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Abstract — Using non-destructive evaluation tools 

based on imaging techniques, including single-sensor 

multispectral cameras, provides a cost-effective solution 

for optimizing rice nitrogen fertilization through site-

specific nutrient management. However, their accuracy 

and precision have been identified as areas for 

improvement. This study aims to develop a methodology 

to improve the accuracy of estimations through field 

experiments. It utilizes multispectral images captured by 

MAPIR Survey3W Orange Cyan Near-Infrared and 

MAPIR Survey3W Red Edge cameras. The Normalized 

Difference Vegetation Index and Red Edge values 

derived from these images are correlated with Soil Plant 

Analysis Development values to assess rice nitrogen 

levels. A prediction model is then built using the Support 

Vector Regression algorithm. Findings from the 

experiments underscore the importance of addressing 

shadow effects, integrating the dataset on light intensity 

and image capture time, conducting radiometric 

calibration, filtering outlier data, employing image 

segmentation, and utilizing nonlinear Canova tests to 

enhance estimation accuracy. By configuring the 

Support Vector Regression model with RBF kernel, 

gamma set to 1.24, and epsilon set to 0.1, the R2 of the 

train data and validation data reaches 0.851, and 0.840 

respectively. Meanwhile, the R2 of the test data achieves 

0.793 with a mean absolute percentage error of 3.49% 

and a root mean square error of 1.70. These findings 

underscore the potential of the proposed methodology to 

improve the estimation of rice nitrogen status based on 

single-sensor multispectral images, paving the way for 

more effective nutrient management strategies in rice 

cultivation. 

Keywords—Single-sensor multispectral images, Rice 

leaf nitrogen content, Framework, Super Vector 

Regression.  

I. INTRODUCTION 

Meeting the nutritional requirements of 
populations is imperative in numerous regions 
worldwide, where staples such as grains, legumes, and 
root crops constitute the primary source of calories, 
protein, and essential nutrients essential for 
maintaining optimal health. Regrettably, the surge in 
global food demand has been met with significant 
disruptions in food production due to a multitude of 
factors. These include climate change, limited 
resource availability, geopolitical conflicts, 
humanitarian crises, natural disasters, evolving 
population dynamics, producer and consumer 
behaviors, trade dynamics, and policy responses [1]. 
The COVID-19 pandemic, a prevailing global crisis, 
has unveiled substantial dangers that imperil both the 
availability and stability of food systems, thereby 
jeopardizing global food security [2]. Food security 
remains a paramount concern for certain East and 
Southeast Asian countries, particularly concerning 
rice production, a staple crop in these regions. The 
adverse effects of climate change on rice cultivation 
[3] necessitate urgent attention to address the prevalent 
yield gap. Bridging this gap, which denotes the 
disparity between current production levels and the 
maximum potential yield, is imperative to sustain 
Southeast Asia's position as a preeminent rice-
producing region [4]. 

Given the constraints of limited land availability 
and the imperative to enhance rice production, farmers 
are increasingly turning to intensification farming 
systems. These systems are designed to maximize 
productivity through the implementation of various 
approaches, including precision agriculture, which 
leverages technologies such as Global Positioning 
System (GPS) and sensors to optimize the application 
of fertilizers, water, and pesticides. Intensification also 
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encompasses the adoption of high-yielding crop 
varieties, improved irrigation methods, 
mechanization, and the utilization of modern farming 
techniques. Nevertheless, it is crucial to strike a 
balance between intensification efforts and sustainable 
practices to mitigate adverse environmental impacts, 
such as soil degradation, water pollution, and loss of 
biodiversity [5]. Crop management practices are 
implemented to meet the demands of intensive rice 
production and future rice needs through the adoption 
of knowledge-based strategies that prioritize the 
efficient utilization of all inputs, including fertilizer 
management [6]. 

Nitrogen (N) plays a pivotal role in the growth, 
development, and yield formation of rice plants, 
underscoring the significance of enhancing nitrogen 
use efficiency (NUE) to optimize agricultural 
productivity. Agronomic approaches are employed to 
improve NUE, encompassing techniques like 
screening rice varieties with superior N utilization, 
innovating and utilizing N fertilizers, optimizing the 
timing and methods of fertilization, employing 
nitrification and urease inhibitors to enhance N 
availability, and promoting the adoption of fertilizer-
saving technologies. These strategies aim to maximize 
the effectiveness of N fertilization, minimize losses, 
and enhance overall NUE in rice cultivation [7]. 

One widely recognized practice is site-specific 
nutrient management (SSNM), which integrates 
various methodologies such as soil testing, crop 
nutrient uptake models, precision agriculture 
technologies, and agronomic expertise. SSNM 
highlights the significance of adopting a precise and 
targeted approach to fertilizer management, rather 
than relying on generalized recommendations [8]. The 
implementation of SSNM involves dynamic 
adjustment of N rates in agriculture, which entails 
adapting the application of N fertilizers based on real-
time or near real-time information about crop growth, 
nutrient availability, and environmental conditions. 
Several tools can facilitate the dynamic adjustment of 
N rates, including the leaf color chart (LCC) and soil 
plant analysis development (SPAD) meter [9]. Modern 
electronic and computing technology development 
makes significant contributions to analyzing and 
measuring the rice N status, for example:  

• Optical Sensors or Cameras 

Visual, multispectral, or hyperspectral images can 
be used for calculating vegetation indices (VI’s), such 
as normalized difference vegetation index (NDVI) or 
canopy reflectance. These VIs provide information on 
crop health and vigor, allowing farmers to adjust N 
rates accordingly. Optical sensor data can be used to 
estimate crop leaf N content and guide variable rate N 
application [10, 11].  

• Crop Models and Decision Support Systems 

Mathematical models and decision support 
systems can integrate various data inputs, such as 
weather data, soil characteristics, and crop growth 
parameters, to simulate crop nutrient requirements and 

predict optimal N rates. These tools enable farmers to 
make informed decisions regarding N fertilization 
based on specific field conditions and crop growth 
stages [12]. 

• Mobile Applications and Data Analytics 

Mobile applications and digital platforms can 
facilitate data collection, storage, and analysis for N 
rate adjustment. These tools can integrate field-
specific data, including soil test results, weather data, 
and crop monitoring data, to provide real-time 
recommendations for N rate adjustments [13]. 

• Remote Sensing and Satellite Imagery 

Satellite imagery and aerial remote sensing can 
provide valuable information on crop growth and 
nutrient status. These tools allow for the monitoring of 
VI, biomass accumulation, and canopy health over 
large areas, aiding in the adjustment of N rates based 
on spatial variations within a field [14, 15]. 

Checking N levels in rice is essential in SSNM 
practice, so a current study on assessing rice N content 
is needed. In general, there will be a need for improved 
sensing systems that are more dependable, precise, 
durable, and cost-effective in various aspects of crop 
production. These advancements will enable better 
and more efficient site-specific management of 
specialty crops. However, there are still many 
challenges to overcome due to the complex and 
unstructured nature of the agricultural environment 
[16]. Optical sensors have become a popular choice for 
this purpose because of their non-destructive, easy, 
and fast process of measurement. Especially in 
estimating the rice leaf N content based on a 
hyperspectral camera [17] or multispectral camera 
[18]. In general, hyperspectral and multispectral 
cameras provide notable benefits over visual cameras 
in estimating N levels in rice [11]. These advantages 
stem from their enhanced spectral information, 
improved precision, early detection of deficiencies, 
and potential for advanced data analysis and modeling. 
These combined advantages contribute to the 
enhancement of N management in rice farming, 
resulting in better crop yields and optimized utilization 
of resources. However, the price of hyperspectral 
cameras is expensive, ranging from thousands to tens 
of thousands of dollars, and high-end multispectral 
cameras that use multi-sensors also cost a lot. This is 
the main obstacle to application in the field, especially 
for farmers in developed countries. Recently, a 
multispectral camera using only one sensor at a 
relatively affordable price has been launched, but it 
has many weaknesses, especially leading to reduced 
spectral resolution and accuracy compared to using 
multiple-sensor cameras. This is due to the limited 
capacity of a single sensor to accurately detect and 
distinguish between various wavelengths of light, and 
environmental uncertainty [19, 20]. Consequently, the 
task at hand is quite challenging, as numerous 
problematic issues become evident when examining 
images of crops. This paper emphasizes a 
methodology framework to estimate the rice leaf N 
content using a single-sensor multispectral camera 
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(SSMC) based on the field experiment. The goal is to 
give a comprehensive guide, and the practice should 
be considered when using a SSMC for estimating the 
rice leaf N content. 

II. METHODOLOGY 

Efforts to leverage multispectral images acquired 
from low-cost cameras with a single sensor to estimate 
rice leaf N content have primarily focused on 
exploring modeling algorithms, particularly 
employing machine learning techniques to enhance 
estimation accuracy [21]. However, often overlooked 
or inadequately addressed are other critical processes 
such as camera selection, image capture, and data 
collection techniques, as well as image and data 
preprocessing, despite their significant impact on the 
quality of training data, which directly affects the 
prediction model. In general, the estimation of rice leaf 
N content using a multispectral camera involves 
analyzing the reflectance values of the rice leaf and 
applying suitable algorithms. In the previous study 
that used only the NDVI value, the prediction model's 
performance R2 only reached 0.51. In this study, the 
Red Edge (RE) and NDVI values were mapped to the 
SPAD value by computing the reflectance of rice 
leaves to create a more accurate model. This research 
utilized two MAPIR Survey3 cameras to capture RE 
spectral, and Orange+Cyan+Near-Infrared (OCN) 
spectral. OCN images are known for providing 
improved contrast in NDVI images between the soil 
and plants compared to the Red+Green+Near-Infrared 
(RGN) camera. The OCN camera model captures light 
at specific wavelengths: Near-Infrared at 808nm, 
Orange at 615 nm, and Cyan at 490 nm [22]. By 
considering these factors, this work aims to enhance 
the accuracy and reliability of the prediction model for 
rice leaf N content. This research delineated five 
fundamental steps involved in constructing a 
prediction model for rice leaf N content using an 
SSMC described below: 

• Data and image collection: Gather a dataset 
of rice plants with known N content. This data should 
include both spectral measurements and the 
corresponding N content determined through a SPAD 
meter, as well as the other features needed. Use the 
multispectral camera to capture images of the rice 
plants. Ensure that the lighting conditions are 
consistent and correct exposure during image capture 
to maintain data quality. 

• Data cleaning and image preprocessing: 
Preprocess the captured multispectral images to 
correct for any distortions, such as radiometric 
calibration and geometric corrections. And then 
conduct a series of data-cleaning steps. This stage is 
essential to ensuring an accurate and unbiased dataset. 

• Extract spectral information: Extract the 
spectral information from the multispectral images. 
This involves analyzing the reflectance values of the 
rice plants at different spectral bands and calculating 
the NDVI and RE values.  

• Develop a prediction model: Use the 
collected data to develop a prediction model. Apply a 
machine learning algorithm to establish a relationship 
between the features (NDVI and RE values) and the 
output SPAD values. Various algorithms, such as 
SVR, can be employed. 

• Validate the model: Use the test dataset to 
evaluate the model's performance. Assess metrics such 
as accuracy and precision values to determine the 
effectiveness of the model. 

The data acquitition was carried out in a paddy 
field of the Ciherang variety located at Ciawitali, 
North Cimahi, West Java, Indonesia (-6.8663041, 
107.5514779) in August 2021, and 49 paddy plants 
were planted in pots that were treated with different 
fertilizing levels in November 2021. The data were 
collected during the panicle initiation about 60-70 
days after transplantationThis is a critical period in 
rice growth when the number of potential grain-
bearing tillers is determined and rice plants have a high 
demand for N uptake [23], also known as the highest 
NDVI value of the rice at the transition from the 
vegetative to reproductive phase [24].  

A. Data and Image Collection  

 The methodology for the field measurements is 
covered in this section, in which each dataset consists 
of SPAD values, multispectral images (RE and OCN), 
image captured time, and light intensity. According to 
reference [25], the fourth fully open leaf from the top, 
located at a position 1/3 from the tip to the base of the 
rice leaf, is considered the most suitable for predicting 
the nitrogen content of rice plants. The process of 
measuring the SPAD value using the SPAD meter is 
illustrated in Fig. 1.  

Fig. 1. Measuring the SPAD value on the fourth leaf 1/3 from the 
tip. 

To obtain accurate ground truth data with a 
uniform distribution of rice N content, two types of 
SPAD measurements were performed. First, 
measurements were taken in the rice fields on August 
19, 2021. The SPAD values were measured three 
times on six to ten tillers of each 36 rice plant. Second, 
the SPAD values were measured from 49 rice plants 
planted in pots on November 6, 16 and 20, 2021. The 
SPAD values were measured three to five times on 
eight to ten tillers.  
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The multispectral image acquisitions are carried 
out on the same rice plants as the SPAD data 
measurements. The experiments have revealed key 
considerations in capturing images, including the 
avoidance of shadows on the leaves under analysis and 
ensuring that the camera was perpendicular to the 
field. To illustrate the impact of shades on rice leaves, 
Fig. 2 showcases a visual representation. The OCN 
image in which the leaf was shaded led to an 
enlargement of the NDVI value in the corresponding 
area, indicated by a darker greenness (pointed by the 
arrows sign). On the other hand, Fig. 3 demonstrates 
an exemplary multispectral image captured from an 
appropriate camera angle, devoid of any shadows. 
These issues also should be considered when capturing 
the RE image. 

Fig. 2. Impact of shadow on NDVI value. 

Fig. 3. Example of the correct image. 

Table I further demonstrates the impact of visual 
light intensity on the NDVI value. The measurement 
of light intensity was performed using the GY1145 
sensor module, which is capable of quantifying both 
visible and infrared light. The resulting measurement 
is obtained as a numerical value derived from the 
internal 16-bit analog-to-digital converter. To mitigate 
the influence of these aspects, image capture was 
conducted between 10:00 and 14:00 hours to minimize 
the presence of shadows. Additionally, the camera was 
positioned vertically above the rice plants to ensure 
consistency, and concurrent light intensity 
measurements were taken as an additional feature for 
the dataset. It is worth noting that the height of the 
camera during image capture, approximately ranging 

between 100 to 140cm, did not yield any discernible 
impact on the NDVI and RE calculation results. 

Table I. Data on the impact of visual light intensity on the NDVI 
value. 

Rice plant 
number 

Visible light 
intensity 

Calculated NDVI 
value 

7 1894 0.58796 

7 1844 0.60607 

7 1852 0.60362 

7 1447 0.61758 

7 1260 0.71443 

7 1161 0.75339 

7 1085 0.78573 

Furthermore, there are two aspects related to the 
use of the MAPIR Survey3W OCN and RE cameras 
that need to be considered: proper exposure settings 
and radiometric calibration. The user instructions 
recommend manual settings with a combination of 
ISO and shutter speed to achieve the correct exposure. 
The changing light intensity in the field often needs to 
adapt to these. Therefore, in this research, an ISO is 
fixed to 50 (due to capturing images during high-light 
intensity daylight), and the shutter speed setting 
depends on the light intensity. MAPIR provides tools 
for radiometric calibration using the MAPIR 
Reflectance Calibration Target (MRCT), which 
consists of four calibration targets with known 
reflectance values as shown in Fig. 4 [26]. 

Fig. 4. MAPIR Reflectance Calibration Target in OCN image. 

MAPIR also offers an application to process and 
calibrate the collected images based on the MRCT 
images. Thus, in this research, the MRCT images need 
to be captured first before capturing the rice images to 
ensure obtaining images with accurate reflectance. 
The rice multispectral images were captured three to 
six times from slightly different angles, at the same 
times the captured time were recorded. At this step, 
each data pair consists of OCN and RE images, visible 
light intensity, IR light intensity, image captured time, 
and SPAD value. 

B. Data Cleaning and Image Preprocessing 

In practical implementation, SPAD values may not 
be consistently identical among different leaves on a 
single rice plant, and variations in SPAD readings can 
even occur at the same leaf measurement point. To 
address this variability, measurements are taken as 
described in Section A. This generates a substantial 
amount of data that requires careful selection. The 
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data-cleaning process for SPAD involves the 
application of Tukey's method for identifying outliers 
[27]. Outlying data points beyond the established 
boundaries are eliminated from the dataset. 

The captured OCN and RE images are in a pair of 
RAW and JPG formats. Using the Mapir Camera 
Control (MCC) application and pressing the 
"Analyze" button will automatically detect the camera 
model and filter type. Subsequently, it evaluates the 
exposure and verifies the availability of an MRCT 
image that meets the specified requirements, as shown 
in Fig. 5.  

Fig. 5. Process in analyzing the OCN images. 

The next step, after selecting options for vignette 
correction, sensor response correction, and reflectance 
calibration, is to press the "Process" button to convert, 
correct, and calibrate RAW format images into 16-bit 
TIFF format images, as depicted in the dialog box 
shown in Fig. 6. The resulting conversions are then 
grouped based on the rice plant to facilitate subsequent 
data processing. 

Fig. 6. Process in correction and calibration.  

The calibrated images are subsequently manually 
cropped to eliminate undesired objects and 
backgrounds that may interfere with the calculation of 
reflectance values. The criteria for selecting regions to 
be cropped include rice plants within the designated 
individual rice plants corresponding to the moment of 
SPAD value measurement. An example of cropping 
applied to the rice planted in the field, both for OCN 
and RE images, is illustrated in Fig. 7 and Fig. 8, 
respectively.  

Fig. 7. Apply cropping to the OCN image. 

 

Fig. 8. Apply cropping to the RE image. 

The cropped image will be segmented using the 
thresholding method to separate the rice leaf from its 
surrounding background, such as water and soil. 
Shadowed leaves should also be filtered out when 
determining the threshold value. An example of 
reflectance values is shown in Fig. 9.  

Fig. 9. Reading the reflectance value. 

Upon examining the NIR reflectance values of 

multiple brightly colored leaves, the leaf's NIR 

reflectance value is determined by taking the lowest 

value; the resulting value of 8825 was obtained. After 

reading the NIR reflectance values of a few 

background pixels, the greatest value is chosen to 

represent the background NIR reflectance value, 

giving 5614. The threshold value of 7219.5, rounded 

to 7200, is determined by applying Eq. (1). To find the 
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threshold value for RE image segmentation, the same 

process was followed, and the result was 7500. Figure 

10 shows an example of segmentation results for the 

OCN and RE images.  

𝑇ℎ𝑟 = 𝐵𝑎𝑐𝑘𝑅 + (𝐿𝑒𝑎𝑓𝑅 − 𝐵𝑎𝑐𝑘𝑅)/2       (1) 

, where Thr is the threshold value, BackR is the 
background NIR reflectance, and  LeafR is the leaf 
NIR reflectance.  

Fig. 10. Image segmentation result. 

C. Retrieve Spectral Data 

The most common and widely used VI in remote 
sensing for determining vegetation health and vigor is 
the NDVI [28]. Although it does not directly measure 
N content in plants, some research has found a strong 
correlation between NDVi value and N content in 
plants, including rice [29, 30]. The reason for using 
NDVI in determining N content also can be examined 
based on Eq. (2), and a quantitative approach provides 
a means to analyze large-scale patterns and trends in 
vegetation health. 

 𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅) (2) 

, where NDVI is the NDVI calculated value, NIR is the 
NIR reflectance, and R is the red reflectance. 

Chlorophyll strongly absorbs red light and reflects 
near-infrared light. Healthy, chlorophyll-rich 
vegetation tends to exhibit high NDVI values. Since 
chlorophyll is closely linked to N content, NDVI can 
indirectly indicate the presence and health of 
chlorophyll, thereby relating to N levels. However, 
NDVI has drawbacks, being sensitive to background 
factors such as brightness and shadows on leaves, as 
well as soil brightness [31]. In this study, these two 
issues have been anticipated by employing 
segmentation and using the OCN filter on MAPIR 
Survey3W camera.  

NDVI is calculated for each pixel, and varied 
NDVI values are obtained in a single image. To clean 
the data from outliers, Tukey's method is employed. 
Subsequently, the average NDVI values for the image 
are calculated. The purpose of calculating the average 
NDVI value is to obtain a single NDVI value 
representing the image. The NDVI image can be seen 
in Fig. 11, which also shows the background pixel 
(718, 297) with no NDVI value, while the leaf pixel 
(1007, 965) has an NDVI value of 0.4181. The same 
rice plant with different view angles may cause 

slightly different NDVI values. Due to their 
underexposure, 132 datasets that were obtained on 
November 20 were unable to be calibrated and 
converted. So at this stage, there are a total of 540 data 
pairs consisting of features of visible light intensity, IR 
light intensity, NDVI value, RE value, image captured 
time, and SPAD value as the label (output).  

Fig. 11. Calculated NDVI value. 

D. Develop A Prediction Model  

In constructing predictive models for estimating N 
content, various machine-learning algorithms are 
often employed, particularly when dealing with 
nonlinear data [21, 32]. One workable algorithm 
commonly utilized for N estimation in rice is the SVR 
[33, 34, 35]. Thus, this research adopts SVR to 
develop a predictive model. Before using the obtained 
dataset to build the SVR model, it is necessary to 
examine the correlations based on the acquisition date 
as shown in Table II.   

Table II. Correlation test. 

The outcome shows that the datasets on August 19, 
November 16, and November 20 have moderate 
nonlinear correlations. This resulted in 396 datasets in 
all, which would be used to construct the prediction 
model. The acquired dataset was separated using 
Holdout Validation, allocating 10% of the data for 
testing performance, 10% for validation data, which 
serves the purpose of parameter tuning and kernel 
selection, and 80% for training data. The dataset split 
was performed randomly using the scikit-learn library. 
Following the division of the dataset into three 
segments, feature scaling was conducted to prevent 
one feature from dominating the others. The chosen 
method for feature scaling was standardization. 
Subsequently, a machine learning model for predicting 
rice nitrogen content was developed from the 
standardized dataset, employing the SVR algorithm. 

Date No. of data Pearson test Canova test 

19 August 137 0.332 0.545 

6 November 

16 November 

20 November 

144 0.542 0.020 

16 November 143 0.181 0.500 

20 November 116 0.041 0.652 
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The kernel plays a crucial role in shaping the 
model. The scikit-learn library provides several 
kernels, namely Radial Basis Function (RBF), linear, 
poly, and sigmoid. Table III shows the coefficient of 
determination (R2) values for these kernels using the 
command regr.score(). A higher R2 value indicates a 
stronger fit for a model. Based on these results, it can 
be concluded that the RBF kernel exhibits the best 
performance, with the highest score on the validation 
data of 0.788. 

Table III. R2 of RBF, linear, poly, and sigmoid kernel. 

 

Furthermore, tuning was performed on the epsilon 
parameter through trial and error using the RBF kernel 
and default gamma values. The R2 results for various 
epsilon values are presented in Table IV, indicating 
that the optimal R2 for both training and validation 
data is achieved with an epsilon value of 0.1.  

Table IV. R2 of several epsilon values. 

Epsilon R2 of train data R2 of validation data 

0.1 (default) 0,704 0,788 

2 0,291 0,370 

1 0,594 0,735 

0.12 0,704 0,783 

0,15 0,704 0,777 

0,17 0,704 0,775 

0,2 0,705 0,776 

0,01 0,698 0,807 

 

 In the same way, testing was done on the gamma 
parameter, as Table V illustrates. The results of the 
trials that were run indicate that when the gamma 
value rises, the R2 for the training data likewise rises. 
However, there comes a point at which the gamma 
value is exceeded, beyond which the validation data 
score begins to decline, indicating the presence of 
overfitting. Consequently, a gamma value of 1.24 is 
used for this predictive model. 

Table V. R2 of several gamma values. 

Gamma R2 of train data R2 of validation data 

0.25 (Default) 0,704 0,788 

1 0,839 0,844 

1,24 0,850 0,841 

1,5 0,862 0,833 

1,75 0,872 0,826 

2 0,881 0,816 

5 0,933 0,701 

10 0,951 0,616 

20 0,96 0,465 

 

From the conducted experiments, the best 
validation data score was obtained with a gamma 

value of 1.24 and an epsilon value of 0.1. With these 
two parameters, the training data achieves an R2 of 
0.850, and the validation data achieves an R2 of 0.841.  

E. Validate The Model   

A prediction model's performance can be assessed 
by comparing the SPAD prediction results with the 
actual SPAD values using scatter plots, mean absolute 
deviation (MAD), mean absolute percentage error 
(MAPE), root mean square error (RMSE), and 
coefficient determination (R2). Forty unseen test 
datasets were initially separated and are used to create 
the scatter plot shown in Fig. 12. Red dots represent 
the actual SPAD values, while blue dots indicate the 
predicted SPAD values from the constructed model.  

Fig. 12. The scatter plot of the prediction results. 

The model prediction was illustrated in the 
comparison plot between the actual SPAD value on 
the x-axis and the predicted SPAD value on the y-axis 
in Fig. 13 with an R2 of 0.793. The calculated 
performance evaluations are MAD = 1.21, MAPE = 
3.49%, and RMSE = 1.70.  

Fig. 13. The prediction results for the SPAD value with gamma 1.24 
and epsilon 0.1. 

III. RESULTS AND DISCUSSION 

The prediction model R2 exhibits a good capacity 
to approximate the actual data, as evidenced by the 
performance evaluation for both the validation and test 
datasets; less than 20% of the variability in the 
outcome data cannot be explained by the model. The 
MAPE value of less than 3.5% indicates high accuracy 
of the prediction model, and the RMSE value of 1.70 
in the SPAD measurement is also acceptable since a 
contact handheld chlorophyll meter on the market has 
a ± 1.0 to ± 3.0 SPAD accuracy. The SPAD values for 
rice typically range between 25 and 45, with an 

Kernel R2 of train data R2 of validation data 

RBF 0,704 0,788 

Linear 0,465 0,696 

Poly 0,518 0,589 

Sigmoid -47,2 -39,29 
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optimized value of 37.5 based on [36]. This implies an 
RMSE% of 8.5% for this study. Comparing to the 
methods in N rice content prediction using UAV and 
multi-sensor multispectral cameras in the research 
[37] and [38], which have R2 of 0.68, RMSE of 
11.45%, and R2 of 0.76, RMSE of 10.33%, 
respectively, this research offers a better result and the 
potential for field implementation. The model tends to 
forecast incorrectly for SPAD values larger than 40 or 
smaller than 27.5, according to scatter plot 
observations. This could be because there isn't much 
field training data available for these values. The 
dataset on November 6 has a low correlation and needs 
further analysis while data acquisition is conducted. 

IV. CONCLUSION 

The proposed methodology framework is capable 
of generating a good predictive model suitable for 
SSNM purposes. Further development is needed, 
particularly in terms of dataset expansion, especially 
at SPAD values smaller than 27.5 and greater than 40. 
Considering the limitation of the prediction model 
only applied to the panicle initiation stage, image 
acquisition collected manually, and the long 
processing works can be improved in future research. 
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