
        Journal of Informatics and Web Engineering  

        https://doi.org/10.33093/jiwe.2024.3.3.17 

        © Universiti Telekom Sdn Bhd.  

        Published by MMU Press. URL: https://journals.mmupress.com/jiwe 
 

Journal of Informatics and  

Web Engineering 

Vol. 3 No. 3 (October 2024) eISSN: 2821-370X 

Cyber-Securing Medical Devices Using 

Machine Learning: A Case Study of Pacemaker  

Suliat Toyosi Jimoh1, Shaymaa S Al-juboori2* 

1,2School of Computing, Engineering and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United 

Kingdom 
*Corresponding author: (shaymaa.al-juboori@plymouth.ac.uk; ORCiD: 0000-0001-5175-736X) 

 

Abstract - This study aims to enhance the cybersecurity framework of pacemaker devices by identifying vulnerabilities and 

recommending effective strategies. The objectives are to pinpoint cybersecurity weaknesses, utilize machine learning to predict 

security breaches, and propose countermeasures based on analytical trends. The literature review highlights the transformation of 

pacemaker technology from basic, fixed-rate devices to sophisticated systems with wireless capabilities, which, while improving 

patient care, also introduce significant cybersecurity risks. These risks include unauthorized entry, data breaches, and life-

threatening device malfunctions. The methodology in this study utilizes a quantitative research approach using the WUSTL-EHMS-

2020 dataset, which includes network traffic features, patients' biometric features, and attack label. The step-by-step method of 

machine learning prediction includes data collection, data preprocessing, feature engineering, and models’ training using Support 

Vector Machines (SVM) and Gradient Boosting Machines (GBM). The implementation results used evaluation metrics like 

accuracy, precision, recall, and F1 score to show that GBM model outperformed the SVM model. The GBM model achieved higher 

accuracy of 95.1% compared to 92.5% for SVM, greater precision of 99.6% compared to 96.7% for SVM, better recall of 94.9% 

compared to 42.7% for SVM, and a higher F1 score of 76.3% compared to 59.0% for SVM, making GBM model more effective 

in predicting cybersecurity threats. This study concludes that GBM is an effective machine learning model for enhancing pacemaker 

cybersecurity by analyzing network traffic and biometric data patterns. Future recommendations for improving the pacemaker 

cybersecurity include implementing GBM model for threat predictions, integration with existing security measures, and regular 

model updates and retraining. 
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1. INTRODUCTION  

The rapid development of technology has transformed how medical procedures are performed, especially through the 

integration of advanced electronic devices [1], [2], [3]. As mentioned in [4], a significant development in modern 

medicine is the widespread use of medical implantable devices like pacemakers. These pacemakers, which are 

designed to regulate heart rhythms, have improved patients’ lives and overall wellbeing. The essential features that 

make pacemakers revolutionary are their ability to communicate wirelessly with healthcare providers, and adjust to 

patients needs through remote monitoring, which also introduces a variety of vulnerabilities. The global landscape of 
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threats has undergone significant transformation alongside the rapid evolution of a digitally interconnected society. 

Medical devices, once seen purely in the light of their therapeutic potentials, are now viewed through the lens of 

cybersecurity [6]. With the advent of IoT (Internet of Things), home appliances and medical equipment are now 

interconnected in ways that were not previously adopted, enabling streamlined operations and remote access 

functionalities [1]. However, this interconnectivity has increased the attack surface for potential adversaries [5], [7] 

[8].   

The above-mentioned points have evidenced the importance of ensuring pacemaker cybersecurity. In regular security 

breaches, the primary concern is usually financial or information loss, however, security breaches or vulnerabilities in 

pacemakers can be a threat to patients’ lives [9], [7], [10]. For example, a pacemaker’s release of electric shock to a 

patient may lead to death [11], [10]. Researchers and cybersecurity professionals have detailed how these medical 

devices could be manipulated or disrupted by cyber-attackers. According to [12], [13], [14], [15], cyber-attackers 

could potentially endanger patients’ lives by remotely manipulating or disabling pacemaker settings through 

vulnerabilities in the device’s telemetry functions. The integration of technology into medical science has transformed 

the healthcare system's regulatory and ethical framework, often causing delay between advancements in technology 

and the establishment of comprehensive governance measures [2]. 

The cyber risks associated with pacemakers are not just technical in nature, but also have societal implications as well 

[16]. Patients' knowledge of potential pacemaker vulnerabilities can induce anxiety, thereby affecting their overall 

trust in medical interventions. For example, when U.S. Vice President Dick Cheney in 2013 disabled his pacemaker’s 

wireless features due to fears of being hacked [17]. Healthcare providers face the challenge of ensuring device 

functionality while also ensuring cybersecurity. [18] shows that adding layers of security might impede the timely 

delivery of critical care in emergencies.  

The fundamental problem in modern pacemaker devices is that, while they improve healthcare management through 

remote wireless functionalities, they also expose patients to cyber risks such as unauthorized access and potential 

pacemaker manipulation, thereby causing threats to both patients’ safety and data privacy. The aim of this study is to 

strengthen pacemaker device cybersecurity by identifying potential vulnerabilities and recommending effective 

strategies. The objectives of the study are to identify pacemaker systems cybersecurity vulnerabilities from related 

research, use machine learning to predict potential security breaches by analyzing cyber trends and patterns, and 

recommend effective countermeasures.  

The contributions of this study are summarized as follows: 

1. Identifying pacemaker device vulnerabilities. 

2. Using SVM and GBM machine learning models to predict potential security breaches in pacemaker devices. 

And demonstrating the performance of GBM and SVM models using evaluation metrics like accuracy, 

precision, recall, and F1 score.  

3. Utilized the WUSTL-EHMS-2020 dataset that includes network traffic features and biometric data, to 

facilitate the prediction of potential security breaches. 

4. Recommendations of future strategies like implementing the GBM model for threat prediction, integrating 

machine learning with existing security measures, regular model updates and retraining, compliance with 

regulations, improving user awareness & training, conducting regular risk assessments & audits, and effective 

incidence response approach. 

The rest of the paper is organized as follows. Section 2 describes the literature review in detail, covering existing 

techniques and methods used for text summarization. Section 3 proposes the methodology; covering the dataset 

description and the overall approaches used, and the implementation of the proposed solution has also been discussed. 

Section 4 presents quantitative and qualitative analysis and discusses the results in detail compared to previous 

approaches. Section 5 presents concluding remarks on the overall research work and points out the future research 

directions.  

 

2. LITERATURE REVIEW 

Rapid improvements in medical technology have made it possible to integrate complex electronic devices into 

healthcare systems, which has improved patient outcomes [3]. Among these medical advancements, implanted cardiac 
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devices, like pacemakers, are essential for controlling cardiac arrhythmias since they stimulate the heart with electrical 

impulses to keep its heart rate appropriate. Heart care has changed dramatically because of pacemakers' development 

from basic, fixed-rate devices to sophisticated systems that can modify pacing in real-time based on the needs of the 

heart and communicate wirelessly for configuration and monitoring [21].  

2.1 Pacemaker Overview 

A pacemaker as shown in Figure 1 is a cardiac implantable medical device that regulates abnormal heart by sending 

electrical impulses to stimulate the heart when it is beating too slowly or irregularly [5], [22], [10]. Pacemakers have 

evolved significantly over the years, transitioning from simple devices that deliver fixed-rate pacing without sensing 

to sophisticated systems capable of sensing the heart's electrical activity and adjusting pacing accordingly. Modern 

pacemakers are also capable of communicating wirelessly with external devices for monitoring and configuration, 

enhancing both patient care and convenience [23].  

 

Figure 1. A Medical Pacemaker [24] 

The pacemaker ecosystem is an interconnected system that relies on the seamless integration of multiple components, 

including the devices, the stake holders (patients, doctors & manufacturers) and their interactions [25]. Each 

component plays an essential role to ensure effective and secure operation of the pacemaker, contributing to the 

maintenance of patient's cardiac health and protection of sensitive health information. Data transmission within the 

pacemaker ecosystem involves several key interactions essential for effective patient care management as described 

by [25]. The data on patient’s heart activity and device functionality is first transmitted from the pacemaker to external 

programmers that healthcare providers use. This data is then often uploaded from the programmers to electronic health 

record systems within healthcare facilities, allowing for integrated patient management. In more advanced setups, data 

can be transmitted directly from pacemakers to remote monitoring systems as described by [26], enabling continuous 

care management, and reducing the need for frequent hospital visits. This flow of data ensures that patient health is 

monitored and managed in real-time, thereby boosting the effectiveness and responsiveness of health services.  

The wireless connectivity of the pacemaker as part of the IoMT architecture, is also discussed to have an insight into 

the pacemaker technology and how patients’ cardiac data are transmitted and processed. This IoMT architecture 

illustrated in Figure 2 consists of the perception, network, and application layers. The perception layer, which is the 

fundamental layer, consists of the pacemaker device itself, which acts as the primary sensor, equipped with the 

necessary hardware to monitor the patient's heart rate, rhythm, and other vital parameters [8], [21], [27]. The 

perception layer collects and transmits the data to the next layer using communication protocols such as Bluetooth, 

NFC, ZigBee, Wi-fi, and so on. [21], [27]. The network layer enables the transmission of data collected by the 

pacemaker to the application layer. This layer utilizes short-range protocols like BLE and Zigbee, for communication 

between the pacemaker and a nearby gateway device (e.g., smartphone or dedicated receiver), and long-range 

communication (cellular networks, e.g., 5G, 4G, LPWAN) for transmitting data from the gateway device to remote 

servers or the cloud [28], [21], [27]. The application layer, as discussed by [28], [8], [21], [27], processes, and analyzes 

the data received from the pacemaker, providing services to healthcare professionals and patients. The application 

layer includes cloud-based servers for data storage and processing [28], Electronic Health Record (EHR) systems for 

integrating pacemaker data with the patient's medical history [27], user interfaces for healthcare professionals to 
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monitor and manage patient data [8], and mobile applications for patients to access their pacemaker data and 

communicate with healthcare providers. 

 
Figure 2. The IoMT Architecture [21] 

2.2 Identified Pacemaker Cybersecurity Vulnerabilities  

Pacemaker devices are vulnerable to several factors that could potentially compromise patient safety and privacy, 

which includes the integration of wireless capabilities, the lack of comprehensive security measures, and the 

limitations of the embedded systems. The presence of wireless capabilities enables remote monitoring and adjustment 

of the pacemakers [19], [21], [30], which also introduce new attack surfaces that were not present in older pacemaker 

models. This vulnerability could allow attackers to reprogram the pacemaker, deplete its battery life, or even induce 

shock into patients’ hearts, thereby causing severe risks to the patients’ well-being. Another significant vulnerability 

stems from inadequate encryption and robust authentication mechanisms in the communication channel between the 

pacemaker and external devices. [31], [14], [19], [32], discussed that many existing implantable devices do not employ 

strong encryption, making them easy targets for eavesdropping to easily intercept sensitive patient information, such 

as medical history and device settings and attacks which could compromise patient safety. This also introduces 

vulnerability that could be exploited by cyber-attackers. In the year 2010, the U.S. Food and Drug Administration 

(FDA) issued a recall for 23 cardiac pacemakers that were found to be defective and at least six of these recalled 

pacemakers had defects that were specifically attributed to flaws or errors in their software components [33]. 

Regulatory agencies such as the FDA have issued security recommendations and guidance for medical devices, these 

are largely non-binding and do not establish legally enforceable responsibilities [34], [35], [36]. [36], discussed that 

the absence of firm mandates allows manufacturers to make their own decisions regarding cybersecurity based on 

factors like cost and time-to-market rather than being compelled to adhere to strict security standards. Similarly, 

healthcare organizations struggling with limited resources may choose not to follow the regulatory guidelines if 

implementing the necessary security measures requires additional expenditures or diverts resources from other 

priorities. These regulatory gaps can lead to severe incidents like the 2017 recall of 465,000 pacemakers by FDA 

caused by vulnerabilities [36].  

2.3 Pacemaker Cyber-attacks 

Pacemakers are vulnerable to several cyber-attacks that threaten their security and functionality, like eavesdropping 

attacks, which involve unauthorized interception of data [37], [21], [30]. A Man-in-the-Middle (MITM) attack 

involves intercepting and potentially altering communications between the device and its controller [37], [21], [10]. 

Also, the control parameter attack, where cyber-attackers alter the device’s settings to harmful values [10].  The real-

world incidences of pacemaker attacks highlight the severity of cybersecurity threats to these critical medical devices. 

For example, in 2013, the former U.S. Vice President Dick Cheney disabled his pacemaker’s wireless features, due to 

fears of hacking and assassination attempts [38], [39], [17]. Also, in 2015, the US FDA recalled 465,000 St. Jude 
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pacemakers after identifying cybersecurity risks that might impact the devices [7], [13]. These incidents highlight the 

necessity for strong cybersecurity defenses to maintain patients ‘safety and pacemakers’ performance. The pacemaker 

vulnerabilities as mentioned above can have severe consequences like device malfunctions, rapid battery depletion, 

or inappropriate pacing, causing medical emergencies and heightened patient anxiety [25]. For healthcare providers, 

addressing these vulnerabilities requires expensive approaches like device recalls, replacement surgeries, and extended 

hospital stays to manage complications [40]. For instance, major occurrences like the NHS WannaCry show the impact 

of cyber-attacks on healthcare systems, which can lead to canceled appointments, surgical delays, and operational 

disruptions and indirectly affect patient care [40]. 

2.4 The need for Machine Learning 

Machine learning is an effective mitigation approach that offers several key benefits. Firstly, it can create adaptive 

and intelligent security systems by learning from data and continuously enhancing their performance [41], [42]. 

Through training on normal device network behavior patterns, machine learning algorithms provide real-time 

monitoring capabilities, enabling quick detection of anomalies that may signal potential cyber-attacks, and response 

to these attacks [41], [15]. Secondly, machine learning enables the development of predictive security measures and 

customized security protocols tailored to individual device needs and threat profiles [17]. In the context of pacemakers, 

where prompt detection and mitigation of threats can be lifesaving, this real-time monitoring is of utmost importance. 

To strengthen the cybersecurity framework of medical pacemakers, machine learning will be used to predict potential 

security breaches on the pacemaker device network by analyzing cyber trends and patterns on the network. Table 1 

below summarizes different related work that adopt machine learning in the medical domain. 

Table 1. Analysis of Related Work 

Literature Title  Author/year Method used Findings Limitations 

Secure Bluetooth 

Communication in Smart 

Healthcare Systems: A 

Novel Community 

Dataset and Intrusion 

Detection System 

Zubair, et 

al., 2022 

[43] 

Deep Learning based 

IDS using DNN and 

ML models (LR, DT, 

SVM, RF, NB, IF, 

KM, LOF). 

Achieved 99% 

accuracy 

Dataset has class imbalance; 

model deployment and 

overhead not evaluated. 

A Particle Swarm 

Optimization and DL for 

Intrusion Detection 

System IoT 

Chaganti, et 

al., 2022 

[44] 

PSO-DNN based IDS 

using Machine 

Learning models such 

as LR, KNN, DT, 

AdaBoost, RF, & 

SVM, and DL  

PSO-DNN achieved 

96% accuracy, 

outperforming other 

ML and DL models. 

Dataset lacks certain attack 

types like DoS; adversarial 

attacks not considered. 

A Practical Model Based 

on Anomaly Detection 

for Protecting Medical 

IoT Control Services 

Against External Attacks. 

Fang, et al., 

2021 [45] 

Detecting Illegal 

Behavior (DIB) using 

RST, SVM and R-

FCVM. 

R-FCVM achieved 

92.67% average 

accuracy in identifying 

abnormal device 

behavior 

Dataset does not fully 

represent the real-world 

cyber-attacks on IoMT. 

There is limited evaluation 

of the computation cost. 

An Anomaly-Based 

Intrusion Detection 

System for Internet of 

Medical Things 

Networks 

Zachos, et 

al., 2021 

[46] 

Hybrid anomaly-

based IDS utilizing 

host and network 

techniques such as 

SVM, KNN, RF, LR, 

NB, and DT.  

Most suitable 

algorithms for the 

detection components 

are DT, RF, and KNN. 

High detection 

accuracy for both 

datasets. 

There is a need for 

balancing computational 

cost and detection 

efficiency. 
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An Intrusion Detection 

System for Internet of 

Medical Things 

Thamilarasu, 

et al., 2020 

[47] 

Mobile Agent Based 

IDS using SVM, DT, 

NBC, KNN, RF ML 

for network level 

intrusion detection 

and Polynomial 

Regression 

Algorithm. 

99.6% accuracy for 

network level and 

98.2% accuracy for 

device level intrusion 

detection against 

malicious attacks. Low 

energy overhead of 5-

7%. 

The proposed system 

requires substantial 

computational resources for 

processing real-time 

intrusion detection. The 

setup is simulation and not 

real IoMT devices.  

Intrusion Detection 

System for Healthcare 

Systems Using Medical 

and Network Data: A 

Comparison Study 

Hady, et al., 

2020 [48] 

RF, KNN, SVM, and 

ANN models applied 

on combined network 

and biometric data. 

 

Combining network 

flow metrics with 

biometric data 

improves the 

performance of the 

proposed system with 

AUC ranging from 7% 

to 25%. 

The proposed system's 

performance is not at its 

most efficient, research is 

needed to improve 

techniques, minimize 

feature space, and use more 

advanced attacks. 

 

Based on Ttable 1, the SVM model was used across all the literature in the attached files, demonstrating its broad 

application and effectiveness in predicting cyber threats in the medical domain. The authors [45], [46], used the DIB 

system and the Anomaly-based IDS respectively to experiment the feasibility of anomaly-based approaches for IoMT 

security. They showed how analyzing device data packets and network traffic using machine learning algorithms like 

fuzzy classifiers and decision trees can accurately identify abnormal behaviors indicative of attacks. This aligns with 

the study’s goal of using machine learning to predict cyber threats patterns on the network. However, [48] emphasize 

the importance of selecting suitable machine learning algorithms and IoMT-specific datasets for training IDS models. 

Their use of the realistic WUSTL-EHMS-2020 dataset highlights the need for comprehensive data that includes both 

network features and device/patient information, which significantly improves detection performance by integrating 

multiple data dimensions.  

2.5 Chosen Machine Learning Models 

SVM and GBM machine learning models were chosen for threats prediction in this study. The choice of SVM and 

GBM models is motivated by their proven effectiveness in high-dimensional spaces and their ability to model 

complex, nonlinear relationships that are characteristic of cyber-physical attack vectors on medical devices. SVM 

predicts network threats by classifying network traffic patterns as either normal or malicious based on the optimal 

hyperplane that separates these classes in the feature space [46]. GBM predicts network threats by sequentially 

building models that correct the errors of previous models, thereby identifying complex patterns and interactions in 

network traffic indicative of malicious activity [49]. 

3. RESEARCH METHODOLOGY 

In this section, the dataset features are discussed which includes biometric features, network traffic features and label 

features. Also discussed in this section are the step-by-step methods implemented for predicting potential cyber threats 

using SVM and GBM models which includes data collection, data preprocessing, feature engineering, model selection, 

training, and evaluation. 

3.1 Dataset 

This study utilizes the WUSTL-EHMS-2020 dataset, rich in quantitative data such as network traffic features, 

biometric data, and attack labels. This numerical data facilitates objective measurement, statistical analysis, and 

empirical validation of hypotheses, which are the key features of quantitative research [49], [50]. Also, the quantitative 

approach aligns with the study's objective of utilizing predictive analytics for potential security breaches [50]. The 

dataset used for this study is the Washington University in St. Louis EHMS 2020 referred to as the WUSTL-EHMS-

2020 dataset [48], [51]. This dataset was selected for this study because it was already pre-collected, organized and 

was suitable for the study's objective to utilize machine learning to predict potential security breaches in pacemaker 
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devices by analyzing cyber trends and patterns in network [52]. Also, the dataset provides detailed information, 

including network traffic features and patients' biometric data and attack labels.  

3.1.1. Dataset Description 

The dataset comprises 16,318 records. Each record is a unique instance representing a combination of network and 

biometric data points, which are labeled under 'Normal' operations or 'Attack' scenarios. The features of the dataset 

are described below. 

Biometric Data Features: (Temp), measures the body temperature of the patient. Oxygen Saturation (SpO2), 

measures percentage of hemoglobin binding sites in the bloodstream occupied by oxygen. (Pulse_Rate), measures the 

number of heart beats per minute. Systolic Blood Pressure (SYS), measures the maximum arterial pressure during 

contraction of the left ventricle of the heart. Diastolic Blood Pressure (DIA), measures the minimum arterial pressure 

during relaxation and dilatation of the ventricles of the heart when they fill with blood. (Heart_Rate), measures the 

frequency of heartbeats. Respiration Rate (Resp_Rate), measures the rate at which breathing occurs. ST Segment (ST), 

part of the heart's electrical activity recorded during a cardiac cycle.  

Network Traffic Features:  Dir, indicating direction of the traffic flow. SrcAddr, source IP address from which the 

packet originated. DstAddr, destination IP address to which the packet is being sent. Sport, Source port number, 

indicating the port from which the packet was sent. Dport, destination port number, indicating the port to which the 

packet is being sent. SrcBytes, number of bytes sent from the source to the destination. DstBytes, number of bytes 

sent from the destination to the source. SrcLoad (Source Load) and DstLoad (Destination Load), indicate the load on 

source and destination, useful for detecting overloads or unusual activity. SIntPkt, inter-packet arrival time for packets 

sent from the source. SIntPkt (Source Inter-packet Time) and DIntPkt (Destination Inter-packet Time), time between 

packets, which can help identify timing-based anomalies. SrcJitter (Source Jitter) and DstJitter (Destination Jitter), 

variation in packet arrival times, useful for identifying irregularities in traffic flow. Loss, number of packets lost during 

the transmission. pLoss, percentage of packets lost during the transmission. Rate, data transfer rate. SrcLoad, load on 

the source in terms of the amount of data being sent. DstLoad, load on the destination in terms of the amount of data 

being received. Flgs, flags set in the packet, which are used to control or identify certain conditions or features of the 

packet. SrcMac: MAC (Media Access Control) address of the source device. 

Label Feature 

Out of the 16,318 records, 14,272 are categorized as 'Normal' indicated by label ‘0’, signifying typical, safe operations. 

While 2,046 records, indicated by label ‘1’ are marked under various 'Attack' categories, indicating Spoofing attack 

or Data Alteration. 

3.2 Ethical Considerations  

The WUSTL-EHMS-2020 dataset is publicly accessible via the Washington University in St. Louis portal [51]. The 

provision of this dataset is governed by the Creative Commons Attribution 4.0 License, as outlined on their official 

licensing page [53]. The data was explicitly consented for use as stated by [48], ensuring compliance with the 

stipulated usage terms and ethical guidelines. 

3.3 Methodology 

This section discusses the step-by-step method for predicting potential cyber threats using SVM and GBM models to 

analyze cyber trends and patterns on the pacemaker device network. These steps include data collection, 

implementation setup, Importing libraries, data preprocessing, model training and evaluation. 

3.3.1 Data Collection 

The WUSTL-EHMS-2020 dataset that was used for the machine learning prediction was obtained from the 

Washington University in St. Louis portal [51]. This WUSTL-EHMS-2020 dataset was generated by [48], using a 

real-time EHMS testbed that collects both network traffic features and patients' biometric data. The dataset consists 
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of network features, biometric data of patients and labels for attack types, data alteration and spoofing as can be seen 

in Figure 3. 

3.3.2 Implementation Setup Environment 

The machine learning implementation was performed using HP EliteBook 840 G5 laptop running Microsoft Windows 

10 Enterprise operating system on an x64-based PC architecture. The Jupyter Notebook 6.5.4 Integrated Development 

Environment (IDE) accessed through the Anaconda Navigator Graphical User Interface (GUI) [54], was used to 

implement the Support Vector Machine (SVM) and Gradient Boosting Machine (GBM) machine learning algorithms 

to predict cyber threats on the pacemaker device network. This IDE facilitated effective training, evaluation, and 

visualization of the machine learning models. The python programming language was used, and its libraries include 

pandas, scikit-learn, numpy, seaborn, and matplotlib. 

3.3.1 Data Preprocessing 

The data preprocessing stage involves cleaning the dataset by identifying and correcting inaccurate entries from the 

dataset, to enhance the machine learning model’s performance [55]. The data preprocessing steps include the 

following:  

i. Handling missing values of the dataset by replacing missing values in numerical columns with the median 

and converting categorical columns into binary format [55].  

ii. Performing 5-fold cross-validation was used to validate the models’ performances by testing models’ 

accuracy on the training and testing subsets of the data [48]. 

 

 

Figure 3. The Wustl-ehms-2020_with_attacks_categories Dataset 

3.4 Feature Engineering 

Feature engineering involves selecting necessary features from the dataset and normalizing the selected features for 

quick processing and improved training performance [43]. Feature engineering improves models’ performance by 

transforming raw data into a format that is better suited for analysis. The next few sections explain the processes of 

feature engineering.  

3.4.1 Feature Selection 

The feature selection involves selecting relevant dataset features and transforming the features to improve models’ 

performance [55]. This include encoding categorical variables like 'Flgs' and 'SrcMac' into numerical format, using 

one-hot encoder.  
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3.4.2 Data Normalization 

Data normalization modifies the range of numerical features of the dataset like 'SrcLoad' and 'DstLoad', to a common 

scale, usually between zero and one [57].  

3.4.3 Data Splitting 

Data splitting involves dividing the dataset into two training set and testing set to improve models’ performance [48]. 

The dataset was divided into the ratio of 80% and 20%, where 80% is for training and 20% for testing [58]. This 80% 

- 20% data splitting approach mitigates overfitting, and evaluates how well the model performs on new, unseen 

data[58].  

3.4.4 Model Selection  

The SVM and GBM models were selected because they suit the problem being addressed. SVM is suitable in handling 

high-dimensional data with numerous features and indicators effectively [59], like the Wustl-ehms-2020 dataset. SVM 

can also perform non-linear classification and maximizes margins between classes, thereby enhancing its 

generalization capability [59]. GBM is effective for predicting cybersecurity threats due to its ability to process and 

integrate heterogeneous data types found in network datasets [60] like the Wustl-ehms-2020 dataset. Also, GBMs 

improve predictive accuracy by sequentially constructing decision trees where each of these trees aims to address the 

errors made by the prior one [60].  

3.5 Model Training 

Training the SVM and GBM models entails a series of systematic steps to enable the algorithms effectively learn from 

the data and make accurate predictions. Training of these machine learning models provides real-time monitoring 

capabilities, enabling quick detection of anomalies that may signal potential cyber-attacks, and response to these 

attacks [15]. In SVM model training the first step involves choosing the suitable kernel type that best suits the dataset, 

and then configuring the SVM model by creating hyperplane to effectively classify the data points [46]. 

The GBM approach differs from others in that it trains a series of decision trees [61]. Each tree is specifically designed 

to address the errors made by the prior one.  

3.6 Model Evaluation 

The performance of the trained models was evaluated using the testing dataset. The evaluation results of SVM and 

GBM show how well these models perform on unseen data. TP (True Positives)- number of instances correctly 

classified as positive. TN (True Negatives)- number of instances correctly classified as negative. FP (False Positives)- 

number of instances incorrectly classified as positive. FN (False Negatives)- number of instances incorrectly classified 

as negative. 

Accuracy: Calculates the proportion of total correct predictions against all predictions made [62], [44] (see 

Equation (1)). 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+𝐹𝑃+𝐹𝑁
       (1) 

 

Precision: Calculates the accuracy of the models’ positive [62], [44]. Precision is false positives is high, 

precision is particularly critical (see Equation (2)). 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (2) 

 

Recall: Evaluates relevant instances identified by the models (true positive rate) [62], [44] (see Equation (3)). 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (3) 
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F1-Score: Combines precision & recall, and calculates their harmonic mean [62], [44]. It is especially useful 

when dealing with imbalanced datasets (see Equation (4)). 

 

F1 = 2 X 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (4) 

 

Confusion Matrix: The confusion matrix as illustrated in Figure 4. describes the model's performance by 

comparing its actual and predicted classes [46]. 

 

 

Figure 4. Confusion Matrix Visualization 

 

4 IMPLEMENTATION RESULTS 

This section demonstrates the implementation results, including the trend results in biometric data, simulation results 

of predictive model, and results of the SVM & GBM confusion matrices. The "Wustl-

ehms_2020_with_attacks_categories" dataset was used to train SVM & GBM models to recognize patterns associated 

with various attack vectors and normal operation. The 'Label' column in the dataset has two categories, represented 

by the integers 0 and 1. Below is the distribution of these categories as shown in Figure 5: Label 0: There are 14,272 

instances categorized as '0', which typically represents normal, non-attack scenarios. Label 1: There are 2,046 

instances categorized as '1', which represents some form of attack or anomaly. 

 

 
Figure 5. Distribution of Labels 
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4.1 Result of the Predictive Models 

The Jupyter notebook IDE was used to perform data handling and visualization of the simulation results, using python 

libraries such as scikit-learn, pandas, numpy, Seaborn and Matplotlib. These were used for plotting accuracy, 

precision, and recall curves, thereby providing a comprehensive view of the models’ performance. The bar chart in 

Figure 6 Model Performance Comparison illustrates the comparison of the SVM and GBM models’ performance 

against the combined network and biometric data. The performance metrics as shown are accuracy, precision, recall, 

and F1_score represented by blue, orange, green, and red bars, respectively. 

 

Figure 6. Model Performance Comparison 

Figure 7 shows the results of Confusion Matrix visualization results based on the performance of a SVM classifier. It 

shows the actual versus predicted classifications for two classes: Normal and Attack. The matrix reveals that the 

classifier correctly predicted 2,842 instances as Normal and 178 instances as Attack. However, it misclassified 6 

instances of Normal as Attack and 238 instances of Attack as Normal.  

 

Figure 7. SVM Model Confusion Matrix 
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Figure 8 shows performance evaluation of a GBM classifier. It shows the actual versus predicted classifications for 

two classes: Normal and Attack. The matrix indicates that the classifier perfectly predicted all instances, with 2,854 

instances correctly classified as Normal and 253 instances correctly classified as Attack. It misclassified 1 instance of 

Normal as Attack and 156 instances ofAttack as Normal. Figure 9 shows the pie chart illustration of the confusion 

matrices for GBM and SVM classifiers. 

 

Figure 8. GBM Model Confusion Matrix 

 

Figure 9. Pie-chart Illustration Of SVM And GBM Confusion Matrices 

 

5 DISCUSSIONS 

This section provides analysis of the dataset and biometric trends, compares model performances, discusses the 

implications of the results, evaluates the effectiveness of the SVM and GBM models, and aligns the models’ 

implementation results with research questions. The dataset includes network traffic features, biometric data, and 
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attack categories. The objective is to identify trends in the biometric data and analyze the distribution and impact of 

different attack categories. 

5.1 Comparative Analysis of Models Performance Using Evaluation Results 

• Accuracy: The GBM model outperformed the SVM model in terms of accuracy. While the SVM model has 

an accuracy of 92.50%, the GBM model achieved a higher score of 95.1%. 

• Precision: Similarly, the GBM model has a higher precision score of 99.6%, outperforming the SVM model 

which has a precision of 96.70%. This shows that GBM is better at making accurate positive predictions. 

• Recall: The recall for the GBM model is significantly higher at 94.90%, compared to the SVM model's recall 

of 42.70%. This shows that GBM is much better at identifying all actual positive cases, whereas the SVM 

model misses a substantial number of positive cases. 

• F1 Score: The GBM model has an F1 score of 76.30%, while SVM model has a lower F1 score of 

approximately 59.00%, indicating a trade-off between precision and recall, with recall being notably lower. 

Based on the experimental results, the analysis shows that GBM model demonstrates superior performance across all 

the evaluated metrics (accuracy, precision, recall and F1 score) compared to the SVM model. GBM's superiority in 

accuracy and recall can be attributed to its iterative correction of errors from previous trees, which makes it highly 

effective for complex datasets where patterns and anomalies are not immediately apparent. This adaptability is crucial 

in medical device security, where new types of attacks may emerge that are not explicitly covered in the training data. 

The ability of GBM to handle heterogeneous data and its robustness against overfitting also contribute to its higher 

performance metrics [59]. While SVM showed a high precision, its lower recall rate suggests that it is less effective 

at identifying all actual positives, which in this context means detecting all real threats. This is partly because SVMs 

are sensitive to the choice of kernel and the regularization parameter. In an imbalanced dataset like the one employed 

in this study, where 'Normal' instances far outnumber 'Attack' instances, SVM struggles to identify the less frequent 

positive class. Therefore, the GBM model is the better-performing model in this comparison. 

5.2 Comparative Analysis of Models Performance  

This section compares the analysis of the confusion matrices in figures 7 & 8 for the SVM and GBM models' classifiers 

to evaluate their performance in predicting cyber-attacks. GBM Confusion Matrix: Figure 7. shows that the GBM 

classifier achieved classification with 253 True Positives (TP), 1 False Positives (FP), 2,854 True Negatives (TN), and 

156 False Negatives (FN). SVM Confusion Matrix: In Figure 7, the SVM classifier shows 178 True Positives (TP), 6 

False Positives (FP), 2,842 True Negatives (TN), and 238 False Negatives (FN). This shows that while the SVM 

model has high accuracy, it has a substantial number of false negatives, thereby reducing its recall performance 

compared to the GBM model. Based on Figure 9, the analysis of the confusion matrix distributions for the SVM and 

GBM models in detecting cyber threats shows significant differences in their performance. Both models show a high 

proportion of true positives, with GBM slightly higher at 87.4% compared to SVM at 87.1%. This demonstrates that 

both models are effective in correctly detecting genuine threats. However, GBM outperformed SVM in minimizing 

false positives, with rates of 4.8% and 7.3%, respectively. Lower false positives mean fewer unnecessary alerts and 

interventions, which is essential in a medical context to avoid causing undue stress to patients and reducing the 

workload on healthcare providers. SVM has more value in terms of false negatives, with a lower rate of 5.5% compared 

to GBM’s 7.8%. For pacemaker devices, false negatives are essential as they represent missed threats that could lead 

to device malfunctions and threat patients’ lives.  

5.3 Comparison of Experimental Results with Related Work that Utilized Same Dataset 

GBM model in this study has demonstrated high performance across all evaluation metrics, which are essential for 

minimizing false positives and false negatives in a healthcare context. [48], utilized the WUSTL-EHMS-2020 dataset. 

While GBM is not evaluated in their study, the best performing model, Artificial Neural Network (ANN) shows a 

high AUC- 92.98%, thereby illustrating the importance of using combined features (network and biometric data) for 

improving detection capabilities. This use of combined features aligns with the superior results obtained with GBM 

model in this study. In conclusion, GBM shows better overall performance compared to SVM and potentially other 

models like RF and KNN when considering precision and recall, critical factors for healthcare systems. ANN presents 
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strong AUC results, GBM's high precision and recall make it a particularly effective choice for scenarios where 

accurate detection of anomalies is most important. 

5.4 Comparative Analysis of SVM Performance with Other Study 

This study demonstrates SVM performance with an accuracy of 92.50%, a precision of 96.70%, but a lower recall of 

42.70% and an F1-score of 59.00%. This indicates that while the SVM model is highly precise in predicting non-

attack scenarios accurately, it struggles with detecting all positive attack cases, as indicated by the low recall. Authors 

in [63], reports an overall accuracy of 77.5%, sensitivity (recall) of 0.62, and specificity of 0.86. These metrics indicate 

a more balanced performance between identifying positive cases and avoiding false positives. The lower accuracy 

compared to the first study might reflect the complexity and variability inherent in predicting medical conditions, 

where factors influencing cardiovascular diseases can be diverse and multifactorial. The higher specificity compared 

to sensitivity shows that SVM model was better at correctly identifying false negatives. While both studies showcase 

effective uses of SVM in their respective fields, the choice of SVM configuration and the resulting trade-offs in 

performance metrics should be carefully considered based on the specific requirements of the application environment. 

The GBM model was utilized as an additional machine learning technique. This is justified by the model's ability to 

handle heterogeneous data types effectively and its sequential learning approach, which corrects errors made by 

previous trees, enhancing overall predictive accuracy. The comparative analysis of the SVM and GBM models 

demonstrated that GBM significantly outperformed SVM in terms of the key performance metrics, including accuracy, 

precision, recall, and F1 score. Specifically, GBM achieved an accuracy of 95.1% compared to SVM's 92.5%. 

6 CONCLUSION 

This study has demonstrated the necessity for improved pacemakers' cybersecurity, with increasing vulnerability to 

cyber threats due to their advanced wireless capabilities. The study has provided a comprehensive overview of 

cybersecurity vulnerabilities associated with pacemaker devices and recommended mitigation strategies for these 

vulnerabilities. One of the key mitigation strategies identified is the use of Machine Learning to analyze and predict 

cyber threats, thereby aligning with its stated objectives. 

 

The research methodology employed a quantitative research approach using the WUSTL-EHMS-2020 dataset, 

comprising of network traffic features and patients' biometric data and attack label, to train machine learning models 

for predicting cyber threats. The step-by-step methods of machine learning prediction includes data collection, data 

preprocessing, feature engineering, and model training using SVM and GBM models. The evaluation results showed 

that the GBM model significantly outperformed the SVM across all evaluation metrics - accuracy (95.1% vs 92.5%), 

precision (99.60% vs 96.7%), recall (94.90% vs 42.7%), and F1 score (76.30% vs 59.00%). The confusion matrices 

visually indicate that the GBM model outperformed the SVM model in correctly classifying both positive and negative 

cases, with fewer misclassifications and higher overall accuracy. 

6.1 Limitations 

This study presents a comprehensive method to strengthen pacemaker cybersecurity through machine learning-based 

intrusion detection. While the WUSTL-EHMS-2020 dataset is comprehensive, it may not fully represent the entire 

spectrum of real-world scenarios and attack vectors. This study focused on SVM and GBM models. While these 

models demonstrated promising results, other algorithms or ensemble techniques may offer different trade-offs or 

performance characteristics that were not explored. This study did not fully assess the performance implications or 

needs for computational resources while implementing machine learning prediction in a real-world setting. While this 

study provided valuable insights through simulations and evaluations, the proposed countermeasures have not 

undergone extensive real-world testing or validation in healthcare facilities or with actual pacemaker devices. Factors 

such as environmental conditions, user interactions, and unforeseen edge cases may influence the performance and 

effectiveness of the proposed solutions in practical deployments. Also, this study did not attempt to handle imbalanced 

classes of the dataset using oversampling/ undersampling methods that might improve the models’ performances. 

6.2 Future Recommendations 
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Integrating GBM model into pacemaker security framework can enable real-time monitoring and early detection of 

potential cyber-attacks or anomalies [49] [64]. As new cyber threats emerge, it is crucial to update the GBM model 

with the latest attack patterns and biometric data trends [41]. Machine learning techniques should be integrated with 

existing pacemaker devices security measures, like encryption, access control mechanisms, authentication protocols, 

and blockchain technology [41].  Compliance with regulations such as the HIPAA in the U.S. and the GDPR in Europe 

is necessary for ensuring data privacy in medical devices [64] [32]. Both regulations set forth standards and 

requirements that help protect sensitive health information, which is relevant for connected medical devices like 

pacemakers. The healthcare professionals, patients, and other stakeholders should be educated about the importance 

of cybersecurity in medical devices [65]. Providing training on best practices for secure handling, monitoring, and 

reporting of potential cyber threats or detected anomalies, can promote a culture of cyber vigilance and collaboration 

in protecting pacemaker devices. Implementing routine cybersecurity risk assessment process to identify potential 

vulnerabilities in the pacemaker ecosystem, including the pacemaker device, communication network, and supporting 

infrastructure, can help ensure compliance with established security protocols and identify areas for improvement 

[13]. Auditing key cybersecurity controls in pacemakers like configuration management, vulnerability management, 

patch management, access controls, and incident response plans is essential to evaluate their effectiveness and ensure 

compliance. There should be a detailed plan ready to address potential cybersecurity breaches or attacks targeting 

pacemakers [15]. Given the critical life-sustaining function of these devices, a comprehensive incident response 

strategy is essential to mitigate risks and protect patient safety. 
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