
 Journal of Informatics and Web Engineering

 https://doi.org/10.33093/jiwe.2024.3.2.18

© Universiti Telekom Sdn Bhd. This work is licensed under the Creative

Commons BY-NC-ND 4.0 International License.

 Published by MMU Press. URL: https://journals.mmupress.com/jiwe

Journal of Informatics and

Web Engineering

Vol. 3 No. 2 (June 2024) eISSN: 2821-370X

Empirical Analysis of CI/CD Tools Usage

in GitHub Actions Workflows
Adam Rafif Faqih1*, Alif Taufiqurrahman1, Jati H. Husen1, Mira Kania Sabariah1

1Telkom University, Indonesia

*corresponding author: (adamrafif@student.telkomuniversity.ac.id, ORCiD: 0009-0005-6512-6151)

Abstract - As software systems grow larger and more complex, with rapidly changing requirements, manually managing code

integration, testing, and deployment becomes extremely challenging. Continuous Integration and Continuous Deployment (CI/CD)

practices and tools have emerged to help automate these processes. This research explores the usage of different categories of

CI/CD tools within GitHub Actions workflow configurations across GitHub repositories. The five-tool categories analyzed are

Version Control Management, Static Code Analysis, Build Automation, Test Automation, and CI/CD Servers. The data used in

this research is from a dataset of GitHub Actions workflow configuration files. From the data, the usage is extracted and the

concurrent usage of the tools is calculated. Next, the tools are labeled based on their taxonomy. In our finding, the build automation

has the biggest number of uses, while the test automation has the least number of uses. Our finding indicates the correlation between

the tool category and the programming language used in the software project. Meanwhile, some tools cannot be classified into the

existing taxonomy. This can lead to reevaluating the taxonomy structure of CI/CD tools.

Keywords—Empirical Software Engineering, CI/CD Tools, GitHub Actions Mining, Qualitative Analysis

Received: 15 March 2024; Accepted: 09 May 2024; Published: 16 June 2024

I. INTRODUCTION

Software development becomes more complex over time, with software requirements rapidly changing throughout

development [1]. As the software system grows larger, managing code manually becomes extremely challenging,

especially when it comes to reviewing, merging, and testing code from other contributors. This problem can lead to

delays with every deliverable [2]. To address this issue, the concept of Continuous Integration and Continuous

Deployment (CI/CD) has emerged as a solution. CI/CD enables the automatic integration, testing, and deployment of

code changes, streamlining the entire software development lifecycle [1][3]. To facilitate the CI/CD process, many

CI/CD tools emerge to implement CI/CD. These tools helping the developer to automate build, testing, and deploy

their software [4].

One of the popular tools for implementing CI/CD is GitHub Actions, a hosted service provided by GitHub that allows

developers to automate their software development workflows [4]. To support the development workflows, GitHub

Actions provides tools to build, test, and deploy automatically [5]. These tools are provided by GitHub or another

developer in GitHub. There are many CI/CD tools, both for GitHub Actions and other platforms in general. These

tools can be categorized into five categories [6]. The given categories are as follows: Version Control Management,

Static Code Analysis, Build Automation, Test Automation, and CI/CD Servers. Meanwhile, there is no understanding

for the distribution of this categories in the real-world implementation of GitHub Actions.

https://doi.org/10.33093/jiwe.2024.3.2.18
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

252

In this research, the goal is to explore the usage of these tools inside the workflow configuration of GitHub Actions.

The main goal is to understand the usage frequency of these tools inside the workflow configuration of GitHub Actions.

To achieve our goals, the following research questions (RQs) have been defined:

• RQ1. What type of CI/CD tools are the most used in GitHub Actions workflow configuration?

• RQ2. What type of CI/CD tools are rarely used in GitHub Actions workflow configuration?

• RQ3. What type of CI/CD tools are the most diverse in GitHub Actions workflow configuration?

• RQ4. What type of CI/CD tools are least diverse in GitHub Actions workflow configuration?

Our research has two contributions. First, an enhanced understanding of tools that are being used within GitHub

Actions workflow configurations is provided. Second, and identification of tool categories that have lacked use within

GitHub Actions workflow configurations can be presented.

The rest of this paper is structured as follows. Section 2 reviews related work about GitHub Repository Mining and

CI/CD Tools Taxonomy. Section 3 talks about research method utilization in our research. Section 4 presents and

discusses our findings. The conclusion is provided in section 5 with answers to our research questions and potential

future steps for our work.

II. LITERATURE REVIEW

In this section, existing works that similar to our work on the empirical analysis of CI/CD tools usage in GitHub

Actions workflows will be discussed. Various studies that have utilized repository mining techniques to collect

valuable insight from repositories and a study used as references for categorization in this work will also be discussed.

By using the comparison with other works, our research is positioned in the software repository mining scene for the

understanding of GitHub Actions and CI/CD tools.

A. GitHub Repository Mining

There have been several studies in the domain of repository mining. Barros et al. utilize repository mining to develop

gthbmining to discover DevOps trends from public repositories [7]. Chatziasimidisy and Stamelos use GitHub rest

API for collecting and analyzing GitHub data about users, including repositories and characteristics [8]. Hebig et al.

use GitHub mining to get information about UML in many projects [9]. Peters and Zaidman used a repository mining

approach in seven open-source systems to investigate the lifespan of code smells and the refactoring behavior of

developers [10]. Lima et al. proposed the design suite of metrics for assessing developer contribution in software

development projects through repository mining [11]. While the other studies explored various aspects such as

DevOps trends, users and their repositories and characteristics, UML information, code smells, and developer

contributions, this research focuses on collecting information about GitHub Actions from a dataset of GitHub actions

workflow histories through GitHub repository mining. In addition, we conducted secondary data analysis that involves

analyzing existing datasets as conducted by Hussain et al. in [12] that focused on predicting student performance

through a data mining approach applied to the educational dataset, and Lew et al. in [13] that evaluate the effectiveness

of an Adaptive Gaussian Wiener Filter for denoising CT scan images corrupted with Gaussian noise variance from

the medical dataset. Our research applied a similar methodology to analyze the GitHub Actions workflow histories

dataset to gain insight into the usage of CI/CD tools.

B. CI/CD Taxonomy

The study conducted by Cano et al. in [6] presents an insightful examination about a wide picture of taxonomy of

CI/CD tools and framework. The Taxonomy in the study categorizes CI/CD tools and framework into five major

categories, including version control management, static code analysis, build automation, test automation, and CI/CD

servers. A version control management is a tool that allows all developers to track changes to one or more files over

time and to track whether there are conflicts or errors have occurred in the production application, and it can be

restored to a previous version without major changes or longer waiting times [14]. Static code analysis is a tool to

detect code defects by inspecting the code without executing the code or program [15]. Build automation is a tool to

process automating the steps of software build [16]. Test automation is a tool to make the process of automated tests

of application faster and efficient [17]. CI/CD Servers is a system that automatically and regularly integrates, creates,

and test software, and this system can simplify and automate performing other routine development tasks. This

taxonomy serves as a guide to assign tools categories to each GitHub Actions in this research.

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

253

III. RESEARCH METHODOLOGY

This study employed secondary data analysis using a structured approach to examine GitHub Actions tools usage in

workflow configuration. Secondary data analysis involves analyzing existing data that was collected for another

primary purpose [18]. The structured approach provides a systematic way to extract pertinent information from the

secondary data sources to address the research questions, as per depicted in Figure 2.

Figure 2. Research Flow

A. Data Sources

The secondary data was obtained from the existing dataset [19]. These sources were selected for two reasons. The first

one is their recentness, the dataset contains data as recent as October 2023 and as late of July 2019. Arguably, the data

is representative of recent implementation of CI/CD pipeline inside the Github Action workflows, which leads to

findings that reflect real practice conducted by software developers. The second reason is their size, which amounts

to 32,886 repositories, each containing workflow files totaling 1,526,475 files. The massive number of workflow files

should satisfy the required amount needed for a reliable finding. Table 1 summarizes the characteristics of the dataset

used.

Figure 1. CI/CD Tools Taxonomy [6]

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

254

Table 1. Data Characteristics

Characteristic Value

#GitHub repositories 32886

#repositories containing workflow files 32886

#commit touching workflow files 1004202

Earliest commit date containing a workflow 2019/07/11

Latest commit date containing a workflow 2023/10/12

#workflow histories 160443

#workflow files 1526475

#modification 1342662

#additions 147978

#deletions 35835

#auxiliary files 75234

B. Data Extraction

Figure 33. Tools Extraction Flow

To get the tools that developers use in GitHub Actions workflow configuration, the process (refer Figure 3-4) begins

by taking one example of the workflow configuration to get the Regular Expression pattern. Once the pattern is

obtained, it is applied to each workflow configuration file by iterating over each workflow configuration file. The

following Regular Expression pattern is used to identify the usage of the CI/CD tools in GitHub Actions workflow

configuration files: r'uses:\s*(?P<tool>[^\s@]+)'

This pattern is designed to match and capture the names of the tools used in the GitHub Actions workflow

configuration file after the “uses:” keyword, ignoring any leading whitespace. By applying this pattern iteratively to

each configuration file, the names of CI/CD tools employed in the GitHub Actions workflows can be extracted. To

analyze the prevalence and distribution of these tools, their frequency of occurrence was tallied. Then, only the tools

that have usages above 1500 uses is being used as the final data with the assumption the usage below it is not significant.

This frequency count provided quantitative insights into the popularity and adoption rates of different CI/CD tools

within the GitHub Actions workflows.

With the data successfully extracted and frequencies recorded, the next step involved preparing the data for labeling.

This labeling process involved categorizing or tagging each CI/CD tool based on its taxonomy. By assigning labels to

the extracted CI/CD tools, the data was structured in a manner conducive to further analysis and interpretation.

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

255

Figure 4. Workflow File Example

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

256

C. Coding

To obtain the final data, the list of CI/CD tools obtained in the previous step of this research was categorized. Our

categorization of CI/CD tools involved classifying them into five distinct labels based on their taxonomy: “Build

Automation,” “Test Automation,” “Static Code Analysis,” “Version Control Management,” and “CI/CD Servers.”

Each label serves a specific purpose in categorizing tools according to their primary contributions to the software

development life cycle. A Version Control System is a tool where the developer can track all the changes in a file or

set of files that occur in any stage of development, also it can restore to the previous version of development. Static

Code Analysis is a tool to examine code without running the code to find any defect in the code itself. Build

Automation is a tool to automate the process of building the software into a release version of the software project,

which means this tool automates the step by step of converting a source code into binary code by compiling it. Test

Automation is a tool required to do continuous integration, while continuous integration itself requires every commit

to be built, and it runs against a set of test cases. Test Automation involves selecting test cases to be run against the

new build also setting the environment variable for the test to run. CI/CD servers are a tool that can simplify the

execution process or task in development, also these tools usually provide an interactive dashboard where a summary

of the tasks that have been run is displayed. By categorizing CI/CD tools into these labels, the aim is to provide a

comprehensive understanding of the diverse range of tools available for automating various aspects of the software

development life cycle.

To do the labeling process, author one and author two do their labeling, then the result is compared to another. In

instances where uncertainty or disagreement arose, a systematic conflict resolution approach is used. Author One and

Author Two engaged in a collaborative discussion session to clarify the specific functionalities and features of the

tools in question, ensuring alignment with the predefined categorization criteria. If discrepancies persisted, consensus

was sought through a thorough review of the tool’s documentation capabilities, use cases, and industry standards.

Additionally, expert insight from with specialized knowledge in CI/CD practices was leveraged to inform

categorization decisions and resolve conflicts effectively.

D. Analysis

In this research, a descriptive statistical analysis was conducted to analyze the distribution of data represented in the

dataset. The data consists of CI/CD tools that have been labeled before. The label frequency and percentage are then

calculated based on the total number of occurrences. It involves dividing the frequency and multiplying by 100 to

obtain the percentage of every category. The mode, indicating the category with the highest frequency, was identified

to assess the central tendency of the data. It involves identifying the category that appeared most frequently, providing

insight into the predominant aspects of the category within the data. The identification of discrepancies or imbalances

in the distribution was examined by analyzing the distribution of frequency across the category. It can highlight

categories that exhibited prominence or prevalence compared to others. To understand the overall pattern of category,

the shape of data distribution was examined. Any skewer in distribution is considered, therefore indicating the

concentration of value within any specific categories and potential deviations from a uniform distribution. To offer a

clear intuitive and intuitive visualization of the data, pie chart are used to visualize the data. The size of the slice in

the pie chart corresponds to the percentage or frequency of the respective category.

IV. RESULTS AND DISCUSSIONS

This section presents the key findings and analysis derived from our research on CI/CD Tools Usage in GitHub

Actions Workflow. The data was collected through the dataset of workflow configuration and extracted the tools. The

result is that over 20 thousand tools that have been used in GitHub Action workflow configuration. The results provide

insight into the distribution of CI/CD tools, as well as potential threats to the validity of our study.

A. Data extraction result

After the data extraction process, a total over 5 million number of tool usage data was found. Figure 5 shows the

results of data extracted from the dataset. It shows the frequency of each individual tool identified inside the dataset.

Some tools, such as actions/checkout show a high level of usage, while some other tools such as imjasonh/setup-crane

have a low frequency of usage. As seen in Figure 5, 15,74% amount of data is removed due to extreme low frequency

of usage. This removed data as sentenced in methodology with only the tools with usage above 1500 being used for

the next process. In total, 203 number of tools from the extraction process were identified to be included in the coding

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

257

process. The 203 tools included in the coding process contains to x number of occurrences. One important thing

discovered in this process is the huge discrepancy between actions-checkout with the rest of the tools.

B. Coding result

Table 2. Samples of Coding Results

No Packages Label

1 actions/checkout Version Control Management

2 actions/upload-artifact Version Control Management

3 actions/cache Version Control Management

4 actions/setup-node Build Automation

5 actions/setup-python Build Automation

6 actions/setup-go Build Automation

7 docker/login-action CI/CD Servers

8 actions/github-script CI/CD Servers

9 actions/create-release CI/CD Servers

10 golangci/golangci-lint-action Static Code Analysis

11 github/codeql-action/autobuild Static Code Analysis

12 github/codeql-action/upload-sarif Static Code Analysis

13 coverallsapp/github-action Test Automation

14 cypress-io/github-action Test Automation

15 helm/kind-action Test Automation

16 8398a7/action-slack Etc

17 rtCamp/action-slack-notify Etc

18 slackapi/slack-github-action Etc

Figure 4. Frequency of CI/CD Tools in GitHub Actions

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

258

Table 2 shows some samples of the coding results based on the CI/CD tools taxonomy. An extra label, “etc” is assigned

to tools that don’t fit into the taxonomy. A quick analysis of tools that falls into this category shows that it mostly

contains automation of notifications, namely on slack. This type of the tools is not identified inside the taxonomy,

likely due to the overlook of such process in the common scheme of CI/CD. This raises a question whether

communication should be emphasized more in the discussion of implementation of CI/CD pipeline, as it exists inside

the existing projects, yet doesn’t get mapped into the taxonomy. This guides our future work into exploration of this

type of tool and its position inside the CI/CD pipeline. The frequency of each class will be populated to address the

research questions that have been defined.

C. Distribution of CI/CD Tools Varieties and Their Usage

Figure 5. Tools Category Distribution

Figure 6 shows the distribution of varieties of tools of each category. Overall, it illustrates build automation dominating

the tools category followed by version control management. Build automation has the highest frequency of 45%

indicating a reliance on automation processes for software development. Followed by the version control management

category which comes in second as the most used tools category at 23%, signifying the importance of version control

systems in effectively managing code repositories. CI/CD server’s category have a frequency of 13% indicating a

moderate level of usage. However, other categories such as static code analysis and test automation contribute to a

smaller extent, 10% and 6% respectively indicating low usage of the tools. Also, there is a 3% usage of tools with

categories that are not included in the CI/CD tools taxonomy. We would like to argue that the 3% usage is quite a

significant amount tools that not included inside the taxonomy to be used inside the CI/CD pipeline.

The distribution of usage is shown in Figure 7. While both build automation and version control management still

tops the distribution, their position flips when compared to the variety shown in Figure 6. It shows that version control

management is used most prominently even with less variety compared to build automation tools. As the

actions/checkout tool comes from this side, it has become the contributor for high usage of version control

management tools. The most interesting findings from this data is the extreme low usage of test automation tools,

despite high variety of it. This finding raises a question of position of test automation inside GitHub Action as CI/CD

pipeline and requires further investigation to answer the question.

Version Control
Management

23%

CI/CD Servers
13%

Static Code Analysis
10%

Build Automation
45%

Test Automation
6%

Etc
3%

Distribution of Tools Varieties

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

259

Figure 6. Tools Category Usage

D. Answers to The Research Questions

In answering the research questions, we derived insights from Amazon Web Services’ paper on Practicing Continuous

Integration and Continuous Delivery (CI/CD) on AWS [20], which provides a valuable perspective on the utilization

of CI/CD tools in software development environments.

RQ1. What type of CI/CD tools are the most used in GitHub Actions workflow configuration?

Version control management tools are the most used type of tools in GitHub Actions. It comes with little surprise as

the integrated utilization of GitHub as versioning tool likely drive this. Build automation tools comes second which

indicates the basic function of automatic version controlling and integration as the main features of CI/CD

implemented the most in GitHub Action.

RQ2. What type of CI/CD tools are rarely used in GitHub Actions workflow configuration?

Automatic testing surprisingly comes low in term of usage, despite the high variety. One hypothesis we can raise is

that the usage of automatic testing in a single pipeline is still hard to achieve, mostly in level higher than unit testing.

More exploration inside the implementation of automatic testing inside the CI/CD pipeline should be conducted to

understand the reason behind the phenomena. Moreover, testing practices should be more frequent in conducting

CI/CD, as there are numerous mentions of testing in our industry standard. In contrast, when comparing with our

industry reference, communication tools that are not included in the taxonomy should have been considered, as there

is a need for such tools evident in the industry standard.

RQ3. What type of CI/CD tools are the most diverse in GitHub Actions workflow configuration?

Based on the frequency distribution depicted in Figure 6, the most used category of CI/CD tools in the GitHub Actions

workflow configuration is build automation tools. With a frequency of 45%, build automation tools underscore the

essential role of automation processes in the GitHub Actions workflow, highlighting the importance of efficient and

automated build processes in GitHub Actions workflows. Despite potential duplication, this dominance is nonetheless

apparent, emphasizing the presence of build automation in this context. We can argue that the developers are focusing

the usage of GitHub Actions mostly for automating build and the tools are highly adapting to the needs, resulting in

high diversity of tools inside this type.

RQ4. What type of CI/CD tools are least diverse in GitHub Actions workflow configuration?

Version Control
Management

52%

Test Automation
0%

Static Code
Analysis

6%

CI/CD Servers
7%

Build Automation
34%

Etc
1%

Tools Category Usage

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

260

Based on the frequency distribution depicted in Figure 6, the rarely used category of CI/CD tools in the GitHub Actions

workflow configuration is test automation tools. Tools in this category were used only 6% of the overall frequency,

indicating a minimal emphasis on automated testing processes in the GitHub Actions workflow. Possible contributing factors

to this low usage include the flexibility of test automation tools across different programming languages or the workflows

do not carry out testing.

E. Threats to Validity

While the analysis provides valuable insights into the frequency distribution of CI/CD tool categories within GitHub

Actions workflows, there are certain threats to the validity of our findings that must be acknowledged.

• Secondary Data Quality, this research relied on a secondary dataset of GitHub repositories that uses GitHub

Actions workflows. While efforts were made to ensure the quality and representativeness of the dataset, there is a

possibility that the data may not accurately reflect the entire population of GitHub Actions users or may contain

inconsistencies or errors, also may not cover the entire usage pattern of GitHub Actions.

• Lack of Qualitative Insights, our research focused on a quantitative analysis of the CI/CD tools used in the

GitHub Actions workflow. However, this study lacks qualitative insights into the rationale behind the choice of

tools, challenges faced during implementation, and specific use cases or workflows that utilize these tools.

• Tool Categorization Subjectivity, the categorization of CI/CD tools used in our analysis may be subject to

interpretation and potential biases. Different researchers or organizations may categorize tools differently, which

could impact the observed distributions and patterns.

To address these threats and strengthen the validity of our findings, we involve a combination of the following

approaches. Firstly, we use the GitHub Actions workflow history dataset from an existing dataset. In addition to the

quantitative analysis, we conducted focus group discussions to gather qualitative insights regarding the selection of

tool categories to enrich our understanding. To reduce subjective categorization, two researchers independently

classified the CI/CD tools, resolving any differences through structured discussion, thus ensuring alignment with the

predefined categorization and consistency in categorization. Through these steps, we aim to increase the validity of

our findings to contribute a more comprehensive understanding of CI/CD tool usage of GitHub Actions workflows.

V. CONCLUSION

In this paper, we have provided an empirical analysis of CI/CD tools usage within GitHub Actions workflows, aiming

to understand the frequency distribution of CI/CD tools. After conducting an analysis of more than 30 thousand

repositories, we found that the build automation tool is the most dominant category in the GitHub Actions workflow

configuration, indicating the important role of automation processes in software development workflows. Also, we

identified the test automation tool as a rarely utilized category in GitHub Actions workflow configuration, indicating

a low level of usage in automated testing in the workflows.

We have several directions we would like to explore in the future. First, we will revisit the taxonomy and expand it to

facilitate the tools that do not fit into the taxonomy, thus enhancing the comprehensiveness of our research, and further

informing CI/CD practices. Second, we will explore the cause of the usage frequency of each category of the tools to

understand better the nature of CI/CD implementation within Github Actions. In addition, to deepen the understanding

of the CI/CD tools usage within GitHub Actions workflows, we propose an exploration using a questionnaire survey

to gather insights directly and more deeply.

ACKNOWLEDGEMENT

The research for this paper was not funded.

AUTHOR CONTRIBUTIONS

ARF: Data Visualization, Data Analysis, Writing, Labeling

ATR: Data Filtering, Data Analysis, Writing, Labeling

JHH: Direction, Supervision, Review

MKS: Direction, Supervision, Review

Journal of Informatics and Web Engineering Vol. 3 No. 2 (June 2024)

261

CONFLICT OF INTERESTS

No conflict of interests were disclosed.

REFERENCES

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software Development Methods: Review and Analysis,” Sep. 2017.

[2] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017, doi: 10.1109/ACCESS.2017.2685629.

[3] Y. Ska and R. Publications, “A STUDY AND ANALYSIS OF CONTINUOUS DELIVERY, CONTINUOUS INTEGRATION IN
SOFTWARE DEVELOPMENT ENVIRONMENT,” SSRN Electron. J., vol. 6, pp. 96–107, Apr. 2019.

[4] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan, “On the usage, co-usage and migration of CI/CD tools: A qualitative
analysis,” Empir. Softw. Eng., vol. 28, no. 2, p. 52, Mar. 2023, doi: 10.1007/s10664-022-10285-5.

[5] M. Wessel, T. Mens, A. Decan, and P. R. Mazrae, “The GitHub Development Workflow Automation Ecosystems,” in Software
Ecosystems, Cham: Springer International Publishing, 2023, pp. 183–214.

[6] P. O. Cano, A. M. Mejia, S. De Gyves Avila, G. E. Z. Dominguez, I. S. Moreno, and A. N. Lepe, “A Taxonomy on Continuous
Integration and Deployment Tools and Frameworks,” 2021, pp. 323–336.

[7] D. D. R. Barros, F. Horita, and D. G. Fantinato, “Data mining tool to discover DevOps trends from public repositories,” in Proceedings
of the XXXIV Brazilian Symposium on Software Engineering, Oct. 2020, pp. 658–663, doi: 10.1145/3422392.3422501.

[8] F. Chatziasimidis and I. Stamelos, “Data collection and analysis of GitHub repositories and users,” in 2015 6th International
Conference on Information, Intelligence, Systems and Applications (IISA), Jul. 2015, pp. 1–6, doi: 10.1109/IISA.2015.7388026.

[9] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A. Fernandez, “The quest for open source projects that use UML,” in

Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, Oct. 2016, pp.
173–183, doi: 10.1145/2976767.2976778.

[10] R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells using Software Repository Mining,” in 2012 16th European
Conference on Software Maintenance and Reengineering, Mar. 2012, pp. 411–416, doi: 10.1109/CSMR.2012.79.

[11] J. Lima, C. Treude, F. F. Filho, and U. Kulesza, “Assessing developer contribution with repository mining-based metrics,” in 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep. 2015, pp. 536–540, doi:
10.1109/ICSM.2015.7332509.

[12] M. M. Hussain, S. Akbar, S. A. Hassan, M. W. Aziz, and F. Urooj, “Prediction of Student’s Academic Performance through Data
Mining Approach,” J. Informatics Web Eng., vol. 3, no. 1, pp. 241–251, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.16.

[13] K. L. Lew, C. Y. Kew, K. S. Sim, and S. C. Tan, “Adaptive Gaussian Wiener Filter for CT-Scan Images with Gaussian Noise
Variance,” J. Informatics Web Eng., vol. 3, no. 1, pp. 169–181, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.11.

[14] J. Loeliger and M. McCullough, Version Control with Git: Powerful tools and techniques for collaborative software development.
“ O’Reilly Media, Inc.,” 2012.

[15] C. Artho and A. Biere, “Combined Static and Dynamic Analysis,” Electr. Notes Theor. Comput. Sci., vol. 131, pp. 3–14, 2005, doi:
10.1016/j.entcs.2005.01.018.

[16] M. Prakash, “Software Build Automation Tools a Comparative Study between Maven, Gradle, Bazel and Ant,” Int. J. Softw. Eng. \&
Appl. DOI https//doi. org/10.5121/ijsea.

[17] G. Mohan, Full Stack Testing. “ O’Reilly Media, Inc.,” 2022.

[18] J. Heaton, “Secondary analysis of qualitative data: An overview,” Hist. Soc. Res. Sozialforsch., pp. 33–45, 2008.

[19] G. Cardoen, “A dataset of GitHub Actions workflow histories.” Zenodo, 2024, doi: 10.5281/ZENODO.10566003.

[20] Amazon Web Services (2023, July 24). Practicing Continuous Integration and Continuous Delivery on AWS, AWS Whitepaper.

Accessed on: April 30, 2024. [Online]. Available: https://docs.aws.amazon.com/pdfs/whitepapers/latest/practicing-continuous-
integration-continuous-delivery/practicing-continuous-integration-continuous-delivery.pdf

