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Abstract – Memory modules are widely used in varies 

kind of electronics system design. The capacity of the 

memory modules has increased rapidly since the past few 

years in order to satisfy the high demand from the end-

users. The memory modules’ manufacturers demand 

more units of automatic test equipment (ATE) to 

increase the production rate. However, the existing ATE 

used in the industry to carry out the memory testing is 

too costly (at least a million dollars per ATE tester). The 

low-cost memory testers are urgently needed to increase 

the production rate of the memory module. This has 

inspired us to design a low-cost memory tester. A low-

cost memory fault detection tester with all the major 

fault detection algorithms that used in industry is 

modelled using Very High Speed Integrated Circuit 

Hardware Description Language (VHDL) in this paper 

to support the need of the low-cost ATE memory tester. 

The fault detection algorithms modelled are MATS+ 

(Modified Algorithm Test Sequence), MATS++, March 

C, March C-, March X, March Y, zero-one and 

checkerboard scan tests. PERL program is used to 

analyse the simulation results and a log file will be 

generated at the end of the memory test. Extensive 

simulation and experimental test results show that the 

memory tester modelled covers all the memory test 

algorithms used in the industry. The low-cost memory 

fault detection tester designed provides the 100 % fault 

detection coverage for all memory defects. 

Keywords—VHDL, Memory tester, March test  

I. INTRODUCTION  

Memory is one of the crucial modules used in most 

of the electronic systems. Memories have dominated 

the chip area and the area consumed increases linearly 

throughout the year. Memories are one of the sensitive 

parts with high potential of defects. The size of the 

memory cell is shrinking and the memory cells are 

built closer to each other in order to increase the 

density of the memory circuitry. The memory module 

with high density and complexity is fault-prone. A lot 

of works were carried out to examine the memory 

defects [1-5], but none of the work is to design low-

cost memory tester.  

There are various memory test algorithms were 

introduced to test the memory devices [6, 10-12]. The 

conventional test algorithms are zero-one and 
checkboard scan tests. The conventional test 

algorithms are widely used to test memory modules. 

New fault detection algorithms are proposed to detect 

memory faults, which are single-cell fault and two 

cells fault models. Some of the popular fault detection 

algorithms are Modified Algorithmic Test Sequence 

(MATS), MATS+, MATS++, Marching-1/0, March A, 

March B, March C, March C-, Extended March C-, 

March G, March X and March Y [10].  

There are many types of memory testers available 

in the market but the tester price is too costly for the 

small and medium industry operators. This has 
inspired us to design a cost-effective memory tester. 

Various design techniques such as the full custom, 

ASIC, and system modelling can be used to design the 

memory tester. In this paper, VHDL is used to model 

the memory tester. VHDL modelled the behaviour of 

the memory test algorithms and the design is realizable 

through the Field Programmable Gate Array (FPGA) 

[7]. The designer has high flexibility in designing the 

memory testing algorithms and FPGA is a 

reprogrammable device. It is a promising solution to 

design an effective low-cost memory tester.  
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The remaining of this paper is organized as follows. 

A literature review is illustrated in section 2. The 

methodology is illustrated in section 3. Extensive 

simulations are discussed in section 4. Finally, a 

conclusion is drawn in section 5. 

II. MEMORY FAULT DETECTION ALGORITHMS 

Various fault detection algorithms are introduced 

to detect the faults that may occur in the memory 

devices. The faults in the memory cells can be divided 

into two types, i.e. a single cell and two cells fault 

models. For single-cell fault model, it consists of 

Stuck-At Fault (SAF), Transition Fault (TF), and Data 

Retention Fault (DRF) [10-12].  

SAF contributes up to 50 % of the memory’s faults. 

The data of the memory may be stuck at zero (SA0) or 

stuck at one fault (SA1). TF fault occurs when the 

memory cell failed to update the data stored in the 
memory cell either from 1 to 0 or 0 to 1. TF may occur 

once the memory cell encounters either SA0 or SA1 

that prohibits the logic 1 or logic 0 transitions 

respectively. DRF occurs when the memory cell fails 

to retain the data stored in it. The data in the memory 

cell with DRF may change from 0 to 1 or 1 to 0 after a 

delay time.  

Two cells fault model is mainly contributed by the 

Coupling Fault (CF). CF model involves two memory 

cells, i.e. aggressor cell (a-cell) and victim cell (v-cell). 

A change of the data stored in a-cell forced the change 
of the data stored in v-cell. The data in v-cell may be 

changed from 0 to 1 or 1 to 0.  

There are four types of CF models, i.e. 1) Fault 

type Idempotent CF (CFid), 2) State CF (CFst), 3) 

Inversion CF (CFin) and 4) K-Coupling Fault (k-CF). 

CFid occurs when a write operation applied to the a-

cell and it triggered a logic flip on the data stored in v-

cell. CFst occurs when the data stored in a-cell and it 

caused the data stored in v-cell stuck at either 0 or 1. 

CFin occurs when writing data to a-cell and it toggles 

the data stored in v-cell. The k-CF also called a pattern 

sensitive fault. The k-CF fault only occurs when the v-
cell is triggered by the surrounding cells under a 

certain kind of data pattern. 

Another common fault on the memory module is 

Address Decoder Fault (AF). AF occurs when the 

memory array assigned the wrong memory address. 

AF can be divided into four categories, i.e. 1) no 

memory cell assigned to a memory address, 2) 

multiple cells assigned to a memory address, 3) no 

address assigned to a memory cell and 4) multiple 

addresses assigned to a memory cell.   

March algorithm is the most popular memory test 
algorithm used in the industry to detect the memory 

faults discussed. The March algorithm will test the 

memory cell one by one. The March test will only 

begin to test the next memory cell once the current 

memory cell is completed the test. March test is 

modelled in this paper to test the high-density memory 

modules. Table I shows the fault coverage of the 

March algorithms.  

The memory test algorithm is begun by writing a 

value to the memory cell located at an address in the 

memory array. Followed by, reading back the data 
stored in the memory cell. If the data value read and 

the data value written to the memory cell are the same, 

then this memory cell passes the test. If the values 

differ, then this memory cell fails the memory test. The 

memory fault coverage and the total test time required 

for each algorithm are different. Table II summarized 

the memory test notations used in the memory test 

algorithms. 

Table I. Fault coverage and complexity of various March test 

algorithms. 

 

Table II. Memory test notations.  

Notation Action 
r0 Read a zero from the selected memory location 

r1 Read a one from the selected memory location 

w0 Write a zero to the selected memory location 

w1 Write a one to the selected memory location 

 Increasing memory address 

 Decreasing memory address 

↕ Either increasing or decreasing memory 

address 

Table III. Test sequence of March algorithms. 

 Algorithm Test Sequence 

MATS+ ↕(w0);  (r0,w1);  (r1,w0) 

MATS++ ↕ (w0);  (r0,w1);  (r1,w0, r0) 

MARCH X ↕ (w0);  (r0,w1); (r1,w0); ↕ (r0) 

MARCH C ↕(w0);  (r0,w1);  (r1,w0); ↕ (r0);  

(r0,w1);  (r1,w0); ↕ (r0) 

MARCH C- ↕(w0);  (r0,w1);  (r1,w0);  (r0,w1);  

(r1,w0);↕ (r0) 

MARCH A ↕(w0);  (r0,w1,w0,w1);  (r1,w0,w1);  

(r1,w0,w1,w0);  (r0,w1,w0) 

MARCH Y ↕ (w0);  (r0,w1, r1);  (r1,w0, r0); ↕ (r0) 

MARCH B ↕ (w0);  (r0,w1, r1, w0,r0, w1);  (r1,w0, 

w1); );  (r1,w0, w1, w0);  (r0,w1,w0) 

 

 Table III summarized the test sequences for the 

various March algorithms. An example of the MATS+ 

algorithm is shown as follows. 

↕(w0);  (r0,w1);   (r1,w0) 

↕ (w0): Write the 0 to the memory cells in either the 

ascending or descending order of the memory address 

(starting at the lowest/highest address). 

 (r0, w1): Read the data in the memory cells (expect 

to read a 0 value from the memory cell, r0) and then 
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write a 1 to the memory cell in the ascending order of 

the memory address (starting at the lowest address). 

 (r1, w0): Read the data in the memory cells (expect 

to read a 1 value from the memory cell) and then write 

a 0 to the memory cell in the descending order of the 

memory address (starting at the highest address). 

 The zero-one scan test is used to test the memory 

array with different data backgrounds such as solid 

zero, solid one, checkerboard, complement 

checkerboard, row stripes, complement row stripes, 

double row stripes, complement double row stripes, 

column stripes, complement column stripes, double 

column stripes and complement double-column 

stripes are shown in the following figures (Figs. 1−6). 

The zero-one scan test is modelled to examine the 

interaction between memory cells in the form of data 

pattern and cover the other common memory faults. 

 

Fig. 1. Solid data background.  

 

Fig. 2. Checker Board data background.  

 

Fig. 3. Column stripes data background.  

 

Fig. 4. Row stripes data background.  

 

Fig. 5. Double row data background.  

 

Fig. 6. Double row stripes data background. 

III. DESIGN METHODOLOGY  

A. Simulation Configurations  

Extensive simulation is carried out through the 

Quartus II software. Three types of Altera FPGAs, i.e. 

Stratix IV GX (High-end FPGA), Cyclone IV (Mid-

range FPGA) and Apex20k (low-end FPGA) are used 

as the target devices in the simulations. The fault 

detection coverage of the MARCH algorithms is 

shown in Table IV. The combination of the test 
algorithms in Table IV will give the 100 % memory 

fault detection coverage for all commonly known 

memory defects.  

Table IV. Fault detection coverage of the test algorithms.   

 

The memory sizes that selected for the 

performance analyses are as follows, i.e. 4 by 4 array, 

8 by 8 array and 16 by 16 array. These memories with 

different sizes are used as the device under test for the 

memory tester proposed. Furthermore, the memory 

sizes selected are able to fit into the FPGA chips that 
are used as the testbed for the simulation analyses. The 

sizes selected are adequate to show the current trend 

of the existing memory sizes available in the market. 

The memory fault detection algorithms modelled in 

this paper is able to detect all the common memory 

defects with 100 % fault detection coverage.  
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The memory test operation is shown in Fig. 7. The 

input data in the testbench are generated according to 

the test sequences listed in Table III. The tester will 

access the testbench that consists of the following 

information.  

• Address 

• Input data 

• Memory cell enable 

• Memory cell set 

• Memory cell reset 

The enable signal is available on each memory cell. 

The tester enables or disables the memory cells by 

controlling the enable signal. The memory cell is 

enabled to carry out the memory test and the other 

memory will be disabled. The faulty cell is disabled 

and the other memory cells will continue to carry out 

the memory test. For a read operation, the data stored 
in the memory cell is read and forwarded to the output 

file. The output file contains the following information. 

• Input data from the testbench 

• Time 

• The data stored in the memory cell 

The data stored in the memory cell must be the 

same as the input data from the testbench. The output 

file will also show the time, and the test sequence to 

complete the memory fault detection test. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Memory test operation.   

 

B. Hardware Configurations   

The 4 by 4 memory array that used as the device 
under test is shown in Fig. 8. The 4 by 4 memory array 

is modelled in the FPGA using the D flip-flops and all 

the flip-flops are arranged in the grid arrangement. The 

testbed modelled in FPGA is shown in Fig. 9. It 

consists of the tester and the memory array. The block 

diagram of the memory tester is shown in Fig. 10. Row 

decoder and column decoder are used to decode the 

row and the column numbers of the memory cell.  

 

Fig. 8. 4 by 4 Memory array configuration.  

 

 

 

 

Fig. 9. Memory tester testbed configuration. 

  

 

Fig. 10. Block diagram of the memory address decoder. 

 The processing speed of the FPGA board is slower 

compared to the existing ATE memory tester used in 

the industry. However, the cost of the FPGA is much 

lower than the ATE tester. The proposed memory 

tester is the simplified low-cost FPGA tester. The low-
cost memory tester that realized in this paper is shown 

in Fig. 11. Only the row decoder is modelled, and the 

column decoder is replaced with the switching 

transistors in order to reduce the resources 

consumption. The FPGA board is realized as the 

memory tester. When one of the rows of D flip-flops 

is activated by the memory tester, the switching 

transistors that connected in that row will enable the D 

flip-flops. This allows the memory tester to write the 

data to the D flip-flops that are enabled. The data 

stored in D flip-flops will be shown through the LEDs 
connected to the D flip-flops respectively. If the LED 

is switched on when a 1 is stored in the D flip-flop and 

vice versa. The set and reset terminals of the D flip-

flop can be used to simulate the error in order to test 

the response of the test algorithms. 

Simulation input file 

(Testbench)  

Memory Array 

Simulation Output File  

(Log file) 

Input data 

& address 

Memory tester 

(FPGA board) 

 

4×4 D flip-flop array 

(memory array) 
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Fig. 11. FPGA realization of the memory tester.  

 

       Address 
 
 

     Address Decoder 
 
 

        Memory Cell Array 
 
 

      Read/Write Input Values to Memory Cell 
 
 

    Output Data  
Fig. 12. Memory test procedure. 

The block diagram of the memory test procedure is 

shown in Fig. 12. The address decoder decodes the 

corresponding row number from the input data and 
enables the memory array cells in the corresponding 

row to be accessed by the memory tester. The test 

program will test the memory as per defined by the 

corresponding test algorithms to write to and read 

from the memory cells. The test processes will be 

repeated over and over again until all the tests 

completed.  

IV. SIMULATION RESULTS 

Two major tests are carried out in the simulation 

analyses, i.e. zero-one scan test and March memory 

tests. The zero-one scan test covers all the 12 types of 

data test patterns and the March tests cover all the 6 

test algorithms stated in Table IV.  

A. Zero-One Scan Test Simulation Results 

Zero-one scan test has been implemented in the 

memory tester, the scan test is executed in several 

configurations to perform the actual memory test 

program that used in the industry. The scan test is 

evaluated in three different memory array sizes, i.e. 4 

by 4, 8 by 8 and 16 by 16 in which all the three memory 

sizes are modelled in three different FPGAs to 

evaluate the effect of the FPGA maximum operation 
speed in the memory testing. All the memory tests are 

executed 10 times to perform the stability test that 

applied in the industry to assess the credibility of the 

test carried out on the memory array. The number of 

test looping can be increased in order to increase the 

confidence level and the intensity of the memory fault 

detection tests. 

All these memory fault detection tests are 

modelled according to the memory test program that 

used in the industry of semiconductor to test the 

memory module during the final test. The memory 

fault detection tester is expandable to support the 
memory with higher capacity. The memory fault 

detection tester is realized in 3 different types of 

FPGAs. The performance of the zero-one scan tests is 

shown in Fig. 13, Fig. 14 and Fig. 15. All the test time 

for the zero-one scan test is the same except the solid 

zero data pattern. The test time for all the memory 

arrays and tests are the same since all the tester will 

write the test data to the memory cells and then read 

the data that stored in the memory cells in parallel. The 

test time is the same neglecting the size of the memory. 

However, for the solid zero tests, since all the data in 
the memory cells are 0 at the beginning of the test, it 

saves one clock cycle to write the 0 data into the 

memory cells.  

 

 

Fig. 13. Performance of APEX chip. 

 

 

Fig. 14. Performance of Cyclone chip. 
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Fig. 15. Performance of Stratix chip. 

As shown in the simulation results, Stratix can 

support the highest testing speed with 17 % faster than 

Cyclone, but the cost of Stratix chip is nearly 5 times 

higher than the Cyclone chip. APEX spends the 

longest time to complete all the test. The processing 

speed of APEX is more than 100 % slower than the 

Cyclone and Stratix FPGAs, but the cost of the APEX 

is the cheapest when compared to the other two 

FPGAs. 

 

 

Fig. 16. Test performance of APEX chip. 

 

Fig. 17. Test performance of Cyclone chip. 

 

Fig. 18. Test performance of Stratix chip. 

B. March Algorithms Simulation Results 

Each of the March tests is repeated 10 times to 

increase the confidence and the intensity level of the 

March tests. The simulation results are shown in Fig. 

16, Fig. 17 and Fig. 18 for APEX, Cyclone and Stratix 

FPGA respectively. It is proven that the complexity of 

the test algorithm is directly proportional to their test 

time. 

As shown in the simulation results, March C 

algorithm is the slowest compared to the other 

algorithms. Followed by March Y algorithm with its 

performance is slightly better than March C. The 

performance of the other 4 algorithms (MATS+, 

MATS++, March C- and March X) are almost equal 

although their complexities are different. March C- 

needs a longer time to complete the test for the 16×16 

memory array. Since March C- has a higher 

complexity compares to the other 3 algorithms. 

The memory fault detection tester modelled has 

covered all the test algorithms that currently being 

used in the ATE tester to test the memory modules in 

the semiconductor industry. March C- holds the 

advantage over the other March tests. It covered more 

fault models compared to the other algorithms and yet 

it is just 10n in complexity which saves a lot of the test 

time. It meets the industry requirement that demanded 
the shortest test time in order to increase the 

production rate. The combination of the MATS+ and 

March C- provide the full coverage of all the memory 

faults detection stated in Table IV. The total test time 

required to complete the MATS+, March C- and zero-

one scan test that provides the 100% of the memory 

faults detection is shown in Fig. 19.  

The low-cost memory fault detection tester is 

modelled successfully and it can carry out all the test 

programs used in the ATE tester to test the memory. It 

shows that the performance of the APEX is the lowest 

(with the longest test time), and the performance of the 
Stratix is the highest (with the shortest test time). 

However, the performance of the Cyclone is 

comparable with Stratix. The total test time of the 

Cyclone is 17 % higher than the Startix but the cost of 

Cyclone is 5 times lower than the cost of Stratix. The 

suitable FPGA can be selected according to the 

performance required and the budget allocation for the 

low-cost memory tester.     

 

Fig. 19. Total test time to complete the MATS+, MARCH C- and 

Zero-one scan test. 
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Fig. 20. Test datalog for the memory tests of the 8×8 memory array. 

A PERL program is used to generate the data log 

after the memory tests completed. The test datalog is 

generated by the PERL program for the 8×8 memory 

array is shown in Fig. 20. The test datalog shows the 

test results of each memory cells in the 8×8 memory 

array for 5 iterations.  

The ‘_’ symbol represents the memory cell passed 

the memory test with the data in the memory cell is 

equal to the expected value after the memory test. The 
‘X’ indicates that the memory cell failed the memory 

test.  

V. CONCLUSION 

An effective low-cost fault detection memory 

tester that provides the full memory faults detection 

coverage is modelled using VHDL. The memory tester 

modelled is a promising solution to provide complete 

memory faults detection. It modelled all the zero-one 

scan tests and March algorithms used in the ATE 

memory tester. The memory tester is realizable using 

FPGA and the functionality of the memory tester 
modelled is similar to the ATE memory tester that is 

used in the semiconductor industry. The memory 

tester is successfully modelled in three FPGA, i.e. 

Stratix, Cyclone and Apex. Three memory arrays with 

the sizes of 4×4, 8×8 and 16×16 are used to evaluate 

the performance of the memory testers. The 

performance of the Stratix and Cyclone is 61 % and 

53 % faster than the Apex. The performance of the 
Startix is 17 % faster than the Cyclone, but the cost of 

the Stratix is 5 times higher than Cyclone. The 

designer needs to select the FPGA wisely in order to 

get a balance between the cost and performance of the 

memory tester. The PERL program is used to analyse 

the test result and to generate the test datalog at the end 

of the memory test.  
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