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Abstract - This paper presents formulation of triangular 

elements based on strain approach. Various 

formulations of the strain-based elements can be seen in 

the literature. However, most of them do not clearly 

describe selection of the suitable strain fields for the 

elements. Therefore, in this work, some guidance for the 

formulation of strain-based elements are provided based 

on simulation results that are obtained by using several 

polynomial functions from Pascal’s triangle. It is seen 

that higher order terms in the strain functions do not 

always guarantee better performance for the case 

considered in this work.  

Keywords—strain-based elements, triangular 

elements, polynomial functions, Pascal’s triangle, 

compatibility, convergence 

I. INTRODUCTION  

Conventional finite elements are formulated by 

using displacement-based functions. Displacements 
within the element are represented by functions (shape 

functions) which should satisfy certain criteria such as 

continuity, completeness and possess Kronecker delta 

property. In [1-3], the authors introduced a new 

approach for finite element formulation (curved/shell 

elements) by using functions that define the variation 

of strain components within the finite element, instead 

of the displacements.  

The strain-based elements are found to be more 

advantageous compared to the displacement-based 

elements in terms of convergence and accuracy. Other 

than that, locking phenomena and errors due to 

mapping are avoided in strain-based elements [4]. 

Since then, new strain-based elements have started to 

emerge, particularly in the form of plane elements for 

plane elasticity problems [4, 5]. Application of the 

strain-based elements can also be seen in plate bending 

[6, 7], linear and dynamic analysis [8, 9], fracture 

mechanics [10] and so on. 

Various formulations of the strain-based elements 

can be seen in the literature [11].  Functions that are 

used to define variation of the strain components 

within the strain-based element are derived based on 

Pascal’s triangle, polynomial Taylor expansion [10], 

Airy stress functions [12], theories from solid 

mechanics and by other means. The strain functions 

should satisfy compatibility equation: 

𝜕2𝜀𝑥

𝜕𝑦2 +
𝜕2𝜀𝑦

𝜕𝑥2 −
𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
= 0            (1) 

Recent works have shown that incorporating 

equilibrium conditions into the formulation will yield 

better performances for the elements [13]. 

Method for defining the strain fields by using 

suitable functions are explained in [10] and [12], 

which are done by using polynomial Taylor expansion 

and Airy stress functions, respectively. However, most 

of the other literatures (using polynomial terms from 

the Pascal’s triangle) do not clearly describe selection 

of the suitable strain fields for the elements [11]. It is 
also known that accuracy and convergence of the 

solution can be improved by including the rotational 

degree of freedom. Nevertheless, very little work has 

been reported in formulation of low order triangular 
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strain-based elements (without rotational degree of 

freedom) by using higher order terms. Therefore, in 

this work, an attempt is made to formulate strain-based 

triangular elements (with 3 nodes and 6 degrees of 

freedom) by using various polynomial functions from 

Pascal’s triangle.  

The triangular elements that are formulated in this 

work are then used for the analysis of a deep cantilever 

beam with point load at free end (the other end is fully 
constrained). The deep cantilever beam is often used 

as benchmark problem to validate new element 

formulations. Convergence and accuracy of the 

elements are observed and compared with the 

conventional (displacement-based) constant strain 

triangular (CST) element. This paper is arranged as 

follows. Methodology and simulation setup for 

formulation of strain-based elements are provided in 

section II. Development of strain functions are 

presented in section III and finally section IV 

concludes the paper.  

II. METHODOLOGY  

A. Strain Functions  

The strain displacement relationships for in plane 

elasticity are given by: 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
             (2a) 

𝜀𝑦 =
𝜕𝑉

𝜕𝑦
            (2b) 

𝛾𝑥𝑦 =
𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
           (2c) 

      The strain components in Eq. (2) are then 

represented by polynomial functions that satisfy Eq. 

(1). These functions are represented in terms of 

coefficients 𝑎𝑖  (i = 1, 2, … , n). Total number of the 

coefficient a is equal to the total number of degrees of 

freedom for the entire triangular element, n. The 

displacement fields consist of two parts, which are the 

rigid body mode and the straining mode. The first 3 

coefficients (𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3) are used to represent the 

rigid body modes while the rest are used to describe 

the straining mode. 

The rigid body mode is represented by zero strain 

components within the element [14]: 

𝜕𝑈

𝜕𝑥
= 0            (3a) 

𝜕𝑉

𝜕𝑦
= 0            (3b) 

𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
= 0           (3c) 

Performing the integrations in the Eqs. (3a) and (3b) 

yield the following: 

𝑈 = 𝑎1 + 𝑓(𝑦)               (4a) 

𝑉 = 𝑎2 + 𝑓(𝑥)           (4b) 

Substituting Eqs. (4a) and (4b) into Eq. (3c) yields the 

following: 

𝑓𝑦
′ + 𝑓𝑥

′ = 0             (5) 

Letting 𝑓𝑦
′ = −𝑎3 and 𝑓𝑥

′ = 𝑎3  yields the following: 

𝑓𝑦 = −𝑎3𝑦           (6a) 

𝑓𝑥 = 𝑎3𝑥           (6b) 

Substituting Eqs. (6a) and (6b) into Eqs. (4a) and (4b) 

result in the displacement fields for the rigid body 

mode: 

𝑈 = 𝑎1 − 𝑎3𝑦           (7a) 

𝑉 = 𝑎2 + 𝑎3𝑥           (7b) 

      Remaining 3 coefficients (𝑎4, 𝑎5 𝑎𝑛𝑑 𝑎6) are used 

to define the straining mode of the displacement field. 

Several polynomial functions (that satisfy Eq. (1)) are 

developed to represent the strain components 

(straining mode) for a triangular element with 3 nodes 

and 2 degree of freedoms per node (n = 6) as shown in 
Table I. The functions for the straining mode are 

developed by ensuring that they will yield 

displacement functions with complete and balanced 

terms from the Pascal’s triangle.  

Table I. Strain Functions for the Formulation of Strain-based 

Triangular Elements. 

Test  Strain functions 

(for straining 

mode) 

Complete displacement functions 

T1 𝜀𝑥 = 𝑎4 

𝜀𝑦 = 𝑎5      

𝛾𝑥𝑦

= 𝑎4 + 𝑎5 + 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥 +
𝑦

2
) 𝑎4 + (

𝑦

2
) 𝑎5

+ (
𝑦

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
)𝑎4 + (

𝑥

2
+ 𝑦) 𝑎5

+ (
𝑥

2
)𝑎6 

T2 𝜀𝑥 = 𝑎4 

𝜀𝑦 = 𝑎5      

𝛾𝑥𝑦 = 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥)𝑎4 + (
𝑦

2
) 𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (𝑦)𝑎5 + (
𝑥

2
)𝑎6 

T3 𝜀𝑥

= 𝑎4 + 𝑎5 + 𝑎6 

𝜀𝑦

= 𝑎4 + 𝑎5

+ 𝑎6      
𝛾𝑥𝑦

= 𝑎4 + 𝑎5 + 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥 +
𝑦

2
) 𝑎4 + (𝑥 +

𝑦

2
) 𝑎5

+ (𝑥 +
𝑦

2
) 𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
+ 𝑦)𝑎4 + (

𝑥

2
+ 𝑦)𝑎5

+ (
𝑥

2
+ 𝑦) 𝑎6 

T4 𝜀𝑥

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦 

𝜀𝑦

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦      
𝛾𝑥𝑦

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥 +
𝑦

2
) 𝑎4 + (

𝑥2

2
−

𝑦2

2
)𝑎5

+ (𝑥𝑦 +
𝑦2

2
) 𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
+ 𝑦)𝑎4 + (

𝑥2

2
+ 𝑥𝑦) 𝑎5

+ (
𝑦2

2
−

𝑥2

2
)𝑎6 

T5 𝜀𝑥 = 𝑎4𝑥 + 𝑎5𝑥
2 

𝜀𝑦

= 𝑎4𝑦 + 𝑎5𝑦
2      

𝑈 = 𝑎1 − 𝑦𝑎3 + (
𝑥2

2
+

𝑦

2
) 𝑎4 + (

𝑥3

3
+

𝑦

2
)𝑎5

+ (
𝑦

2
)𝑎6 
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𝛾𝑥𝑦

= 𝑎4 + 𝑎5 + 𝑎6 

 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
+

𝑦2

2
)𝑎4 + (

𝑥

2
+

𝑦3

3
) 𝑎5

+ (
𝑥

2
)𝑎6 

T6 𝜀𝑥 = 𝑎4𝑥 + 𝑎5𝑥
2 

𝜀𝑦

= 𝑎4𝑦 + 𝑎5𝑦
2      

𝛾𝑥𝑦 = 𝑎6 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥)𝑎4 + (
𝑥3

3
)𝑎5 + (

𝑦

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (𝑦)𝑎4 + (
𝑦3

3
)𝑎5 + (

𝑥

2
)𝑎6 

T7 𝜀𝑥

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦 

𝜀𝑦

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦      
𝛾𝑥𝑦 = 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥)𝑎4 + (
𝑥2

2
−

𝑦2

2
)𝑎5

+ (𝑥𝑦 +
𝑦

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (𝑦)𝑎4 + (𝑥𝑦)𝑎5

+ (
𝑥

2
−

𝑥2

2
+

𝑦2

2
) 𝑎6 

T8 𝜀𝑥 = 𝑎4 + 𝑎5𝑥 

𝜀𝑦 = 𝑎4𝑦 + 𝑎5 

𝛾𝑥𝑦 = 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (𝑥)𝑎4 + (
𝑥2

2
)𝑎5 + (

𝑦

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑦2

2
)𝑎4 + (𝑦)𝑎5 + (

𝑥

2
)𝑎6 

T9 𝜀𝑥 = 𝑎4𝑥
2 + 𝑎5𝑥 

𝜀𝑦 = 𝑎4𝑦 + 𝑎5𝑦
2 

𝛾𝑥𝑦 = 𝑎6 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (
𝑥3

3
)𝑎4 + (

𝑥2

2
)𝑎5

+ (
𝑦

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑦2

2
)𝑎4 + (

𝑦3

3
)𝑎5

+ (
𝑥

2
)𝑎6 

T10 𝜀𝑥 = 𝑎4𝑥
2 + 𝑎5𝑥 

𝜀𝑦 = 𝑎4𝑦 + 𝑎5𝑦
2 

𝛾𝑥𝑦

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (
𝑥3

3
+

𝑦

2
)𝑎4 + (

𝑥2

2
)𝑎5

+ (
𝑦2

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
+

𝑦2

2
)𝑎4

+ (
𝑥2

2
+

𝑦3

3
)𝑎5 

T11 𝜀𝑥 = 𝑎4𝑥
2 + 𝑎5𝑥 

𝜀𝑦 = 𝑎4𝑦 + 𝑎5𝑦
2 

𝛾𝑥𝑦 = 𝑎5𝑥 + 𝑎6𝑦 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (
𝑥3

3
)𝑎4 + (

𝑥2

2
)𝑎5

+ (
𝑦2

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑦2

2
)𝑎4 + (

𝑥2

2
−

𝑦3

3
) 𝑎5 

T12 𝜀𝑥

= 𝑎4𝑥
2 + 𝑎5(1

+ 𝑥) 

𝜀𝑦

= 𝑎4(1 + 𝑦)
+ 𝑎5𝑦

2 

𝛾𝑥𝑦

= 𝑎4 + 𝑎5𝑥
+ 𝑎6𝑦 

 

𝑈 = 𝑎1 − 𝑦𝑎3 + (
𝑥3

3
+

𝑦

2
)𝑎4 + (𝑥 +

𝑥2

2
) 𝑎5

+ (
𝑦2

2
)𝑎6 

𝑉 = 𝑎2 + 𝑥𝑎3 + (
𝑥

2
+ 𝑦 +

𝑦2

2
)𝑎4

+ (
𝑥2

2
+

𝑦3

3
)𝑎5 

 

      Displacements functions (for straining mode) are 

obtained by substituting the strain functions (second 

column of Table I) into Eqs. (2a) and (2b) and perform 

the integration. The integration will generate unknown 

functions f(x) for V and f(y) for U. Derivatives of these 

unknown functions, that are f’(x) and f’(y) are obtained 

by substituting the U and V equations (with f(x) and 
f(y) after the integration) into Eq. (2c). Resultant 

equation will be the expression for shear strain γ which 

is given in terms of f’(x) and f’(y). Another expression 

for shear strain γ is obtained by substituting the strain 

functions in Table I into Eq. (2c). These two different 

expressions for the same shear strain γ are then 

compared. The functions f(x) and f(y) are finally 

obtained by integrating the x and y terms that are 

collected through the comparison of the two 

expressions. The complete expressions (containing 

both rigid body and straining modes) for the 

displacement fields U and V are provided in Table I. 

The stiffness matrix for a strain-based triangular 

element is obtained by using the formula: 

𝐾𝑒 = 𝑄𝑇[∬ (𝐵𝑇𝐷𝐵)𝑑Ω
.

Ω
]𝑄           (8) 

where Q is the transformation matrix: 

𝑄 =

[
 
 
 
 
 
 
𝑈(𝑥1, 𝑦1)

𝑉(𝑥1, 𝑦1)

𝑈(𝑥2, 𝑦2)

𝑉(𝑥2, 𝑦2)

𝑈(𝑥3, 𝑦3)

𝑉(𝑥3, 𝑦3)]
 
 
 
 
 
 

             (9) 

B is the 3 by 6 strain matrix which consists of 

coefficients for 𝑎𝑖 in the complete strain functions 

(containing both the rigid body and straining modes). 
The complete strain functions are obtained by 

substituting the complete displacement functions 

(third column of Table I) into Eqs. (2a)-(2c). For 

example, the B matrix for T1 of Table I is given as: 

𝐵𝑇1
= [

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 1 1

]         (10) 

D is the constitutive matrix: 

𝐷 =
𝐸

1−𝑣2
[
1 𝑣 0
𝑣 1 0
0 0 1 − 𝑣

] for plane stress        (11) 

and Ω is the element domain. 

      The integration in Eq. (8) can be performed easily 

to obtain high accuracy, since the integrand consists of 

simple polynomial terms which are derived from the 

Pascal’s triangle. In case of fully numerical integration 

method, the random triangular domain is first mapped 

to a reference triangle (fixed geometry) and then the 

integration is performed by using the Gaussian 

integration points and weights within the reference 

triangle [15]. Exact integration can be performed by 

using the techniques presented in [16, 17]. In this 

work, the integration is performed by using line 
integral [18], which is a semi-analytical technique 

[17]. It is considered as a semi analytical technique, 

since the first integration is done analytically (with 

respect to x) and through divergence theorem, yields 

the following expression [18]: 

 dyyyxxxfyy )](),([)( 12

1

0

112112 −+−+−          (12) 

The next integration (with respect to y) is done 

numerically by using one dimensional quadrature rule 

through the formula: 
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( ) ( ) ( )
=

==

n

i

ii

b

a
xfwdxxwxfI

1

          (13) 

, where a and b represent integration limits, f(x) 

represents function to be integrated, w(x) represents 

weight functions, wi represents integration weights, xi 

represents integration points, i = 1, 2, 3, …, n, and n 

represents integration order. 

 B. Simulation Setup  

 The strain based triangular elements are tested by 

analyzing a deep cantilever beam with point load at 

free end (the other end is fully constrained). Three 

different meshing are considered, which consists of 20 

(mesh 1), 80 (mesh 2) and 320 (mesh 3) elements with 

18, 55 and 189 global nodes, respectively. Properties 

of the beam are: length = 10 m, height = 4 m, thickness 

= 0.0625 m, modulus of elasticity = 100 MPa and 

Poisson’s ratio = 0.2. The point load, F = 100 kN.  

Problem geometry and boundary conditions are shown 

in Fig. 1. 

 

Fig. 1. A deep cantilever beam with point load. 

 Convergence and accuracy of the elements in 

calculating the deflection of point A (midpoint of the 

free end) are obtained by running simulations in 

Mathematica. Analytical solution for the deflection at 

point A is 1.105 mm [12]. Simulation results for the 

elements in Table I are shown and discussed in section 

III. 

III. DEVELOPMENT OF STRAIN FUNCTIONS 

 Suitable strain functions for the straining mode 

can be developed through several stages. First attempt 
was to formulate the strain functions by using 

constants 𝑎𝑖, without any other polynomial terms. T1, 

T2 and T3 in Table 1 are such examples. T1 and T2 are 

found to perform exactly similar to CST element 

(since the strains are assumed to be constant within the 

element), while T3 yields singular matrix. It is seen that 

similar functions for the strain components yield 

singular matrix. Few more test functions with similar 

expressions for εx and εy are formed (T4 - T7) and 

simulated. These functions yield either diverging 

solutions (T4) or singular matrices (T5 - T7). Simulation 

results for these functions are shown in Fig. 2. 

 

Fig. 2. Simulation results for constant strain functions. 

First order terms from Pascal triangle (constant, x, y) 

are then used to formulate T8. The shear strain 𝛾𝑥𝑦  is 

remained as constant. Similar functions are avoided by 

distributing the terms among 𝜀𝑥  and 𝜀𝑦. Performance 

of T8 is found to be similar to CST as shown in Fig. 3.  

 

Fig. 3. Simulation results for linear strain functions. 

Second order polynomial terms (Constant, x, y, x2 and 

y2) are then introduced into the trial functions, T9. 

Similar expressions for the strain components are 

avoided. The shear strain 𝛾𝑥𝑦 is remained as constant.  

T9 is found to be able to produce converging results. 

However, the results are less accurate than CST, even 

with second order terms as shown in Table II.  

Table II. Simulation Results for T9 to T12. 
Mesh 

density 

Percentage error for deflection at point 

A (%) 

CST T9 T10 T11 T12 

Mesh 1 42.79 43.01 39.87 60.79 40.07 

Mesh 2 16.55 17.23 16.23 70.71 16.57 

Mesh 3 4.68 5.02 4.94 15.44 5.20 
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      Another two test functions: T10, and T11 are then 

formulated by considering the previous observations, 

but first order terms are used to represent the shear 

strain 𝛾𝑥𝑦, instead of using constant. No significant 

improvement is seen for T10, even though better 

accuracy is obtained for lower mesh densities (meshes 

1 and 2) as compared to CST as shown in Table II. On 

the other hand, T11 generated diverging solutions for 

meshes 1 and 2. It is seen that 𝛾𝑥𝑦should contain a 

constant term in order to achieve good convergence of 

the solutions. 

      Finally, test function T12 is formed by considering 

the previous observations, but constant terms are 

included into the strain functions by sharing the 

coefficient ai. The test function T12 produced 

converging solutions, but did not outperform CST 

element.   

     It is seen that higher order terms in the strain 

functions do not yield better performance compared to 

CST. One of the reasons is that the polynomial terms 
are shared among the limited number of coefficients 

𝑎𝑖 (only 3 in this case). Limited number of coefficients 

𝑎𝑖 for the straining functions will hinder the ability to 

form independent complete polynomial terms. Strain-

based elements with higher degree of freedom offer 

better flexibility to form independent and complete 

polynomial terms, and therefore they are capable to 

produce better results.  

      General guidelines for formation of strain-based 

finite elements by using polynomial terms can then be 

derived as follows: 

1. The strain functions should satisfy Eq. (1). 

Equilibrium conditions should also be satisfied in 

order to achieve optimal performances as shown 

in [13]. 

2. Similar functions/expressions for the strain 

components should be avoided in order to 
prevent singular matrices. 

3. The test functions should contain all the balanced 

terms from Pascal triangle and distributed 

evenly.  

Polynomial strain functions are convenient for strain-

based elements, since the integration can be performed 

with high accuracy. The semi-analytical integration 

technique is found to be practical and easier, since the 

technique does not require any partitioning of the 

element, mapping to a reference triangle or 

formulation of formulas based on specific forms. 

IV. CONCLUSION 

Several strain-based triangular elements have been 

successfully developed and tested by running 

simulations in Mathematica. It is seen that formulation 
of the strain based triangular elements with higher 

order terms in the strain functions do not always 

guarantee better performance. The techniques/method 

presented in this work can be used as a guidance in 

formulating strain-based elements. 

REFERENCES 

[1] D. G. Ashwell and A. B. Sabir, “Limitations of Certain Curved 

Finite Elements When Applied to Arches,” Int. J. Mech. 

Sci., vol. 13, no. 2, pp. 133–139, 1971.  

[2] D. G. Ashwell, A. B. Sabir and T. M. Roberts, “Further Studies 

in The Application of Curved Finite Elements to Circular 

Arches,” Int. J. Mech. Sci., vol. 13, no. 6, pp. 507–517, 1971.  

[3] D. G. Ashwell and A. B. Sabir, “A New Cylindrical Shell Finite 

Element Based on Simple Independent Strain Functions,” Int. J. 

Mech. Sci., vol. 14, no. 3, pp. 171–183, 1972.  

[4] M. R. Pajand, N. G. Moghaddam and M. R. Ramezani, “A New 

Higher-order Strain-based Plane Element,” Scientia Iranica. 

Trans. Civil Eng. A, vol. 26, no. 4, pp. 2258-2275, 2019.  

[5] D. Hamadi, A. Ayoub and T. Maalem, “A New Strain-based 

Finite Element for Plane Elasticity Problems,” Eng. 

Comput., vol. 33, no. 2, https://doi.org/10.1108/EC-09-2014-

0181, 2016.  

[6] F. Boussem and L. Belounar, “A Plate Bending Kirchhoff 

Element Based on Assumed Strain Functions,” J. Solid Mech., 

vol. 12, no. 4, pp. 935-952, 2020. 

[7] L. Belounar and M. Guenfoud, “A New Rectangular Finite 

Element Based on The Strain Approach for Plate 

Bending,” Thin-Walled Structures, vol. 43, no. 1, pp. 47-63, 

2005.  

[8] C. Rebiai, N. Saidani and E. Bahloul, “A New Finite Element 

Based on the Strain Approach for Linear and Dynamic 

Analysis,” Res. J. Appl. Sci., Eng. and Techn., vol. 11, no. 6, pp. 

639-644, 2015.  

[9] L. Bouzidi, L. Belounar and K. Guerraiche, “Presentation of A 

New Membrane Strain-based Finite Element for Static and 

Dynamic Analysis,” Int. J. Structural Eng., vol. 10, no. 1, pp. 

40-60, 2019.  

[10] M. R. Pajand, N. G. Moghaddam and M. Ramezani, “Strain-

based Plane Element for Fracture Mechanics’ 

Problems,” Theoret. and Appl. Fract. Mech., vol. 108, no. 

102569, 2020.  

[11] M. R. Pajand, N. G. Moghaddam and M. Ramezani, “Review 

of The Strain-based Formulation for Analysis of Plane 

Structures Part I: Formulation of Basics and The Existing 

Elements,” Iranian J. Num. Analy. and Optim., vol. 11, no. 2, 

pp. 437-483, 2021. 

[12] M. Himeur, A. Zergua and M. Guenfoud, “A Finite Element 

Based on the Strain Approach Using Airy’s Function,” Arabian 

J. Sci. and Eng., vol. 40, no. 3, pp. 719–733, 2015.  

[13] M. R. Pajand, N. G. Moghaddam and M. Ramezani, “Review 

of The Strain-based Formulation for Analysis of Plane 

Structures Part II: Evaluation of The Numerical Performance,” 
Iranian J. Num. Analy. and Optim., vol. 11, no. 2, pp. 485-511, 

2021. 

[14] A. I. Mousa and S. M. Tayeh, “A Triangular Finite Element for 

Plane Elasticity with In-plane Rotation,” J. the Islamic of Gaza, 

vol. 12, no. 1, pp. 83-95, 2004. 

[15] S. M. Tayeh, “Newstrain-Based Triangular and Rectangular 

Finite Elements for Plane Elasticity Problems,” Master Thesis, 

The Islamic University, 2003. 

[16] M. T. Belarbi and D. Hamadi, “Presentation of Tow Sabir 

Element Results with Irregular Shapes,” Sci. and Techn. 

Knowledge, Courrier du Savoir, vol. 5, no. 5, pp. 37-43, 2004. 

[17] L. Perumal, “Integration Techniques for Two Dimensional 

Domains,” Int. J. Res. in Eng. and Techn., vol. 3, no. 7, pp. 487–

494, 2014.  

[18] G. Dasgupta, “Integration within polygonal finite elements,” J. 

Aerospace Eng., vol. 16, no. 1, pp. 9–18, 2003.  

 

 

https://www.proquest.com/pubidlinkhandler/sng/pubtitle/Scientia+Iranica.+Transaction+A,+Civil+Engineering/$N/54700/OpenView/2276833049/$B/BA8034C7B4A94C4EPQ/1?accountid=28110
https://www.proquest.com/pubidlinkhandler/sng/pubtitle/Scientia+Iranica.+Transaction+A,+Civil+Engineering/$N/54700/OpenView/2276833049/$B/BA8034C7B4A94C4EPQ/1?accountid=28110

