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     Abstract — Heterogeneity is a key feature of stone 

density as Hounsfield Unit (HU) on computer 

tomography (CT) for extracorporeal shock-wave 

lithotripsy (ESWL) outcomes predicting in urinary 

calculi patients. The goal of this study is to develop the 

modified 2D and 3D automate stone heterogeneity index 

and variation coefficient of stone density estimation 

program to predict ESWL treatment. For 2D, the 

proposed program was selected the largest slice of the 

stone in the whole input slice and then stone related 

variables, stone heterogeneity index and variation 

coefficient of stone density were calculated by using the 

average HU and the number of voxels of the stone. For 

these variables, it was also developed 3D automate 

system by using all slices including the stone. Moreover, 

the 2D schematic diagram was produced to show the 

internal structure of stone in order to estimate the 

compositional heterogeneity of stone.  All processes of 

this study were established without manual process. And 

then, the result of the proposed study is presented 

compared with the manual measurements.  The 

described methods can provide to assist the prediction of 

ESWL treatment success and urinary stone diagnosis. 

Keywords—Stone heterogeneity index, Variation 

Coefficient of stone density, Internal structure of stone, 

ESWL treatment, Hounsfield Units (HU) 

I. INTRODUCTION 

Although there are the widespread acceptance and 

the high success rate of ESWL, it was still partially or 

completely resistant for urinary calculi [1]. Moreover, 
the first ESWL failure may be some problem such the 

continuation of symptoms and ureteral obstruction that 

increase medical costs because of the ancillary therapy 

procedures requirement. Therefore, the ESWL 

outcome prediction factors and a suitable treatment 

selection are essential and effective for patients with 

urinary calculi [2]. Nowadays, computer tomography 
(CT), an excellent non-invasive imaging, is a highly 

recommended examination for urinary stone treatment 

planning. It is used for assessing several predictive 

factors. These useful parameters were included stone 

location, stone size (area, volume, diameter), mean 

stone density (average HU), stone heterogeneity index 

(standard deviation), and variation coefficient of stone 

density. The increasing number of studies were 

reported the usefulness of these several factors that 

manually and semi-automatically measured on  CT 

images [5 - 7]. Most of previous studies have focused 
on the HU value [3], stone size [4]and location [5] to 

assist stone diagnosis and treatment planning. There 

are still inadequate CT parameters predictions for 

clinical use. In addition, stone density, other parameter 

about stone heterogeneity is also analysis in CT 

parameter prediction.  

 And then, understanding three-dimensional 
visualization of urinary stone is crucial for planning 
and creating an optimal access route. So, 3D 
visualization of CT data and internal composition are 
increasing with the use of advanced imaging [8, 9]. 
Advanced imaging systems have been provided to 
access the 3D visualization of target object and 
internal structure of this object. Especially, 3D 
visualization is useful to provide the shape of object 
and internal structure of object is also vital to provide 
the composition inside of object. This is a continuous 
search for new and improved methods that could assist 
at urinary stone treatment planning. For the purpose of 
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this study, the automate measurement of stone 
heterogeneity index and variation coefficient of stone 
density were created with 3D visualization and 2D 
internal structure of stones.   

II. PREVIOUS STUDIES 

In [1], this study was also investigated the standard 

deviation of HU on CT as stone heterogeneity index 

(SHI) in order to predict ESWL outcomes for ureteral 

stones patients. It was analysis two groups, low SHI 

and high SHI groups that categorized by using mean 
SHI. The low SHI group was not as better as the high 

SHI group in one-session success rate. It reported that 

SHI values were useful as an independent predictor for 

ESWL success in urinary calculi patients and an 

effective parameter for the fragility of stone. 

 In [2], they reported the important of SHI and 

variation coefficient of stone density (VCSD) to 

identify WSWL outcome and choose the appropriate 

treatment decision for urinary calculi patients. In here, 

SHI value was manually measured the standard 

deviation from the information of CT images. VCSD 
was calculated this SHI value divided by the average 

value. It could define that SHI and VCSD were 

effective and efficient as an independent significant 

predictor for ESWL success in urinary calculi. 

 In [6], heterogeneity in CT image was measured 

to develop an octree decomposition and variogram 

analysis which provide a non-objective and sensitive 

metric. This metric could characterize emphysematous 

lung disease.  Although the system semi-automatically 

developed a mask image using ImageJ and ImageJ 3D 

Toolkit plug-in, a novel and objective method was 

presented to assess lung damage in CT. In here, 

heterogeneity index was measured and used to present 

the difference of an individual variogram and the 

control average. It could show the clear separation in 

characterizing lung disease such as control, mild 

global disease and severe local disease.  

 In [10], it was to assess the important of stone 

heterogeneity index, a helping tool for SWL success 

rates. SHI was manually described by computing the 

HU standard deviation in the specified region. In this 

study, SHI was clearly distinguished between stone 

free and stone failure EWSL rate for patients having 
average HU 500 _ 1000 values. It indicated that SHI 

can be effective to assess the extent of fragility of the 

stone.  

 In previous study, stone features on CT were 

described as stone attributes such as stone size, 

location, average HU. Later, SHI and VCSD were 

designated to estimate the heterogeneity of the stone. 

It was assumed that heterogeneous stone was more 

fragile than homogeneous one. In this study, it was 

adopted the modified concept without manual process 

into stone heterogeneity index and variation 
coefficient stone density for 2D and 3D CT 

measurements. Moreover, 2D internal structure of the 

stone was displayed to estimate the composition of the 

urinary calculi. 

III. PROPOSED METHODOLOGY 

The proposed system is presented in this paper in 
order to develop three CT parameters from urinary 
calculi CT images. In CT imaging, these CT 
parameters cannot be neglected to assist for diagnosis 
of urinary calculi patients.  

In this paper, we developed both 2D and 3D CT 
parameters measurements, automatically. The overall 
process flow of the proposed approach is presented in 
Fig. 1. First, the preprocessing is a step to segment the 
stone region by removing other unwanted region 
removing in the image that used both for 2D and 3D 
auto measurements.  But there was an additional 
process, largest slice selection among all slices of the 
stone in 2D Auto measurements. In 2D process, it was 
provided an assessment of average HU and standard 
deviation only on this selected slice and then 
calculated the variation coefficient of stone density 
(VCSD) by using these two parameters. 
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Fig. 1. The flow diagram of the proposed 2D and 3D measurements. 

Next, stone composition is also presented with HU 

value of each pixel in internal structure of stone. It 

assists to estimate that heterogeneity or homogeneity 
of stone. 

Because of no volumetric information, there are 

some limitations in 2D measurements such as stone 

number, length and shape. It may be significant for 

larger, irregularly shaped stones. The increase size of 

stones, more random the shape of stone becomes. So, 

it is essential 3D object by using 3D reconstructing to 

provide the volumetric information [4]. Therefore, 3D 

visualization and parameters as measured by 3D 

reconstruction object are becomes a powerful 

approach to increase the understanding of medical CT 

images and clinical support. In this study, 3D auto 

measurement was developed without largest slice 
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selection. Unlikely 2D process, it was to treat 3D 

parameters predictions in a series of 2D image slices 

including the stone region. Using all these slices, 

average HU, standard deviation and VCSD are 

extracted with the same method of 2D process. 

Moreover, it can present the clear 3D urinary stone 

object with rotation options. To reduce the inaccuracy 

of the manual measuring, the following steps are 

applied in the proposed algorithm, which is briefly 

described in this section. 

A. Image Pre-processing and Segmentation 

In abdominal CT image, there are many unwanted 
regions and organs surrounding urinary calculi. It is 
needed to distinguish the calculi with these unwanted 
objects in order to measure the CT parameters for the 
urinary calculi. Therefore, the pre-processing process 
is essential to be done. Figure 2 shows pre-processing 
of urinary calculi segmentation by removing other 
unwanted objects, which consists of the following 
steps: 

Hypodense and isodense region moving

Unneeded hyperdense region moving

False-positive reducing

Input (CT) Image

Pre-processed Image

 

Fig. 2. The flow diagram of the pre-processing. 

 In above three processes, thresholding is the vital 

method to remove the unwanted regions. The require 

threshold value of each process is calculated based on 

the nature of the urinary calculi and other surrounding 

objects of the CT. In first process, threshold value is 

calculated based on the intensity differences between 

the urinary calculi (bright-white high intensity) and 

another region (Gray to black low intensity) on CT. 

Intensity of stone could be a range between 200 HU 

and 2800 HU, which are used as threshold value of 

hypodense and isodense region removal.  

 In second process, hyperdense regions similar with 

stone intensity were removed using size-based 

thresholding. The size of stone was regarded between 

3 mm and 50 mm which range used as threshold value.  

In final process of pre-processing, the modified 

thresholding was used to reduce false-positive by 

applying average HU and volume ratio. It was 

regarded this modified threshold value as a range 

between 0.03 and 35. The unwanted regions were 
removed from the image using these three pre-

processing processes and then it was produced the 

segmented regions (urinary calculi) which were used 

to measure the required CT parameters. 

B. Largest Slice Selection 

Using binarization, the segmented region of the 

image is converted into a binary image. This binary 

image and the whole image including HU values were 

combined with a logical "AND" operation to take the 

foreground pixels with HU value in the image. 

According to the help of "AND" operation and 

binarization, it was taken the foreground pixels with 

HU values as the stone region. After that, it was 

calculated the sum of all foreground pixels and then 

the number of pixels of each slice were compared in 
order to take the largest slice of the stone. According 

these processes, it can take only HU values of pixels 

in stone region at the largest slice of the stone. These 

values were used to measure and calculate the required 

CT parameters of the proposed system.   

C. Measuring CT Values 

In the proposed study, CT values are measured by 

taking all HU value for each pixel on the segmented 

region of the largest slice of the whole stone. To 
calculate the required Stone Heterogeneity Index and 

Variation coefficient of stone density, there are two 

essential CT values average Hounsfield units and area 

of the segmented region. 

Average Hounsfield Units (Average HU) is 

calculated by adding HU values of all pixels in the 

segmented region and then dividing the count of those 

pixels. Area is the total number of pixels in the 

selected region. 

D. Stone Heterogeneity Index 

One of CT parameters, stone heterogeneity, is 

important to consider the internal structure of stone in 

CT. Standard deviation of HU on CT is used to define 

the stone heterogeneity. Higher standard deviation of 

HUs on CT be, more heterogeneity of internal 

structure on stone be [1]. Therefore, standard deviation 

is calculated to define the stone heterogeneity in this 

study.  

     𝑆𝐷 = √
∑(𝑥𝑖−𝑥𝑚𝑒𝑎𝑛)2

𝑁−1
        (1) 

, where SD means standard deviation, xi and xmean are 

individual pixel value and average of all pixel values 

in the segmented region, and N is the total number of 

pixels in this region. 

E. Variation Coefficient of Stone Density (VCSD) 

Sometime, there may be differ in the stone 

composition even if the stones have a similar mean or 

SD. Therefore, variation coefficient of stone density 

becomes another consideration with stone 

heterogeneity [7]. VCSD is the ratio of standard 

deviation of all pixels in the segmented region to the 

average HU values of that region as follows. 

𝑉𝐶𝑆𝐷 =
𝑆𝐷

µ
                 (2) 
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, where VCSD means variation coefficient of stone 

density, SD and µ are the standard deviation and 

average HU of all pixels in the segmented region. 

F. Internal Structure of the Stone 

Stone composition is impossible to be completely 

depend on stone SD or average HU. It can differ even 

if their SD or average HU are similar values. 

Therefore, showing the internal structure of stone is a 

vital role to show stone homogeneity or heterogeneity. 

In this study, stone structure was described by 

evaluating the HU values of each pixel of the stone 

region as following algorithm. 

Step 1. Set HU= (x1, x2, x3, …, xi), xi is represented 

the HU values of each pixel in the specified region. 

Step 2. For i=1to i, 

 if ( xi > 3000) 

                out =8;   

            else if ( xi > 2500  && HU <= 3000 ) 
                out =7; 

            else if ( xi > 2000 && HU <= 2500 ) 

                out =6;     

            else if ( xi > 1500  && HU <= 2000 ) 

                out =5; 

            else if ( xi > 1000  && HU <= 1500 ) 

                out =4; 

            else if ( xi > 500  && HU <=1000 ) 

                out =3;  

            else if ( xi > 200  && HU <= 500 ) 

                out =2;                  

            else 
                 out=1; 

 End 

 End 
In here, 1,2,3,..,8 is described as the eight different 
colors to represent each pixel intensity range. 

Step 3. Display with each value of pixels with 
1,2,3,…,8. 

G. 3D Visualization 

After CT acquisition DICOM images were used for 

preprocessing, a series of slices including ROI stone 

region were outputted as the segmented results. 

Preprocessing could provide the 3D object without 

disturbance such stone, bone and stent. These slices 

were used to reconstruct 3D model by isosurface-

matlab-function that can extract isosurface data from 

3D volume array [9]. The 3D object model is based on 

contours acquired from the ROI segments on all slices 

including the stone. This 3D stone could provide the 

shape of the stone, number of stone and location of 

stone. Because of rotation options, the shape of stone 

is clearly viewed with low disturbance. Figure 

illustrated the visualized objects which was 

implemented with rotation options. 

 

IV. RESULTS 

The proposed solution was evaluated using the CT 

dataset comprising of 22 patients diagnosed with 

urinary calculi. The experiments have been done by 

using MATLAB 2020a on an Intel Core i7.  

A. Manual 2D Measurement  

 Stones are irregular structures. So, it is typically 

assessed by measuring the stone parameters such as 

area, standard deviation and average HU. In manual 

measurement, a largest slice is selected manually from 

all slices including the stone. Next, stone area 

selection is manually approximated by an ellipsoid and 

then the system can generate the stone parameters on 
this area as shown in Figure 3. Stones are irregular 

structures, such as round, oval, jagged and unsmooth 

shapes. If stone has smooth boundary, this can be done 

easily with manual measure and the results are also 

very similar to 2D auto process. If not, it is impossible 

to provide the exact results because area selection by 

ellipsoid is not sufficient to measure the overall stone 

area. It was depended on the decision of technician and 

the application they used. Moreover, it may become 

variability between readers which can give inaccurate 

information for treatment planning. 

 

Fig. 3. Results of 2D manual measurements. 

B. 2D Auto Measurement 

The proposed 2D process is automatic and 

accurate. It can provide the specific CT parameters 

with a largest slice selection.  Figure 4 shows the 

obtained result for the case introduced in Fig. 3. The 

proposed 2D process can provide very similar results 

to the manual process and can be considered as 
satisfying. Because of fully automatic process 

including slice selection and stone area selection, it 

can overcome the limitation of manual process. 

Without using ellipsoid tool, it can do area selection of 

any stone structure, smooth or unsmooth boundary.  It 

can set as a definite slice for slice selection because the 

largest slice is chosen by comparing the stone area of 

all slices. Moreover, the selected slice is effective and 

efficient as it can reveal the intensity value of each 

pixel in slice that are taken to display the internal 

structure of the stone. Smoother the surface of the 
stone, the more similar result of 2D processes have. 

Therefore, it allows the exact results with the 
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completely automatic ROI recognition and largest 

slice selection.  

 

Fig. 4. Results of 2D and 3D auto measurements. 

 The proposed 2D auto system gives the required 

CT parameters outputs with the addition of internal 

structure to predict stone composition.  

C. 3D Auto Measurement 

The proposed 3D process is too robust as all voxels 

in all slices including the stone are considered to 
provide volumetric information for the required 

parameters. All parameters of 3D process are 

developed the methods used in 2D auto process. 

Unlike 2D process, it used all slices including the 

stone. Exemplary results after CT parameter 

measuring for auto 2D and 3D processes can be seen 

in Figure 4. In terms of SD and VCSD, there was no 

significant difference between the 2D and 3D process 

although average HU of 3D was lower than that of 2D 

process. The estimated results of proposed 3D are not 

perfectly accurate but robust and close enough to be 
used as CT parameter estimation. It is also completely 

automatic system that can reduce variability to give 

better information for treatment planning.  

(i) Result of Hypodense and isodense region 

moving

(ii) Result of Unneeded hyperdense 

region moving

(iii) Result of False-positive 

reducing  

Fig. 5. 3D Visualization output of 3D auto measurements. 

Moreover, visualization of 3D image can be 

provided without any other unwanted region using 

pre-processing and segmentation as shown in Fig. 5. 

In visualization result, it is able to provide a clear 3D 

visual output to analyze the location, number, 

condition and shape of the stone. As it can rotate in all 

direction, it can reduce some unclear visual by 

overlapping the stone each other. 

D. Stone Internal Structure  

Showing internal structure of the stone is one of 

the vital roles to predict fragility of the stone. Stone 
fragility is also important in some treatments. 

Homogeneous stones might be less fragile than 

heterogeneous ones. Therefore, this study is showed 

the internal structure of the stone to predict that 

heterogeneous or homogeneous stone. Using the 

algorithm, the stone composition was shown by 

defining each pixel with respective colour as shown in 

Fig. 6. 

 

Fig. 6. Internal structure of the stone. 

 The more SD vale of the stone, the more 

heterogeneity of the stone composition is in Fig. 7. 

Showing internal structure in effective and efficient. It 

can clearly show that the stones having different SD, 

may have the different structure and heterogeneity. 
The use of internal structure for determining the 

heterogeneity of stone before ESWL helps to predict 

the outcome of the treatment. 

SD:346 SD:358

 

Fig. 7. Showing the heterogeneity of stone with SD. 

E. 3D Visualization  

 3D visualization is one of the fundamental 

processes in urinary stone diagnostics. Using the 

acquired 3D images, it is possible to find the structure, 

size and location of stone, which is the evidence of a 
specific disease. After the proposed pre-processing 

was removing all unwanted objects (including bone 

and stent), it could present 3D output object without 

disturbance.  Due to the 3D reconstructed object, it 

was possible to analyse the shape of the stone by 

rotating it in all directions.  Figure 8 illustrates an 

example of 3D visualization result in some directions. 
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Fig. 8. 3D stone visualization of a patient from some directions. 

To evaluate the proposed 3D visualization, 

RadiAnt DICOM Viewer application   was used in this 

study. According these experiments in Fig. 9, the 

proposed scheme can achieve the 3D object more clear 

and lower disturbance than application used result. 

Manual 3D visualization Proposed 3D visualization

 
Fig. 9. Results of 3D visualization for manual and 3D process. 

V. PERFORMANCE EVALUATION 

The results (standard deviation, average Hu and 
variation coefficient of stone density) of the study 
among patients clinically diagnosed with manual 2D 
measurement (2D Manual), auto 2D measurement (2D 
auto) and auto 3D measurement (3D auto) are 
compared to evaluate the proposed study as shown in 
the Table 1. The results computed in Table 1 are used 
to evaluate the performance of the proposed processes. 

The proposed 2D and 3D measurements are 

qualitatively and quantitatively assessed and 

compared with manual measurement based on three 

kinds of criteria as follows: 

Average: Firstly, the parameters resulted from the 

proposed two processes are compared with manual 

results by average. It is a fundamental performance 

measure to calculate the distance between two sets. 

Average is calculated by adding the values in a set and 

then dividing by the count of those values.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟
      (3) 

Correlation: A correlation analysis is applied to 

identify the relationships between the proposed system 

and manual.  

𝑐𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) =
𝛴(𝑥−�̅�)(𝑦−�̅�)

√∑(𝑥−�̅�)2 𝛴(𝑦−�̅�)2
 (4) 

, where xˉ and yˉ are the mean average of group 1 and 

group 2. When 2D auto assumes as group 1, manual is 
group 2. When 3D auto assumes as group 1, manual is 

group 2. According this assumes, correlation between 

proposed system and manual is calculated. As much as 

the correlation is closer to 1 and 0, indicates strong and 

weak correlation between two group, respectively 

[11]. 

Accuracy: This criterion measures the accuracy of the 

proposed system by comparing the system results 

(predict) and manual results (actual) by using this 

formula. 

Accuracy =1− (ABS((Predicted/Actual) −1))            (5) 

ANalysis of VAriance (ANOVA): It is used to 

determine whether there are any statistically 
significant differences between the means of two or 

more independent groups. ANOVA return with a table 

summarizing the SS (squared deviations), MS (mean 

square), df (degree of freedom), F value (analysis of 

variance) and p-value (probability)[12]. Among them, 

F-statistic and p-value are used in this study.  

𝐹 =
𝑀𝑆𝐵 (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠)

𝑀𝑆𝑊 (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠)
     (6) 

p-value means the probability that the observed 

difference or larger in the means is due to random 

chance. In this analysis, F value and p-value are vital 

to decide the similarities or difference within and 

between groups. If F value is less than F critical, and 

then p-value is also greater than the alpha level, there 

is no significantly different within and between the 

comparison groups.  

In all, 22 urinary calculi used to evaluate the 

proposed 2D and 3D measurements and then the 

results are compared with 2D Manual measurements 

as shown in Table I.  

In Table II, it is summarized the results of each 
analysis of the proposed study. 

In SD, there was almost the same values in 
average, sum and variance among the three groups. 2D 
auto was more strong correlation and accuracy with 
2D manual measurements than 3D auto 
measurements. Moreover, SD with 2D auto was the 
strongest predictor of accuracy (99%) with 2D 
Manual. 
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Table I. CT values by the proposed study and manual record. 

Standard Deviation Average HU 

Variation Coefficient of Stone 

Density 

2D  

Manual 

2D 

Auto 

3D 

Auto 

2D  

Manual 

2D  

Auto 

3D 

Auto 

2D  

Manual 

2D 

Auto 

3D 

Auto 

488.11 474.76 468.64 1045.54 988.49 895.52 0.47 0.48 0.52 

371.29 367.10 411.98 1138.29 1108.47 977.06 0.33 0.33 0.42 

360.00 350.31 420.35 661.56 632.41 741.78 0.54 0.55 0.57 

396.60 393.16 413.89 748.80 724.84 750.00 0.53 0.54 0.55 

390.00 392.25 431.26 1319.00 1301.47 1203.72 0.30 0.30 0.36 

459.30 451.11 470.84 1033.49 1057.34 952.89 0.44 0.43 0.49 

451.69 453.68 448.51 1023.80 950.83 850.83 0.44 0.48 0.53 

397.10 391.79 334.62 741.00 744.80 625.70 0.54 0.53 0.53 

569.40 561.16 533.30 1151.70 1141.85 1033.84 0.49 0.49 0.52 

330.00 326.25 245.67 596.03 597.35 479.04 0.55 0.55 0.51 

444.30 446.51 434.14 960.89 1017.47 925.89 0.46 0.44 0.47 

330.35 327.71 363.21 958.00 921.27 817.89 0.34 0.36 0.44 

350.70 346.11 338.03 894.78 870.54 802.67 0.39 0.40 0.42 

474.48 471.35 385.25 898.78 895.08 693.19 0.53 0.53 0.56 

508.12 499.46 497.37 1139.77 1002.55 881.11 0.45 0.50 0.56 

357.57 357.73 370.04 1077.75 1104.52 977.62 0.33 0.32 0.38 

447.59 443.23 420.50 791.63 777.64 684.37 0.57 0.57 0.61 

387.10 387.10 375.03 789.58 789.58 707.84 0.49 0.49 0.53 

413.66 415.49 415.13 913.48 903.43 816.16 0.45 0.46 0.51 

338.66 338.21 362.44 918.11 886.68 862.32 0.37 0.38 0.42 

473.90 471.57 501.12 1148.60 1162.20 1079.85 0.41 0.41 0.46 

528.21 528.42 466.40 998.20 899.67 782.97 0.53 0.59 0.60 

 
 

Table II. Summarization the results of each analysis of the proposed study.  

Standard Deviation (SD) Compare with Manual  

Groups Count Sum Average Variance Correlation F (F crit=4.07) p-value(=0.05) Accuracy (%) 

2D 

Manual 
22 9268.13 421.28 4604.39 1.000    

2D 

Auto 
22 9194.48 417.93 4472.33 0.998 0.03 0.870 99% 

3D 

Auto 
22 9107.72 413.99 4268.58 0.815 0.13 0.718 92% 

Average HU Compare with Manual  

Groups Count Sum Average Variance Correlation F (F crit=4.07) p-value(=0.05) Accuracy 

2D 

Manual 
22 20948.78 952.22 32357.53 1.000    

2D 

Auto 
22 20478.51 930.84 31377.67 0.972 0.16 0.693 97% 

3D 

Auto 
22 18542.25 842.83 26350.30 0.913 4.48 0.040 87% 

Variation Coefficient of Stone Density (VCSD) Compare with Manual  

Groups Count Sum Average Variance Correlation F (F crit=4.07) p-value(=0.05) Accuracy 

2D 

Manual 
22 9.96 0.45 0.007 1.000    

2D 

Auto 
22 10.11 0.46 0.007 0.972 0.08 0.778 97% 

3D 

Auto 
22 10.97 0.50 0.004 0.899 4.14 0.048 91% 
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It can prove that the statistical analysis of each 

process is no significantly different between each 

individual and their group mean because of its result, 

F (0.03 and 0.13) < F crit (4.07) and p-value (0.87 and 

0.718) > the alpha level (0.05). Therefore, the 

proposed two measurement systems are reasonable to 

apply in SD parameter prediction for CT.  

The average HU of 2D Manual and 2D Auto was 

no significantly different, but there was a slightly 

difference average HU between 2D Manual and 3D 

Auto. Compare with 3D Auto, 2D auto was more 

accurate (97%) and correlate (0.972) with 2D Manual. 

It can predict success because of its statistical analysis 

results, F (0.16) < F crit (4.07) and p-value (0.693) > 

the alpha level (0.05). 3D auto was also useful in good 

prediction because of its results, F (4.48) ≈ F crit (4.07) 

and p-value (0.04) ≈ the alpha level (0.05). Therefore, 

3D auto is also useable as success predictor, likely 2D 

auto gave the accurate parameter values with Manual. 

Based on the summary of VCSD analysis, it can 

conclude that there is almost the same VCSD average 

and variance of 2D auto and Manual between each 

individual and their groups. 3D auto was also no 

dramatically increased from 0.46 to 0.5 in VCSD 

average. It was possible as there was a strong 

correlation between 2D auto and 2D Manual 

measuring stone parameters. Moreover, it predicted 

success included F (0.08) < F crit (4.07) and p-value 

(0.778) > the alpha level (0.05), with 97% of accuracy 

and 0.972 correlation. Although it impossible as 

predict as 2D auto, 3D auto was available as effective 

predictor with results, F (4.14) ≈ F crit (4.07), p-value 

(0.048) ≈ the alpha level (0.05), 91% accuracy and 

0.889 correlation. 

Therefore, nearly all parameters of 2D auto were 

the same with manual because these parameters are 

evaluated depend on only a slice. It is the best CT 

parameters prediction in order to get nearly results 

with Manual. 3D auto was more robust because its 

parameters are evaluated using all slices including 

stone. Moreover, its results were also no significant 

different with Manual. So, the proposed 2D and 3D are 

very useful to predict CT parameters for urinary 

calculi. 

VI.  CONCLUSIONS 

CT is the most commonly used imaging method for 

evaluating a patient who presents and diagnoses 

urinary stones. It provides a rapid assessment of stone 

parameters, size, density, heterogeneity, and number 

of stone. Several investigators have attempted to 

predict the heterogeneity and density of stone using 

available preoperative studies. Stones are irregular 

structures and can have complex geometric shapes. 

Therefore, manual measuring is impossible to have 

exact stone parameters and volumetric information 

because of the limitation to measure depth of the stone.  

The proposed study was developed two kinds of 

auto measurement system to provide technical support 

in kidney stone detection and diagnosis Its function to 

pinpoint the CT values (average HU, stone 

heterogeneity index and variation coefficient of stone 
density) as these values provide focused investigation 

for medical specialists. 

Compare with manual record, two proposed 

methods can measure more accurate estimate of stone 

burden because the whole process was developed by 

automatically. This gives timely delivery and cost 
effective of diagnosis for radiologist. Limitation of 

manual measurement, the largest slice selection and 

ROI selection chosen by radiologist, may be variation 

in the process. The proposed methods can be reduced 

that variability. Reduced variability can give better 

information for diagnosis and treatment planning. 

Especially in jagged, staghorn and unsmooth stones, 

inaccurate segmentation results given by manual may 

reduce to estimate the precise CT parameter values. 

Pre-processing methods used in this study could 

provide better segmentation results than manual. It is 
very effective and efficient in CT parameter estimation 

and output visualization. 

 The 2D auto can derive more precise 

measurements than average HU, heterogeneity and 

VCSD in the manual information. Moreover, it 

provides internal structure of stone to predict stone 

composition and heterogeneity.  This prediction 

allows the physician in order to use diagnosis and 

treatment planning. 3D auto could estimate the more 

robust CT values for any shaped stone compare with 

2D manual and auto measurements because of using 

all aggregate slices of the stone. It saves the processing 
time to select the largest slice. Moreover, this 3D auto 

could provide the clear output with 3D visualization 

that could rotate in any direction. This low disturbance 

view could be useful to show stone number, shape and 

location. 

In conclusion, our study suggests that stone 

parameter measured by 2D auto is the best predictor to 

assist the stone diagnosis process. The routine 

measurement of 3D auto is probably the most robust 

and accurate estimate of the overall stone burden, as it 

takes stone parameters in all direction and slices 
including the stone. Our results indicate that the 

proposed 2D and 3D auto measuring are reliable 

predictors to assert the precise stone heterogeneity and 

density for urinary stone diagnosis. 
The developed program can be installed on any 

computer. That will allow the physicians to diagnose 
the urinary stone images outside the hospitals. The 
program includes automatic 2D and 3D measurements 
algorithms that allows making the work of physicians 
less time consuming. This has presented potential 
usefulness in urinary stone diagnosis and treatment 
planning; however, it is only a software development 
tool and the opinion of radiologists and physicians is 
needed to validate its result. 
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