
Vol 2 No 2 (2020) e-ISSN: 2682-8383

Journal of Engineering Technology and Applied Physics (2020) 2, 2, 3: 17-23
https://doi.org/10.33093/jetap
This work is licensed under the Creative Commons BY-NC-ND 4.0 International License.
Published by MMU PRESS. URL: https://journals.mmupress.com/index.php/jetap/index

VHDL Modelling of Low-Cost Memory Fault

Detection Tester

Quek Wei Chun, Pang Wai Leong*, Chan Kah Yoong, Lee It Ee and Chung Gwo Chin
Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia.

*wlpang@mmu.edu.my
https://doi.org/10.33093/jetap.2020.2.2.3

Abstract – Memory modules are widely used in varies

kind of electronics system design. The capacity of the

memory modules has increased rapidly since the past few

years in order to satisfy the high demand from the end-

users. The memory modules’ manufacturers demand

more units of automatic test equipment (ATE) to

increase the production rate. However, the existing ATE

used in the industry to carry out the memory testing is

too costly (at least a million dollars per ATE tester). The

low-cost memory testers are urgently needed to increase

the production rate of the memory module. This has

inspired us to design a low-cost memory tester. A low-

cost memory fault detection tester with all the major

fault detection algorithms that used in industry is

modelled using Very High Speed Integrated Circuit

Hardware Description Language (VHDL) in this paper

to support the need of the low-cost ATE memory tester.

The fault detection algorithms modelled are MATS+

(Modified Algorithm Test Sequence), MATS++, March

C, March C-, March X, March Y, zero-one and

checkerboard scan tests. PERL program is used to

analyse the simulation results and a log file will be

generated at the end of the memory test. Extensive

simulation and experimental test results show that the

memory tester modelled covers all the memory test

algorithms used in the industry. The low-cost memory

fault detection tester designed provides the 100 % fault

detection coverage for all memory defects.

Keywords—VHDL, Memory tester, March test

I. INTRODUCTION

Memory is one of the crucial modules used in most

of the electronic systems. Memories have dominated

the chip area and the area consumed increases linearly

throughout the year. Memories are one of the sensitive

parts with high potential of defects. The size of the

memory cell is shrinking and the memory cells are

built closer to each other in order to increase the

density of the memory circuitry. The memory module

with high density and complexity is fault-prone. A lot

of works were carried out to examine the memory

defects [1-5], but none of the work is to design low-

cost memory tester.

There are various memory test algorithms were

introduced to test the memory devices [6, 10-12]. The

conventional test algorithms are zero-one and
checkboard scan tests. The conventional test

algorithms are widely used to test memory modules.

New fault detection algorithms are proposed to detect

memory faults, which are single-cell fault and two

cells fault models. Some of the popular fault detection

algorithms are Modified Algorithmic Test Sequence

(MATS), MATS+, MATS++, Marching-1/0, March A,

March B, March C, March C-, Extended March C-,

March G, March X and March Y [10].

There are many types of memory testers available

in the market but the tester price is too costly for the

small and medium industry operators. This has
inspired us to design a cost-effective memory tester.

Various design techniques such as the full custom,

ASIC, and system modelling can be used to design the

memory tester. In this paper, VHDL is used to model

the memory tester. VHDL modelled the behaviour of

the memory test algorithms and the design is realizable

through the Field Programmable Gate Array (FPGA)

[7]. The designer has high flexibility in designing the

memory testing algorithms and FPGA is a

reprogrammable device. It is a promising solution to

design an effective low-cost memory tester.

Journal of Engineering Technology
and Applied Physics

https://journals.mmupress.com/index.php/jetap/index

Vol 2 No 2 (2020) e-ISSN: 2682-8383

18

The remaining of this paper is organized as follows.

A literature review is illustrated in section 2. The

methodology is illustrated in section 3. Extensive

simulations are discussed in section 4. Finally, a

conclusion is drawn in section 5.

II. MEMORY FAULT DETECTION ALGORITHMS

Various fault detection algorithms are introduced

to detect the faults that may occur in the memory

devices. The faults in the memory cells can be divided

into two types, i.e. a single cell and two cells fault

models. For single-cell fault model, it consists of

Stuck-At Fault (SAF), Transition Fault (TF), and Data

Retention Fault (DRF) [10-12].

SAF contributes up to 50 % of the memory’s faults.

The data of the memory may be stuck at zero (SA0) or

stuck at one fault (SA1). TF fault occurs when the

memory cell failed to update the data stored in the
memory cell either from 1 to 0 or 0 to 1. TF may occur

once the memory cell encounters either SA0 or SA1

that prohibits the logic 1 or logic 0 transitions

respectively. DRF occurs when the memory cell fails

to retain the data stored in it. The data in the memory

cell with DRF may change from 0 to 1 or 1 to 0 after a

delay time.

Two cells fault model is mainly contributed by the

Coupling Fault (CF). CF model involves two memory

cells, i.e. aggressor cell (a-cell) and victim cell (v-cell).

A change of the data stored in a-cell forced the change
of the data stored in v-cell. The data in v-cell may be

changed from 0 to 1 or 1 to 0.

There are four types of CF models, i.e. 1) Fault

type Idempotent CF (CFid), 2) State CF (CFst), 3)

Inversion CF (CFin) and 4) K-Coupling Fault (k-CF).

CFid occurs when a write operation applied to the a-

cell and it triggered a logic flip on the data stored in v-

cell. CFst occurs when the data stored in a-cell and it

caused the data stored in v-cell stuck at either 0 or 1.

CFin occurs when writing data to a-cell and it toggles

the data stored in v-cell. The k-CF also called a pattern

sensitive fault. The k-CF fault only occurs when the v-
cell is triggered by the surrounding cells under a

certain kind of data pattern.

Another common fault on the memory module is

Address Decoder Fault (AF). AF occurs when the

memory array assigned the wrong memory address.

AF can be divided into four categories, i.e. 1) no

memory cell assigned to a memory address, 2)

multiple cells assigned to a memory address, 3) no

address assigned to a memory cell and 4) multiple

addresses assigned to a memory cell.

March algorithm is the most popular memory test
algorithm used in the industry to detect the memory

faults discussed. The March algorithm will test the

memory cell one by one. The March test will only

begin to test the next memory cell once the current

memory cell is completed the test. March test is

modelled in this paper to test the high-density memory

modules. Table I shows the fault coverage of the

March algorithms.

The memory test algorithm is begun by writing a

value to the memory cell located at an address in the

memory array. Followed by, reading back the data
stored in the memory cell. If the data value read and

the data value written to the memory cell are the same,

then this memory cell passes the test. If the values

differ, then this memory cell fails the memory test. The

memory fault coverage and the total test time required

for each algorithm are different. Table II summarized

the memory test notations used in the memory test

algorithms.

Table I. Fault coverage and complexity of various March test

algorithms.

Table II. Memory test notations.

Notation Action
r0 Read a zero from the selected memory location

r1 Read a one from the selected memory location

w0 Write a zero to the selected memory location

w1 Write a one to the selected memory location

 Increasing memory address

 Decreasing memory address

↕ Either increasing or decreasing memory

address

Table III. Test sequence of March algorithms.

 Algorithm Test Sequence

MATS+ ↕(w0);  (r0,w1);  (r1,w0)

MATS++ ↕ (w0);  (r0,w1);  (r1,w0, r0)

MARCH X ↕ (w0);  (r0,w1); (r1,w0); ↕ (r0)

MARCH C ↕(w0);  (r0,w1);  (r1,w0); ↕ (r0); 

(r0,w1);  (r1,w0); ↕ (r0)

MARCH C- ↕(w0);  (r0,w1);  (r1,w0);  (r0,w1); 

(r1,w0);↕ (r0)

MARCH A ↕(w0);  (r0,w1,w0,w1);  (r1,w0,w1); 

(r1,w0,w1,w0);  (r0,w1,w0)

MARCH Y ↕ (w0);  (r0,w1, r1);  (r1,w0, r0); ↕ (r0)

MARCH B ↕ (w0);  (r0,w1, r1, w0,r0, w1);  (r1,w0,

w1););  (r1,w0, w1, w0);  (r0,w1,w0)

 Table III summarized the test sequences for the

various March algorithms. An example of the MATS+

algorithm is shown as follows.

↕(w0);  (r0,w1);  (r1,w0)

↕ (w0): Write the 0 to the memory cells in either the

ascending or descending order of the memory address

(starting at the lowest/highest address).

 (r0, w1): Read the data in the memory cells (expect

to read a 0 value from the memory cell, r0) and then

Vol 2 No 2 (2020) e-ISSN: 2682-8383

19

write a 1 to the memory cell in the ascending order of

the memory address (starting at the lowest address).

 (r1, w0): Read the data in the memory cells (expect

to read a 1 value from the memory cell) and then write

a 0 to the memory cell in the descending order of the

memory address (starting at the highest address).

 The zero-one scan test is used to test the memory

array with different data backgrounds such as solid

zero, solid one, checkerboard, complement

checkerboard, row stripes, complement row stripes,

double row stripes, complement double row stripes,

column stripes, complement column stripes, double

column stripes and complement double-column

stripes are shown in the following figures (Figs. 1−6).

The zero-one scan test is modelled to examine the

interaction between memory cells in the form of data

pattern and cover the other common memory faults.

Fig. 1. Solid data background.

Fig. 2. Checker Board data background.

Fig. 3. Column stripes data background.

Fig. 4. Row stripes data background.

Fig. 5. Double row data background.

Fig. 6. Double row stripes data background.

III. DESIGN METHODOLOGY

A. Simulation Configurations

Extensive simulation is carried out through the

Quartus II software. Three types of Altera FPGAs, i.e.

Stratix IV GX (High-end FPGA), Cyclone IV (Mid-

range FPGA) and Apex20k (low-end FPGA) are used

as the target devices in the simulations. The fault

detection coverage of the MARCH algorithms is

shown in Table IV. The combination of the test
algorithms in Table IV will give the 100 % memory

fault detection coverage for all commonly known

memory defects.

Table IV. Fault detection coverage of the test algorithms.

The memory sizes that selected for the

performance analyses are as follows, i.e. 4 by 4 array,

8 by 8 array and 16 by 16 array. These memories with

different sizes are used as the device under test for the

memory tester proposed. Furthermore, the memory

sizes selected are able to fit into the FPGA chips that
are used as the testbed for the simulation analyses. The

sizes selected are adequate to show the current trend

of the existing memory sizes available in the market.

The memory fault detection algorithms modelled in

this paper is able to detect all the common memory

defects with 100 % fault detection coverage.

Vol 2 No 2 (2020) e-ISSN: 2682-8383

20

The memory test operation is shown in Fig. 7. The

input data in the testbench are generated according to

the test sequences listed in Table III. The tester will

access the testbench that consists of the following

information.

• Address

• Input data

• Memory cell enable

• Memory cell set

• Memory cell reset

The enable signal is available on each memory cell.

The tester enables or disables the memory cells by

controlling the enable signal. The memory cell is

enabled to carry out the memory test and the other

memory will be disabled. The faulty cell is disabled

and the other memory cells will continue to carry out

the memory test. For a read operation, the data stored
in the memory cell is read and forwarded to the output

file. The output file contains the following information.

• Input data from the testbench

• Time

• The data stored in the memory cell

The data stored in the memory cell must be the

same as the input data from the testbench. The output

file will also show the time, and the test sequence to

complete the memory fault detection test.

Fig. 7. Memory test operation.

B. Hardware Configurations

The 4 by 4 memory array that used as the device
under test is shown in Fig. 8. The 4 by 4 memory array

is modelled in the FPGA using the D flip-flops and all

the flip-flops are arranged in the grid arrangement. The

testbed modelled in FPGA is shown in Fig. 9. It

consists of the tester and the memory array. The block

diagram of the memory tester is shown in Fig. 10. Row

decoder and column decoder are used to decode the

row and the column numbers of the memory cell.

Fig. 8. 4 by 4 Memory array configuration.

Fig. 9. Memory tester testbed configuration.

Fig. 10. Block diagram of the memory address decoder.

 The processing speed of the FPGA board is slower

compared to the existing ATE memory tester used in

the industry. However, the cost of the FPGA is much

lower than the ATE tester. The proposed memory

tester is the simplified low-cost FPGA tester. The low-
cost memory tester that realized in this paper is shown

in Fig. 11. Only the row decoder is modelled, and the

column decoder is replaced with the switching

transistors in order to reduce the resources

consumption. The FPGA board is realized as the

memory tester. When one of the rows of D flip-flops

is activated by the memory tester, the switching

transistors that connected in that row will enable the D

flip-flops. This allows the memory tester to write the

data to the D flip-flops that are enabled. The data

stored in D flip-flops will be shown through the LEDs
connected to the D flip-flops respectively. If the LED

is switched on when a 1 is stored in the D flip-flop and

vice versa. The set and reset terminals of the D flip-

flop can be used to simulate the error in order to test

the response of the test algorithms.

Simulation input file

(Testbench)

Memory Array

Simulation Output File

(Log file)

Input data

& address

Memory tester

(FPGA board)

4×4 D flip-flop array

(memory array)

Vol 2 No 2 (2020) e-ISSN: 2682-8383

21

Fig. 11. FPGA realization of the memory tester.

 Address

 Address Decoder

 Memory Cell Array

 Read/Write Input Values to Memory Cell

 Output Data
Fig. 12. Memory test procedure.

The block diagram of the memory test procedure is

shown in Fig. 12. The address decoder decodes the

corresponding row number from the input data and
enables the memory array cells in the corresponding

row to be accessed by the memory tester. The test

program will test the memory as per defined by the

corresponding test algorithms to write to and read

from the memory cells. The test processes will be

repeated over and over again until all the tests

completed.

IV. SIMULATION RESULTS

Two major tests are carried out in the simulation

analyses, i.e. zero-one scan test and March memory

tests. The zero-one scan test covers all the 12 types of

data test patterns and the March tests cover all the 6

test algorithms stated in Table IV.

A. Zero-One Scan Test Simulation Results

Zero-one scan test has been implemented in the

memory tester, the scan test is executed in several

configurations to perform the actual memory test

program that used in the industry. The scan test is

evaluated in three different memory array sizes, i.e. 4

by 4, 8 by 8 and 16 by 16 in which all the three memory

sizes are modelled in three different FPGAs to

evaluate the effect of the FPGA maximum operation
speed in the memory testing. All the memory tests are

executed 10 times to perform the stability test that

applied in the industry to assess the credibility of the

test carried out on the memory array. The number of

test looping can be increased in order to increase the

confidence level and the intensity of the memory fault

detection tests.

All these memory fault detection tests are

modelled according to the memory test program that

used in the industry of semiconductor to test the

memory module during the final test. The memory

fault detection tester is expandable to support the
memory with higher capacity. The memory fault

detection tester is realized in 3 different types of

FPGAs. The performance of the zero-one scan tests is

shown in Fig. 13, Fig. 14 and Fig. 15. All the test time

for the zero-one scan test is the same except the solid

zero data pattern. The test time for all the memory

arrays and tests are the same since all the tester will

write the test data to the memory cells and then read

the data that stored in the memory cells in parallel. The

test time is the same neglecting the size of the memory.

However, for the solid zero tests, since all the data in
the memory cells are 0 at the beginning of the test, it

saves one clock cycle to write the 0 data into the

memory cells.

Fig. 13. Performance of APEX chip.

Fig. 14. Performance of Cyclone chip.

Vol 2 No 2 (2020) e-ISSN: 2682-8383

22

Fig. 15. Performance of Stratix chip.

As shown in the simulation results, Stratix can

support the highest testing speed with 17 % faster than

Cyclone, but the cost of Stratix chip is nearly 5 times

higher than the Cyclone chip. APEX spends the

longest time to complete all the test. The processing

speed of APEX is more than 100 % slower than the

Cyclone and Stratix FPGAs, but the cost of the APEX

is the cheapest when compared to the other two

FPGAs.

Fig. 16. Test performance of APEX chip.

Fig. 17. Test performance of Cyclone chip.

Fig. 18. Test performance of Stratix chip.

B. March Algorithms Simulation Results

Each of the March tests is repeated 10 times to

increase the confidence and the intensity level of the

March tests. The simulation results are shown in Fig.

16, Fig. 17 and Fig. 18 for APEX, Cyclone and Stratix

FPGA respectively. It is proven that the complexity of

the test algorithm is directly proportional to their test

time.

As shown in the simulation results, March C

algorithm is the slowest compared to the other

algorithms. Followed by March Y algorithm with its

performance is slightly better than March C. The

performance of the other 4 algorithms (MATS+,

MATS++, March C- and March X) are almost equal

although their complexities are different. March C-

needs a longer time to complete the test for the 16×16

memory array. Since March C- has a higher

complexity compares to the other 3 algorithms.

The memory fault detection tester modelled has

covered all the test algorithms that currently being

used in the ATE tester to test the memory modules in

the semiconductor industry. March C- holds the

advantage over the other March tests. It covered more

fault models compared to the other algorithms and yet

it is just 10n in complexity which saves a lot of the test

time. It meets the industry requirement that demanded
the shortest test time in order to increase the

production rate. The combination of the MATS+ and

March C- provide the full coverage of all the memory

faults detection stated in Table IV. The total test time

required to complete the MATS+, March C- and zero-

one scan test that provides the 100% of the memory

faults detection is shown in Fig. 19.

The low-cost memory fault detection tester is

modelled successfully and it can carry out all the test

programs used in the ATE tester to test the memory. It

shows that the performance of the APEX is the lowest

(with the longest test time), and the performance of the
Stratix is the highest (with the shortest test time).

However, the performance of the Cyclone is

comparable with Stratix. The total test time of the

Cyclone is 17 % higher than the Startix but the cost of

Cyclone is 5 times lower than the cost of Stratix. The

suitable FPGA can be selected according to the

performance required and the budget allocation for the

low-cost memory tester.

Fig. 19. Total test time to complete the MATS+, MARCH C- and

Zero-one scan test.

0

5000

10000

APEX CYCLONE STRATIX

4x4 Array 8x8 Array 16x16 Array

Ti
m

e
 (

n
s)

Vol 2 No 2 (2020) e-ISSN: 2682-8383

23

Fig. 20. Test datalog for the memory tests of the 8×8 memory array.

A PERL program is used to generate the data log

after the memory tests completed. The test datalog is

generated by the PERL program for the 8×8 memory

array is shown in Fig. 20. The test datalog shows the

test results of each memory cells in the 8×8 memory

array for 5 iterations.

The ‘_’ symbol represents the memory cell passed

the memory test with the data in the memory cell is

equal to the expected value after the memory test. The
‘X’ indicates that the memory cell failed the memory

test.

V. CONCLUSION

An effective low-cost fault detection memory

tester that provides the full memory faults detection

coverage is modelled using VHDL. The memory tester

modelled is a promising solution to provide complete

memory faults detection. It modelled all the zero-one

scan tests and March algorithms used in the ATE

memory tester. The memory tester is realizable using

FPGA and the functionality of the memory tester
modelled is similar to the ATE memory tester that is

used in the semiconductor industry. The memory

tester is successfully modelled in three FPGA, i.e.

Stratix, Cyclone and Apex. Three memory arrays with

the sizes of 4×4, 8×8 and 16×16 are used to evaluate

the performance of the memory testers. The

performance of the Stratix and Cyclone is 61 % and

53 % faster than the Apex. The performance of the
Startix is 17 % faster than the Cyclone, but the cost of

the Stratix is 5 times higher than Cyclone. The

designer needs to select the FPGA wisely in order to

get a balance between the cost and performance of the

memory tester. The PERL program is used to analyse

the test result and to generate the test datalog at the end

of the memory test.

REFERENCES

[1] N. Mukherjee, W. Or, A. Pogiel and J. Rajski, “High Volume

Diagnosis in Memory BIST based on Compressed Failure

Data,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 29, no. 3, pp. 441-453, 2010.

[2] M. Melanie and H. Wunderlich, “BISD: Scan-based Built-in

Self-diagnosis,” in Proceedings of the Conference on Design,

Automation and Test in Europe, vol. 1, pp. 1243-1248, 2010.

[3] M. Carvalho, P. Bernardi and M. S. Reorda, “Optimized

Embedded Memory Diagnosis,” in International Symposium

on Design and Diagnostics of Electronic Circuits & Systems,

vol. 14, pp. 347-352, 2011.

[4] P. Daniel and R. Chandel, “A Flexible Programmable Memory

BIST Architecture,” IETE Journal of Education, vol. 51, pp.

67-74, 2010.

[5] P. Bernardi and L. Ciganda, “An Adaptive Low-Cost Tester

Architecture Supporting Embedded Memory Volume

Diagnosis,” IEEE Trans. on Instrumentation and

Measurement, vol. 61, pp. 1002-1018, 2012.

[6] A. J. V. Goor, Testing Semiconductor Memories: Theory and

Practice, John Wiley & Sons, 1998.

[7] W. L. Pang, K. Y. Chan, S. K. Wong and C. S. Tan, “VHDL

Modeling of Booth Radix-4 Floating Point Multiplier for

VLSI Designer’s Library,” WSEAS Trans. on Systems, vol. 12,

pp. 678-688, 2013.

[8] J. H. Meza, S. Ostendorff and H. D. Wuttke, “A Configurable

Test-Processor for Board-Level Testing,” in Euromicro

Conference on Digital System Design, pp. 22-29, 2016. doi:

10.1109/DSD.2016.81.

[9] I A. Grout, Integrated Circuit Test Engineering, Springer,

2006.

[10] G. Harutyunyan, S. Martirosyan, S. Shoukourian and Y.

Zorian, “Memory Physical Aware Multi-Level Fault

Diagnosis Flow,” IEEE Trans. on Emerging Topics in

Computing, doi: 10.1109/TETC.2018.2789818.

[11] T. Koshy and C. S. Arun, “Diagnostic data detection of faults

in RAM using different march algorithms with BIST scheme,”

in 2016 International Conference on Emerging Technological

Trends (ICETT), Kollam, pp. 1-6, 2016. doi:

10.1109/ICETT.2016.7873754.

[12] A. Johnsen, K. Lundqvist, K. Hänninen, P. Pettersson and M.

Torelm, “Experience Report: Evaluating Fault Detection

Effectiveness and Resource Efficiency of the Architecture

Quality Assurance Framework and Tool,” in 2017 IEEE 28th

International Symposium on Software Reliability Engineering

(ISSRE), Toulouse, pp. 271-281, 2017. doi:

10.1109/ISSRE.2017.31.

