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Abstract – The topographic impact may change the radiance 

values captured by the spacecraft sensors, resulting in distinct 

reflectance value for similar land cover classes and 

mischaracterization. The problem can be more clearly seen in 

rugged terrain landscapes than in flat terrains, such as the 

mountainous areas. In order to minimize topographic impacts, 

we suggested the implementation of Modified Sun-Canopy-

Sensor Correction (SCS+C) technique to generate land cover 

maps in Gua Musang district which is located in a rugged 

mountainous terrain area in Kelantan state, Malaysia using an 

atmospherically corrected Landsat 8 imagery captured on 22 

April 2014 by Support Vector Machine (SVM) algorithm. The 

results showed that the SCS+C method reduces the topographic 

effect particularly in such a steep and forested terrain with 

classification accuracy improvement about 4 % which was 

statistically significantly with the McNemar test value Z and P 

measured 6.42 and 0.0001 on the corrected image classification 

90.1 % accuracy compared to the uncorrected image 86.2 % for 

the test area. Thus, the topographic correction is suggested to be 

the main step of the data pre-processing stage in mountainous 

terrain before SVM image classification. 

Keywords—Support Vector Machine, modified Sun-Canopy-

Sensor Correction (SCS+C) Technique, land cover, landsat 8 

imagery 

I. INTRODUCTION  

Deforestation is a very broad concept, consisting of 
cutting trees including frequent lopping, felling, and forest 
litter removal, walking, grazing, and seedling trampling. It can 
also be described as removing or damaging the vegetation in 
a forest insofar as it no longer sustains its natural flora and 
fauna [1]. When the research region is positioned in rough or 
mountainous areas, the significant part of pre-processing is a 
topographic correction. Varied terrain orientation frequently 
leads to land pixel signal values to vary. Topographic 
correction is indeed essential in order to quantitatively analyze 
the remote sensing image until the classification phase 
typically in these area [2]. There are many topographical 

correction empirical and non-empirical parametric models 
have been extensively used it to suppress topographical 
consequences on remote sensing data, the common methods 
applied C, SCS+C and Minnaert techniques [3]. The superior 
output of semi-empirical corrections, including C and 
empirical-statistical corrections, and Minnaert correction is 
noticeable in several of these researches. 

Number of studies have shown that adjustment of 
topographical consequences performed prior to the use of 
multispectral and multi-temporal pixel classification can 
significantly enhance classification accuracy, especially if the 
location of the research is in rough terrain [4]. For example, 
[5]discovered that by combining atmospheric and slope-like 
correction, the forest to-non-forest classification accuracy of 
nearly 90 % in mountainous pre-Alps in central Switzerland 
could also be accomplished with the help of high-quality 
ground truth. They also discovered that atmospheric 
correction alone did not substantially enhance the 
classification opposed to utilizing only a correction of the 
slope and aspect. [6], assessed the topographical correction 
techniques for improving soil cover mapping using object-
based Landsat 5 TM image. The C, SCS+C and Minnaert 
techniques showed the best output, followed by S2 and E-Stat, 
with an overall accuracy rise of around 10 %.  Land cover 
classification varied in a big part of the complete region 
studied from uncorrected and corrected data, with values of 
about 29 % for all correction techniques.  

References [7] and [8] a topographically corrected 
imagery was implemented to the SVM classifier, achieving 
appropriate accuracy. The findings indicate that after 
topographic correction, the precision of the classification of 
land cover improved. Of Landsat TM-5 and OLI-8 
information, particular accuracy rises ranged from 3 % to 3.97 
%, to 0.44 % and 1.34 %, with Kappa coefficient rises of 2.4 
% – 4.9 % and 1.6 % – 2.9 %, respectively. In other study, [9], 
the accuracy of the land cover was evaluated and opposed for 
the four scenarios. The topographically uncorrected LC 
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classification led in overall accuracies of 78 % (1985), 79 % 
(1995) and 84 % (2010), respectively. The topographic 
correction enhanced the classification of ML with 3 % (1985), 
3 % (1995) and 2 % (2010) respectively. The classification of 
SVM was also carried out on topographically uncorrected and 
corrected composites. The overall accuracy of the 
topographically uncorrected SVM classification was 83 % 
(1985), 83 % (1995) and 89 % (2010), respectively. The 
revised classification of SVM led in an increase in overall 
classification accuracies of 2 % (1985), 0 % (1995) and 2 % 
(2010) respectively. Typically, for all years, the overall 
accuracies for LC courses were between 78 % and 91 %. 

Multiple writers contrasted the MLC for the most effective 
topographical correction techniques and recorded an increase 
in the overall accuracy of 1 %-10 % [7, 8] in other studies like 
[10] by an overall race accuracy up to 40 %. In some cases, 
however, the correction did not improve the classification 
accuracy satisfactorily [11, 12]. Topographic and atmospheric 
correction models are diverse and the choice of one model 
relies on its effectiveness to decrease the relief impact and 
ease of application and on the performance and study region 
of remote sensing data. Although, it is pointless to compare 
the studies since the input files and parameters are different 
and depend on in study areas, vegetation types, sensors, and 
DEM, atmospheric and topographic corrections methods. 
Furthermore, the adjusted SCS correction technique is 
suitable for mapping regions of forest land cover [13, 14]  

We concentrated on topographic impacts on land cover 
mapping precision in this paper, and in the previous 
paragraph, we highlight associated work on topographic 
impacts to improve land cover mapping accuracy. In order to 
minimize topographic impacts, we suggested the 
implementation of Modified Sun-Canopy-Sensor Correction 
(SCS+C) technique to generate land cover maps in Gua 
Musang district which is located in a rugged mountainous 
terrain area in Kelantan state, Malaysia using an 
atmospherically corrected Landsat 8 imagery by Support 
Vector Machine (SVM) algorithm. 

II. STUDY AREA (GUA MUSANG)  

Gua Musang is a southern Kelantan, Malaysia, district and 
parliamentary constituency. It's Kelantan's biggest district. It 
is administered by the district council of Gua Musang and 
bordered on the south by the state of Pahang, on the east by 
Terengganu, on the west by Perak and on the north by Kuala 
Krai and Jeli districts of Kelantan. It is about 140 km south of 
the government capital Kota Bharu, a tiny railway town. The 
study area included Gua Musang in northwestern Malaysia, 
which is encompassed within 4° 53' 3.4044'' N and 101° 58' 
5.4408'' E, covering an area of 4600 km2 (Fig. 1). The 
countryside is rough with a broad altitude (121–1770 m above 
sea level), and topographically classified into three kinds: 
mountains (> 500 m above sea level), hills (200–500 m above 
sea level) and valleys (< 200 m above sea level). The elevation 
of terrain reduces from northwest to southeast, and about 35 
percent of the study region accounts for mountainous terrain. 
The primary LC is woodland, which for food production was 
mainly cleared before the 1990s but has now been reforested 
in reaction to public measures. Other types of land cover 
include food plants like oil palm and rubber[15, 16]. 

 

III. METHODOLOGY 

The methodology is shown in Fig. 2. The uncorrected (UI) 
and corrected (CI) image were developed by applying SVM 
classification on both images. 

A. Data Source and Pre-processing  

Landsat 8 OLI (30 m) was used for LC mapping on 22 
April 2014 and was received from the site of the earth explorer 
(http:/earthexplorer.usgs.gov/). This data set was imported in 
ENVI 5.1v Software and preprocessed including geometric 
and atmospheric corrections prior to topographic correction. 
Nevertheless and, this image includes digital number (DN) 
matrices with 55,000 gray levels, the image data must be 
based on reflectance values, and thus it is essential to convert 
the DNs to reflectance which done by two steps. First, the OLI 
data was transformed into ENVI image file, the file contained 
wavelength details, bands, DN transformation into 
reflectance. Using the spectral radiance scaling factor in the 
OLI metadata file, Eq. (1) was used to convert DN values to 
spectral radiance.  

Lλ = ML * Qcal  + AL                                                          (1) 

where the radiance (W∕m2 · sr · μm) is Lλ, the 
multiplicative scaling factor for each band is ML, the pixel 
value in DN for level 1 is Qcal, and the additive scaling factor 
for each band is AL. The image was then saved and converted 
to the bit in line intelligence format. Second, for this purpose 
Radiance to Reflectance Conversion, the FLAASH method 
has been used to transform radiance values to the top of 
atmospheric correction (TOA). 

 

 

Fig. 1. Location of Gua Musang, Malaysia. 

The image was further saved and a single scale factor 
value (1000) was applied to all bands for transform [(Wm2 μm 
sr)*100 ] input radiance image into normal FLAASH input 
units (μW / cm2 nm sr Reflectance values in FLAASH image 
were multiplied by 10,000 so the resulting value ranged from 
0 to 1. Equation (2) has been used to directly transform DN 
values to TOA reflectance. 

ρ’λ = Mρ * Qcal + Aρ                                                           (2) 

where the spectral reflectance (unitless) without correction 
of solar angle is ρ’λ , the multiplicative scaling factor for each 
band is Mρ, the pixel value in DN (level 1) is Qcal, and the 
additive scaling factor for each band is Aρ . Equation (3) has 
been used to transform TOA reflectance with solar angle. 
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ρλ = ρ’λ· sin (θ)                                                                   (3) 

where the TOA reflectance (unitless) is ρλ and the solar 
elevation angle is θ. The next stage is the correction of 
geometrics. With 24 uniformly distributed GCPs, the Landsat 
8 data was geometrically projected onto the SPOT 5 image 
register using a bilinear conversion, the re-registration was 
carried out with an accuracy of 0.5 pixels. 

B. False Color Composite (FCC) 

A layer stack option has been implemented in the image 
interpreter tool box to generate an FCC. For the extraction of 
study region, the sub-setting tool of satellite image was 
conducted by taking Gua Musang's geo-referenced line border 
as AOI (Area of Interest). Some indices such as the 
normalized difference vegetation index (NDVI), the Soil 
Adjusted Vegetation Index (SAVI) and the Simple Ratio (SR) 
have also been developed to classify Landsat 8 images (Fig. 
3) for better classification outcomes. 

 

Fig. 3. The landsat 8 image of Gua Musang in FCC color and NDVI 

image. 

C. DEM Generation  

The DEM layer used in this research is the SRTM at 1 arc 
sec (approx. 30 m x 30 m) resolution levels with Z precisions 
usually among 10 m and 25 m Mean Root Square Error. It was 
generated in 2011 from stereo-pair images acquired with nadir 
and backward images of ASTER over the same area. The 
exact date of acquisition of ASTER stereo-pair data was not 
available.  

D. Topographic Correction (TC) 

After the at-satellite radiances were directly converted to 
at-surface reflection, SCS+C as TC method was performed to 
develop the CI image using Eqs (3) and (4) [14]. On the other 
hand, no TC was applied on the development of the UI image. 

𝑝𝐻,𝜆 = 𝑝𝑇,𝜆
cos 𝜃𝑡cos 𝜃𝑠 +𝐶𝜆

cos 𝑖+𝐶𝜆
                                                   (4)  

With cos 𝑖 = cos 𝜃𝑠 cos 𝜃𝑡 + sin 𝜃𝑠 sin 𝜃𝑡 cos(𝜙𝑠 − 𝜙𝑡) 

PH, 𝜆 (the normalized reflectance); i (the solar incident 
angle) ; 𝜃𝑡 ( the slope angle); 𝜃𝑠 (the solar zenith angle); ∅s ( 
the solar azimuth angle); ∅t ( the aspect angle); 𝐶𝜆 (empirical 
parameters (c=b/m)), c ( a function of the regression slope (b) 
and intercept (m)), which was acquired using regression 
between cos i and PH, 𝜆 800 sample points were assigned in 
different terrain and illumination condition to derive cos i 
value. 

 

 

 

 

 

 

Fig. 2. The study methodology for SVM improving using SCS+C. 

E. RBF-Based SVM Classification and Evaluation  

The classification system by [17] is proposed. Table I 
presents descriptions of the nine classes in this system. 
Training data samples is the crucial step in a supervised 
classification method like SVM. Training data were randomly 
chosen from comparatively homogeneous areas of the 

research region corresponding to the chosen land cover 
classes using the ROI instruments supplied by ENVI software 
(v. 5.1) with the assistance of ground expertise, land cover and 
forest type cover maps acquired from the Ministry of 
Agriculture and Forestry, Malaysia for 2013 and the Google 
Earth tool.100 pixels for each land cover were equally 
selected as validation samples for image classification 
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accuracy assessment. For assessing quality of training data, 
the measurement of J – M is based on distance from 
Bhattacharya. It enables to show how statistically distinct a 
chosen spectral class pair is. J – M distance is provided using 
Eq. (5) for two classes a and b; 

1

2(1 exp( )

1
1 1 2( ) ( ) ( )
8 2 2

ab

a b
T a b

a b a b

a b

JM

c c
c c

In
c c


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= − −

 
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= − − +  
 
             (5) 

where the mean values are μa and μb for categories a and 
b, the covariance matrices for categories a and b are Ca and Cb 
and the vector denotes J – M distance range is an index of 0.0 
to 2.0. Its > 1.7 values show the classes are well segregated. 
A J – M distance value < 1.0 shows bad class separability. The 
separability for selected training sites of all classes in this 
study were examined by computing their spectral separability, 
and the J–M distance values were measured between land 
cover classes range from 1.7 to 2. For CI and UI classification, 
SVM base on RBF was applied. The outcomes of the SVM-
based RBF kernel seemed to have least computing problems, 
the penalty value C and the kernel parameter π were the two 
specifications used for the RBF kernel, the γ was calculated as 
the inverse of the OLI ortho imagery number of spectral bands 
and a value of 0.167 was assigned. The maximum value (100) 
of the C has been allocated. A zero value was allocated to the 
pyramid parameter, and a zero was allocated to the probability 
limit as set as suggested in the ENVI User Manual. Eq. (6) 
demonstrates the internal function type of the RBF product.  

K(x, y) = exp {-
|𝑥−𝑦|2

2𝜎2  }                                                    (6) 

where x and y are depicted as function vectors in certain 
input areas, and σ is the variance. 

Table I. Summary of training (ROIS) areas used for modification SCS+C 

AS TC method. 

No. Land Cover 

Classes 

Description Training 

1 Forests Primary and secondary forests: tall dense 

trees and Planted trees 

2149 

2 Water 

Bodies 

The Areas covered either by river beds or 

by man-made earth dams, dams filled 

with sand, streams, lakes, reservoirs and 

ponds.  

1539 

3 Oil Palm areas with oil palm trees 2225 

4 Rubber areas with rubber trees 718 

5 Crop Land The Land used primarily for the 

production of food plants such as maize, 

green grams, beans, cassava and mangos. 

The cultivation of crops in this territory is 

either irrigated or rainfed 

238 

6 Grass Land This class of LC defines grass as the main 

vegetation cover 

538 

7 Barren 

Land 

This describes the land left without 

vegetation cover 

1696 

8 Built-Up 

Area 

The LC with the rural and urban building. 

It involves infrastructure for commercial, 

residential, industrial and transportation. 

590 

9 Others Not given in the categories from 1 to 9 845 

                                                               Total  Pixels Used 10538 

 

F. Performance Accuracy Assessment  

The criteria for assessing classification algorithms 
efficiency include accuracy, speed, stability and 
comprehensibility [18]. The aim of the assessment relies on 

which criterion or group of criteria to be used. As the most 
appropriate criterion for all directions and for all reasons. In 
this evaluation, accuracy, speed and stability were chosen as 
criterion. In standings of producer accuracy (PA), user 
accuracy (UA), and overall accuracy (OA), an error matrix 
was produced to provide a means of expressing every class 
accuracy and their contribution to OA. Kappa coefficient (k) 
was frequently used to estimate how much better a specific 
classification relative to a random classification and to 
determine a confidence interval to equate two or even more 
classifications statistically. The OA, PA, UA and K were 
calculated as:  
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where nii is the number of pixels in a category properly 
categorized; N is the overall number of pixels throughout the 
confusion matrix; r is the rows number; and nicol and nirow are 
total columns (reference data) and rows (expected classes). 
Among the most commonly used techniques of comparing 
accuracies is comparing two autonomous kappa values. It is 
possible to evaluate the statistical significance of the 
distinction between the two values by calculating a Z value. 
There are, indeed, several problems concerning the quality of 
the kappa interpretation. Expressing accuracies as the 
percentage of properly assigned pixels (i.e., general precision) 
is therefore preferable, as described in [19]. For all the 
classifications, the same set of reference samples was used in 
this study. Thereby, for all the techniques adhered, each set of 
reference samples could be preserved as dependent samples. 
In such a scenario, the meaning of the difference between the 
two percentages (overall accuracy) was assessed using Eq. (7) 
for the McNemar test [20, 21]. 

𝒁 =
𝒇𝟏𝟐 − 𝒇𝟐𝟏 

√𝒇𝟏𝟐+ 𝒇𝟐𝟏
                                                                 (7) 

where the validation data frequency at row i column j is 
fij. The number of pixels of one technique properly 
categorized as opposed to the number of pixels of another 
technique wrongly categorized are f12 and f21. The classified 
images from SVM were evaluated using the error matrix 
statistics calculation as well as K analysis was also conducted 
to assess whether there were two considerably distinct 
classifications 

IV. RESULTS AND DISCUSSION 

Figures 4 and 5 show the comparison of Landsat 8 OLI 
and RBF-based SVM classification results from the UI and 
CI. Topographic effects are clearly seen in the rugged terrain 
in the UI. The slope facing off the illumination source in the 
CI appears brighter than the same path in the UI as a 
consequence of TC. (Figs. 4 (a) and (b)). In both tables (II and 
III) demonstrate UI and CI classification process accuracy 
(OA). The OA for the Landsat 8 OLI imagery increase from 
86.22 % to 90.11 %, after TC being performed. Generally, 
forest classes have low accuracies for the UI due to the 
topographic effect. Most of the forests are placed in rugged 
terrain, which contributes to the different illumination of 
slopes. Different reflectance values of forest trees 
communities result in the two classes could be separated in 
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different classes. However, cloud shadows which are mainly 
located in the mountainous area in test area altered the actual 
DN, thus prompted the misclassification of the forest, oil palm 
and rubber. Compared to the CI classification, this also 
influenced the reduced UI image classification OA. The 
McNemar test value Z and P measured between corrected 
image (with (SCS+C) and un-corrected image (with (SCS+C) 
by SVM classifier about 6.42 and 0.0001 which mean the 
corrected image by SVM thus had a substantial benefit over 
un-corrected image by SVM because the McNemar test value 
of the McNemar is higher than 1.96, the first technique offers 
a statistically significant (p ≤ 0.05) enhancement in the 
outcomes of the classification.  

A                                                  B                    

 

Fig. 4. The uncorrected (A) and corrected (B) infrared images of the test area. 

 

 

 

 

 

Fig. 5. The RBF-based SVM classification results from the uncorrected TC (A) 

and corrected TC images (B). 

A similar increase in accuracy for image classification 
through the application of the SCS+C method was also 
achieved in a study conducted in Kheyround Kenar forest in 
Iran [22]. The research showed that the TC was able to 
enhance accuracy from 75.22 % to 82.13 %. In other study [4] 
land cover mappings in Ci Kapundung and Ci Sangkuy upper 
catchment areas on rough terrain in Bandung Basin, 
Indonesia, images were acquired from Spot 6 and classified 
using object-based satellite image classification. Under these 
circumstances, the topographic correction technique was 
selected as a modified sun-canopy-sensor correction 
(SCS+C). Based on the OA, its performance was assessed. 
Result indicates that the correction technique could enhance 
the accuracy of the first and second case studies to 77 % and 
87.58 % respectively [4]. 

 

 

 

 

Table II. Accuracy assessment for uncorrected image (without (SCS+C) as topographic correction). 

Land Cover Classes Water 

Bodies 

Forests Oil 

Palm 

Rubber Crop 

Land 

Grass 

Land 

Barren 

Land 

Built-Up 

Area 
Others Total PA 

% 

UA 

% 

Water Bodies 63 0 0 0 0 1 4 3 0 71 63 88.73 

Forests 13 100 4 21 10 0 0 1 0 149 100 67.11 

Oil Palm 7 0 96 3 0 0 1 2 0 109 96 88.07 

Rubber 0 0 0 76 0 0 0 0 0 76 76 100 

Crop Land 0 0 0 0 89 0 0 3 0 92 89 96.74 

Grass Land 3 0 0 0 1 94 2 0 0 100 94 94 

Barren Land 2 0 0 0 0 0 91 15 0 108 91 84.26 

Built-Up Area 12 0 0 0 0 5 2 76 0 95 76 80 

Others 0 0 0 0 0 0 0 0 100 100 100 100 

Total 100 100 100 100 100 100 100 100 100 900 
  

OVA 86.22% 

KAPPA 0.85 
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Table III. Accuracy assessment for corrected image (with (SCS+C) as topographic correction). 

Land Cover Classes Water 

Bodies 

Forests Oil 

Palm 

Rubber Crop 

Land 

Grass 

Land 

Barren 

Land 

Built-Up 

Area 

Others Total PA% UA% 

Water Bodies 98 0 0 0 0 0 0 0 0 98 98 100 

Forests 2 82 9 0 1 0 0 0 0 91 82 86.81 

Oil Palm 0 5 89 2 0 8 0 0 0 103 89 85.44 

Rubber 0 0 2 93 0 3 0 0 0 97 93 95.88 

Crop Land 0 3 0 0 96 1 7 2 0 109 96 88.07 

Grass Land 0 6 0 1 3 79 12 0 0 101 79 78.22 

Barren Land 0 2 0 0 0 9 65 0 0 76 65 85.53 

Built-Up Area 0 2 0 4 0 0 16 96 0 114 96 84.21 

Others 0 0 0 0 0 0 0 2 100 102 100 98.04 

Total  100 100 100 100 100 100 100 100 100 891 
  

OVA 90.11% 
           

KAPPA 0.88 
           

 

V. SUMMARY 

This paper proposes an evaluation effect of SCS+C as TC 
method on the RBF-based SVM classification performance 
using Landsat 8 imagery. The study showed that SCS+C 
method could significantly reduce the topographic effect on 
mapping accuracy particularly in such a steep and forested 
terrain. On the corrected image, there is an enhancement in 
classification accuracy relative to the uncorrected image for 
the test region from 86.22 % to 90.11 %. The McNemar test 
value Z and P measured statistically significant (p ≤ 0.05) 
between the corrected and un-corrected images by SVM 
classifier about 6.42 and 0.0001. To improve the RBF-based 
SVM image classification technique accuracy, atmospheric 
correction and the topographic correction are suggested being 
implemented for such mountainous and forested terrain before 
applying RBF-based SVM classification. 

ACKNOWLEDGEMENTS 

Authors wish to gratefully acknowledge Prof. Shattri B. 
Mansor, Director of Remote Sensing and GIS Research 
Centre at Universiti Putra Malaysia, and Dr. Zailani 
Khuzaimah for the financial support, recommendations and 
guidance through this study. The authors wish to acknowledge 
the helpful comments and advise from both anonymous 
reviewers 

REFERENCES 

[1] P. Van Der Molen and D. Mitchell, "Climate Change, Land Use and 

Land Surveyors," Survey Review, vol. 48, no. 347, pp. 148-155, 2016. 

[2] A. Fahsi, T. Tsegaye, W. Tadesse and T. Coleman, "Incorporation of 

Digital Elevation Models with Landsat-TM Data To Improve Land 

Cover Classification Accuracy," Forest Ecology and Management, vol. 

128, no. 1-2, pp. 57-64, 2000. 

[3] S. Vanonckelen, S. Lhermitte and A. Van Rompaey, "The Effect of 

Atmospheric and Topographic Correction Methods on Land Cover 

Classification Accuracy," International Journal of Applied Earth 

Observation and Geoinformation, vol. 24, pp. 9-21, 2013. 

[4] M. S. Rani, O. Schroth, R. Cameron and E. Lange, "The Effect of 

Topographic Correction on SPOT6 Land Cover Classification in Water 

Catchment Areas in Bandung Basin, Indonesia," in GISRUK 2017 

Proceedings, 2017, no. 96: Geographical Information Science Research 

UK. 

[5] K. I. Itten and P. Meyer, "Geometric and Radiometric Correction of TM 

Data of Mountainous Forested Areas," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 31, no. 4, pp. 764-770, 1993. 

[6] E. P. Moreira and M. M. Valeriano, "Application and Evaluation of 

Topographic Correction Methods to Improve Land Cover Mapping 

Using Object-Based Classification," International Journal of Applied 

Earth Observation and Geoinformation, vol. 32, pp. 208-217, 2014. 

[7] B. Tan et al., "Improved Forest Change Detection With Terrain 

Illumination Corrected Landsat Images," Remote Sensing of 

Environment, vol. 136, pp. 469-483, 2013. 

[8] S. Vanonckelen, S. Lhermitte and A. Van Rompaey, "The Effect of 

Atmospheric and Topographic Correction on Pixel-Based Image 

Composites: Improved Forest Cover Detection in Mountain 

Environments," International Journal of Applied Earth Observation 

and Geoinformation, vol. 35, pp. 320-328, 2015. 

[9] S. Vanonckelen, S. Lhermitte, V. Balthazar and A. Van Rompaey, 

"Performance of Atmospheric and Topographic Correction Methods on 

Landsat Imagery in Mountain Areas," International Journal of Remote 

Sensing, vol. 35, no. 13, pp. 4952-4972, 2014. 

[10] I. Gitas and B. Devereux, "The Role of Topographic Correction in 

Mapping Recently Burned Mediterranean Forest Areas from 

LANDSAT TM Images," International Journal of Remote Sensing, vol. 

27, no. 1, pp. 41-54, 2006. 

[11] L. Blesius and F. Weirich, "The Use of The Minnaert Correction For 

Land‐Cover Classification in Mountainous Terrain," International 

Journal of Remote Sensing, vol. 26, no. 17, pp. 3831-3851, 2005. 

[12] Z. Zhang, R. R. De Wulf, F. M. Van Coillie, L. P. Verbeke, E. M. De 

Clercq and X. Ou, "Influence of Different Topographic Correction 

Strategies on mountain vegetation classification accuracy in The 

Lancang Watershed, China," Journal of Applied Remote Sensing, vol. 5, 

no. 1, pp. 053512, 2011. 

[13] S. Soenen, D. Peddle, C. Coburn, R. Hall and F. Hall, "Improved 

Topographic Correction of forest image data using a 3‐D Canopy 

Reflectance Model in Multiple Forward Mode," International Journal 

of Remote Sensing, vol. 29, no. 4, pp. 1007-1027, 2008. 

[14] S. A. Soenen, D. R. Peddle and C. A. Coburn, "SCS+ C: A Modified 

Sun-Canopy-Sensor Topographic Correction in Forested Terrain," IEEE 

Transactions on Geoscience and Remote Sensing, vol. 43, no. 9, pp. 

2148-2159, 2005. 

[15] M. Hossain, J. Bujang, M. Zakaria and M. Hashim, "Application of 

Landsat Images to Seagrass Areal Cover Change Analysis for Lawas, 

Terengganu and Kelantan of Malaysia," Continental Shelf Research, 

vol. 110, pp. 124-148, 2015. 

[16] B. Satyanarayana, K. A. Mohamad, I. F. Idris, M. L. Husain and F. 

Dahdouh-Guebas, "Assessment of Mangrove Vegetation Based on 

Remote Sensing and Ground-Truth Measurements at Tumpat, Kelantan 

Delta, East Coast of Peninsular Malaysia," International Journal of 

Remote Sensing, vol. 32, no. 6, pp. 1635-1650, 2011. 

[17] J. R. Anderson, A Land Use and land cover classification system for Use 

with Remote Sensor Data. US Government Printing Office, 1976. 

[18] V. N. Mishra, R. Prasad, P. K. Rai, A. K. Vishwakarma and A. Arora, 

"Performance Evaluation of Textural Features in Improving Land 

Use/Land Cover Classification Accuracy of Heterogeneous Landscape 

Using Multi-Sensor Remote Sensing Data," Earth Science Informatics, 

vol. 12, no. 1, pp. 71-86, 2019. 

[19] G. M. Foody, "Status of Land Cover Classification Accuracy 

Assessment," Remote Sensing of Environment, vol. 80, no. 1, pp. 185-

201, 2002. 

[20] G. M. Foody, "Thematic Map Comparison," Photogrammetric 

Engineering & Remote Sensing, vol. 70, no. 5, pp. 627-633, 2004. 

[21] P. Kumar, R. Prasad, A. Choudhary, V. N. Mishra, D. K. Gupta and P. 

K. Srivastava, "A Statistical Significance of Differences in 

Classification Accuracy of Crop Types Using Different Classification 

Algorithms," Geocarto International, vol. 32, no. 2, pp. 206-224, 2017. 

[22] N. Ghasemi, A. Mohammadzadeh and M. R. Sahebi, "Assessment of 

different topographic correction methods in ALOS AVNIR-2 Data Over 

A Forest Area," International Journal of Digital Earth, vol. 6, no. 5, pp. 

504-520, 2013.



 

   
 

 


