θ = 0 and sends message m = 1, 

and the receiver takes action a = 1, the payoff for the 

sender is gp-cp (a positive value indicating a reward), 

and the payoff for the receiver is ga-gp-ca (a negative 

value indicating ‘a’ cost). The main objective of this 

payoff matrix is to let the players decide the best set of 

actions through the analysis of matrix, maximizing the 

expected payoffs in the game on the basis of rewards 

and costs. 

This algorithm is “Optimal Strategy Selection 

Algorithm” which is structured to find the best 

defensive actions and their related probabilities for 

each and every server in a signaling game scenario. 

The simplest breakdown explanation of the algorithm 

can be explained as: 

• The types of servers can be represented by θ in the  

network at time t:  
Server 1= θ1, Server 2 = θ2, ……. Server N = θN 

S = {θ1, θ2, ……….... θN}  

• Status logs of servers l(t) shows the security status  

(if it is under attack or not) of each and every server 

at time t: 

l(t) = {l1, l2, ………... lN} 

• The game parameters are assumed for the gains           

and costs related to various action.  

Parameters = gp, cp, gh, ch, ga, ca 

 

The gamer’s set of decision with probability for each 

and every situation will be D(t) = (d, σ), where d is 

decision and σ is probability. 

D(t) = {(d1, σ1), (d2, σ2), ........(dN , σN )} 
 

1.   Initialization 

It initializes the signalling game by giving input at t = 

1 & then it sets up the initial Conditions for the 

signalling game. 
 

2.    Formulating the Payoff Matrix  

After then, it creates a matrix to depict the payoffs for 

various combinations of actions taken by the sender 

and receiver. 
 

3. Iteration Then, iteration begins for each time step 
within the range of t = [1………... T}. 

4. Calculation of ζ(t) 

After the iteration of time steps, it calculates the 
parameter ζ(t) which is dependent on that current time 
step & the kind of servers which are present at that 
moment. After calculating this parameter, this will be 
involved in further steps of the calculation.  

5. Checking the Server’s Status 
Afterwards, it checks the status of the server i (from 1 
to N) and determines the type of server for the 
determination of suitable action & related probability. 
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6. Conditions 

• If server is honeypot (θi = 0) and the server’s 
security is not violated by any attacker yet, 
perform IP jumbling/ shuffling to baffle the 
attacker and set probability of attacker as ‘1’, 
hindering the DDoS attack. 

• If server is not honeypot and it is an actual(real) 
server (θi = 1) & the difference between the no. of 
violated real servers and the number in total of 
real servers is greater than or equal to threshold ε, 
then start to redirect the hosts dynamically to 
relocate attacker's focus to honeypots. After then, 
do calculation for the associated probability σi 
based on the parameters of the game and ζ(t). 

• If the mentioned condition does not occur, then 
perform Response Time Adaptation so that the 
access of attacker to the real server gets delayed 
and do the same calculations for σi and ζ(t), as 
mentioned above. 

• If nothing happens as mentioned in the above 
conditions, then perpetuate the previous decision 
D(t) = D(t-1). 

 

7. Result 

Lastly, it returns the sets of decisions with 
probabilities for each time step in the form of: {(d1, 
σ1), (d2, σ2), ... (dN , σN )}. And the details are in 
Algorithm 3. 
 
C. Algorithm 3: RYU Controller Packet Processing 
 

 
Fig. 6. RYU controller-based handling for Moving Target Defense. 
 

The algorithm 3 in Fig. 6 is designed for the 
facilitation of dynamic handling and manipulation of 
network traffic within a SOFTWARE DEFINED 
NETWORK environment by providing flexibility to 

manage DNS requests, TCP/UDP packets, and IP 
address mappings through the Ryu controller and OF 
switches. 

 

Figure 7 demonstrates how the RYU controller 
manages the communication between hosts by 
handling DNS requests, IP address mappings, and 
packet routing, thereby enabling the implementation 
of the proposed Moving Target Defense technique [15, 
18]. This algorithm is for the implementation of the 
host address mutation technique which can be 
explained as following: 

Step 1 
If the checked packet is found to be a DNS request, then 
the algorithm starts to check the DNS response. DNS 
response provides the mapping between domain names 
and IP addresses and then it changes the real (original) 
IP address rIP to a virtual address vIP. The mapping is 
then stored in a table as Map {rIP, vIP}. 

Step 2 
If the network packet is a packet of TCP/UDP 
protocol, then the algorithm starts to verify if the IP 
address of the destination is a real IP address rIP or 
not. If it is found to be real then the network packet is 
sent towards it. 

Step 3 
If in case, the IP address of that destination is found to 
be a virtual one vIP, then the algorithm verifies the 
originality of source IP address (if it is real or not). If 
the source IP address is found to real one then the 
algorithm varies the IP address of the source to 
corresponding vIP and a kind of mapping is created in 
between the real and virtual IP Address. 

Step 4 
The algorithm then checks out the table that shows the 
mapping between IP addresses. Then it consumes this 
information to configure the correct paths in OF 
switches that takes towards the destination.  

Step 5 
If the network packet is not found to be a DNS request, 
TCP, or UDP protocol packet then the algorithm starts 
to drop the packet. 

Fig. 7. Flow of the proposed detection and mitigation algorithm. 

 

D. Algorithm 4: Shuffle Degree Calculator 
 

1. Initialization  

The algorithm fir SDC module shown in Fig. 8 starts 

with SDC that initializes a list of H zeros to store the 

ne (neighbour edges) for each host and a variable to 

store the sum of all the members in ne. 
 

2. Calculation of Neighbour Edges 
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The algorithm then starts to check through each and 

every host in the network to calculate ne for each host. 

Then, it iterates through the connections and increases 

the neighbour edge count by incrementing it for the 

host as per the connections it has with the other 

network. 

 

3. Calculation of Shuffling Degrees 

After the calculation of ne for each host, the algorithm 

then calculates the shuffling degree for each of it by 

dividing the neighbour edge count by sum of all of the 

neighbour edges in the network. 
 

4. Sending Shuffling Degrees to SID Module 

The list of shuffling degrees calculated for each and 

every host is then transferred to the SID module and it 

uses this information to find the hosts that have to be 

shuffled in each and every interval of shuffling.  
 

5. Summary of Algorithm 

This Algorithm Actually calculates the neighbour 

edges for each host and ratio of each host with the total 

connections so that SID Module can be contained 

further. 

Fig. 8. Algorithm for SDC module for calculating shuffling 
probability of hosts.  

 

E. Algorithm 5: Shuffle Interval Detector 

The algorithm 5 in Fig. 9 which has been chosen 
above is for the implementation of shuffle degree 
calculator module procedure [15]. The above SID 
Algorithm can be broken down into following steps 
for better clarity of the working of whole algorithm 
altogether. 

1. Initialization 
This SID algorithm starts to initialize an empty list 
known as top to store/keep the μ + ρ highest degree 
hosts. The values of μ and ρ are preliminary defined 
parameters that finds  the number of hosts which have 
to be shuffled in each shuffling interval. 

2. Searching for Highest Degree Host 

The algorithm then checks through each and every 

host in the network to find the host which has the 

highest degree. If the host is not actually in the list of  

"top" , the algorithm then checks to see if its degree is 

greater than the present max. degree. And if it is found 

over there, then the host is added to the "top" list. 
 

3. Shuffling the Set of Host 
For each interval of shuffling, the algorithm stores an 
empty list as λ to store the hosts that have to be 
shuffled. The algorithm then checks through all the 
hosts in the network and starts to generate a number 
randomly between 0 and 1. If the randomly generated 
number is less than the shuffling degree of the host, 
then the host is summed up to the λ list. 

4. Transfer of Set of Hosts to FEG Module 
The "λ" list is then sent to the FEG module to set the 
linked flow entries. The OpenFlow message that 
indicates flow entry timeout is as: 
OFPT_FLOW_REMOVED. 

5. Summary of Algorithm 

This algorithm does iteration after creating an empty 

list to store the results. This process is for checking the 

host with the most highest neighbour edges repeatedly.  

 

Fig. 9. Algorithm for SID module for selecting hosts based on 
shuffling degrees. 

 

 

Fig. 10. Integrated control mechanism combining SDC and SID for 
adaptive host shuffling in MTD systems. 
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F. Algorithm 6: Integrated SDC-SID Control 
Algorithm 

Overall, the SID algorithm in Fig. 10 works after 
integrating it with SDC Module. SDC Module   
calculates ne and d for the further computation of SID 
Module to shuffle the hosts one by one by giving high 
priority to the hosts with higher number of neighbour 
edges as .  

IV. TIME COMPLEXITY OF ALGORITHM 

USING BIG O NOTATION 

For the sake of comparitive analysis of above 5 
algorithms, they can be compared with each other on 
the basis of their time complexities using big O 
notation. Afterwards, their cost effectiveness is also 
assessed on their time complexities. 

A. Time Complexity of Proposed Detction and 

Mitigation Algorithm 

The time complexity of  algorithm for proposed 
detection and mitigation can be calculated by using 
Big O notation as follow: 

1. From Line 1 to Line 5 
The iteration of 2nd  to 5th line runs for N times. Here, 
N is actually the size of the set. Some of the 
computations inside the loop are independent on the 
data size like the calculation of:  𝐿̅n

(α). Hence, this 
part’s time complexity is O(N). 

2. From Line 6 to Line 11 
The iteration of while loop is continued until unless 
the specified condition is met. In this part, the time 
complexity is not dependent on data but it is actually 
dependent on the number of iterations repeated in a 
certain period of time.  If T is denoted as the number 
of iterations then the time complexity will be O(T). 

3. From Line 12 to Line 23 
In these lines of the final loop, iteration is done for N 
times.Inside the final loop, the nested loops are from 
line 16 to line 12 which will be iterated according to 
data dimension d. Therefore, the time complexity of 
this part is O(N*d). Overall time complexity is  

        [O(N) + O(T) + O(N * d)] 

B. Time Complexity of Optimal Selection Algorithm 

The time complexity of  algorithm for optimal 
selection can be calculated by using Big O notation as 
follows.  

1. Initialization 
Initializing of variables and the formation of pay off 
matrix are constant time computations, so the time 
complexity of this part is O(1). 
 

2. Outermost Loop 

The outer most loops run for T times. Here, T is the 
number of total time steps from T=1 to T. So, the time 
complexity will now be O(T) 

 
 
 

3. Innermost Loop 
This loop run for N times. Here, N is the number of 
total servers. Since the inside calculations of this loop 
take constant time so the time complexity will now be 
O(N) 
 

4. Overall Time Complexity 

By combining the time complexity of overall 
algorithm, it can be concluded that the overall 
complexity is O (T * N) 

C. Time Complexity of RYU Controller ALgorithm 

The time complexity of  algorithm for Ryu 
Controller can be calculated by using Big O notation 
as follow: 

1. DNS Request 
The DNS request processing takes constant time. 
That’s why, the time complexity of this part is O (1) 
 

2. TCP and UDP Processing 
This part also consumes constant time and hence the 
time complexity of this part is stated as O (1) 
 

3. Overall Time Complexity 
The overall time complexity can be concluded as O (1) 
since the computations take constant time and none of 
them depend on the size of data of input packets or the 
total number of input packets. 

D. Time Complexity of SDC and SID  Integrated 

Algorithms 

The overall time complexity of Shuffling Degree 
Calculator algorithm after step by step computations 
can be concluded as 
                    O (H + H * S)                                       (1) 
The overall time complexity of Shuffling Interval 
Detector algorithm after step-by-step computations 
can be concluded as 

              O (µ + ρ + H)                          (2) 

So now, the overall time complexity of the integrated 
algorithm can be stated by adding the time complexity 
of algorithm for SDC and SID. By adding Eq. (1) and 
Eq. (2), time complexity of integrated algorithm is 

     O (H *S + µ +  ρ + H)           (3) 

, where 

           H = total number of hosts 

           S = size of 2nd dimension of matrix 

           µ = size of the top list 

           ρ = constant value at 5 
Hence, the time complexity is affected by the matrix 
size and the size of the top list. 

E. Comparitive Analysis Of Algorithms 

1. If the time steps (T) and input size of data (N) are 

in a large amount, algorithm for optimal selection: 

O (T * N) might have a higher complexity 

compared to Algorithm for Proposed Detection and 

Mitigation: O(N) + O(T) + O(N*d). However, the 
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algorithm for Proposed Detection and Mitigation is 

still not that much time efficient since it depends 

on the size of input data. 
2. Algorithm for Ryu controller: O (1) has the highest 

efficiency as far as time complexity is concerned 

because it is independent on the size of input data. 
3. Integrated Algorithm SDC and SID: Eq. (3) is 

linearly dependent on hosts  and  matrix, and along 

with that, its efficiency also depends on the values 

of µ and ρ. 
 

F. Cost Effectiveness 

The cost of the implementation of any algorithm 

depends on how much time complexity it holds. The 

higher the time complexity, the more cost it will 

require and vice versa. So according to this analysis, it 

can be stated that algorithm 3 is the most cost-effective 

algorithm.  

V. RESULTS 

A. Results of Time Complexity using Big O Analysis 

The algorithms are assessed on the basis of time 
complexity analysis by using Big O notation to 
represent it and then the further observations are 
carried out from it to prove cost effectiveness of that 
specified algorithm. 

The results display the time complexities of 
different algorithms by considering both the larger 
data set of hosts (infinite) and smaller data set of hosts 
(finite) as in Table III and Table IV. The most 
preferable algorithm which will be time efficient for 
future cases is denoted by “” and the one which 
won’t be time efficient is denoted by “’. For this 
analysis, “ts” represents less value of time steps in an 
algorithm. 

Table III. Time complexity for low size of input data if H = finite. 

         Algorithm 
Time 

Complexity 

Proposed Detection and Mitigation  

Optimal Selection  

RYU Controller  

SDC & SID Integrated Algorithm  

 

Table IV. Time complexity of large size of input data if H = infinite. 

Algorithm    Time Complexity 

Proposed Detection and Mitigation  

Optimal Selection  

RYU Controller  

SDC & SID Integrated Algorithm  

B. Cost Effectiveness using Predictive Analysis 

The results display the cost effectiveness using the 
predictive analysis of different algorithms by 
considering both the larger data set of hosts (infinite) 
and the smaller data set of hosts (finite). The most 
preferable algorithm, which will be cost-effective for 
future cases, is denoted by “” and the one which 

won’t be cost-effective is denoted by “” as in Table 
V and Table VI. 

The predictive analysis for cost effectiveness is 
basically carried out by having a look at the directly 
proportional relation of time efficiency with cost 
effectiveness since more time leads to the usage of 
more resources, either it is materialistic consumption 
or any other. For this predictive analysis, ts represents 
a lesser value of time steps in an algorithm. 

Table V. Cost Effectiveness of low size of input data if H = finite 

and time steps value = ts. 
 

Algorithm  Cost effectiveness 

Proposed Detection and Mitigation  

Optimal Selection  

RYU Controller  

SDC and SID Integrated Algorithm  

 

Table VI. Cost Effectiveness of large size of input data if H = infinite 
and time steps value = ts. 

 

Algorithm    Cost Effectiveness 

Proposed Detection and Mitigation  

Optimal Selection  

RYU Controller  

SDC & SID Integrated Algorithm  

C. Aligned Results of Efficiency and Cost Effectiveness 

Table VII. Cost Effectiveness and Time Efficiency of low size of 

input data if H = finite. 

 

Table VIII. Cost Effectiveness and Time Efficiency of large size of 
input data if H = infinite. 

 

The efficiency and cost-effectiveness of the 
evaluated algorithms are compared based on different 
input data sizes. When the number of hosts 𝐻 is 
relatively small (finite), the results are shown in Table 
VII, highlighting that the RYU controller performs 
best in both time and cost dimensions. In contrast, for 
larger-scale input data (infinite 𝐻), the aligned 
outcomes are summarized in Table VIII, where the  

Algorithm 
Time 

Efficiency 

Cost 

Effectiveness 

Proposed Detection and 

Mitigation 
  

Optimal Selection   

RYU Controller   

SDC and SID  Integrated 
Algorithm 

         

Algorithm 
Time 

Efficiency 

Cost 

Effectiveness 

Proposed Detection and 

Mitigation 
  

Optimal Selection   

RYU Controller          
SDC and SID Integrated 

Algorithm 
    
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Fig. 11. Graphical comparison of time efficiency and cost 
effectiveness if set of hosts = finite. 

 

 

Fig. 12. Graphical comparison of time efficiency and cost 

effectiveness if set of hosts = infinite.  

integrated SDC and SID algorithm demonstrates a 
more balanced trade-off. 

Further based on the graphical representation of the 
comprehensive analysis in Fig. 11 and Fig. 12, the 
conclusion drawn is that the RYU Controller 
algorithm stands out as an optimal choice for both time 
efficiency and cost effectiveness, even when dealing 
with an infinite range of input data (hosts). The visual 
depiction of the results indicates that the RYU 
controller algorithm consistently outperforms others 
across various scenarios. 

It is essential to acknowledge that the assessment 
of time complexity and cost effectiveness of any 
specific algorithm is contingent upon a myriad of 
conditions and scenarios. The intricacies of real-world 
applications, varying data sets, and diverse operational 
environments contribute to the nuanced performance 
of algorithms. While RYU Controller exhibits notable 
performance in the context of this study, it's crucial to 
consider the adaptability of algorithms to specific use 
cases and the potential impact of different operational 
parameters. By assuming that Efficient = 6 & non-
efficient = 0. 

       In summary, the choice of the most suitable 

algorithm extends beyond a one-size-fits-all approach. 

It necessitates an understanding of the specific 

requirements, constraints, and conditions within the 

intended application domain 

VI.   CONCLUSION 

This gap analysis has been done to determine the 
gap between different research to verify the efficiency 
of various algorithms for the determination of the most 
efficient and cost-effective algorithm. All this research 
work has been done to prove that Moving Target 
Defense strategy is the most effective and efficient 
strategy for the mitigation of DDoS attacks as 
compared to other methods. This study comprises of 
the comparative analysis of four algorithms of Moving 
Target Defense strategy and one algorithm of optimal 
selection to reduce or block the unwanted traffic on the 
user’s system. Each of the algorithms has been 
assessed on the basis of Time Complexity Analysis by 
using Big O notation to represent the results. 
Furthermore, the Big O notations of each and every 
algorithm are compared altogether to find the most 
cost-effective algorithm amongst all of them. Overall, 
the major objective of this research work was to 
analyze the backend working of DDoS attack’s 
mitigation to choose an algorithm for the 
implementation of Moving Target Defense strategy 
successfully by keeping the efficiency and cost-
effective criteria in mind. 
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