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Abstract - In this paper, we introduce the concept of Conditional Deployable Biometrics (CDB), designed to deliver consistent 

performance across various biometric matching scenarios, including intra-modal, multimodal, and cross-modal applications. The 

CDB framework provides a versatile and deployable biometric authentication system that ensures reliable matching regardless of 

the biometric modality being used. To realize this framework, we have developed CDB-Net, a specialized deep neural network 

tailored for handling both periocular and face biometric modalities. CDB-Net is engineered to handle the unique challenges 

associated with these different modalities while maintaining high accuracy and robustness. Our extensive experimentation with 

CDB-Net across five diverse and challenging in-the-wild datasets illustrates its effectiveness in adhering to the CDB paradigm. 

These datasets encompass a wide range of real-world conditions, further validating the model’s capability to manage variations 

and complexities inherent in biometric data. The results confirm that CDB-Net not only meets but exceeds expectations in terms 

of performance, demonstrating its potential for practical deployment in various biometric authentication scenarios. 
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1. INTRODUCTION  

Biometrics can be easily associated with a user’s identity, in which it pertains to how it is unique to each person 

[Error! Reference source not found.]. In other words, considering this uniqueness, it is said that biometrics can be 

a considerable solution to second-factor identification components such as passwords. Face biometrics is a popular 

biometric modality, given that it is non-cooperative and is easy to obtain. However, there may be instances where 

face biometrics may underperform. For example, occlusions on the face may occur, such as the usage of surgical 

mask, make-up, and plastic surgery. In such a case, periocular biometrics, which is the ocular area around the eye 

region, is a good alternative Error! Reference source not found.]. 

Though not as well studied as face, periocular biometrics have been relatively popular since the advent of machine 

learning, beginning with different hand-crafted techniques such as the Local Binary Pattern (LBP) Error! 

Reference source not found.]. However, given its lack of representation power, periocular biometrics have a 
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relatively low performance in comparison with face. Since the introduction of the Convolutional Neural Networks 

(CNN) Error! Reference source not found.], deep learning has been a popular technique used for different 

classification techniques, which naturally includes periocular recognition. 

Conditional multimodal biometrics, has garnered attention in terms of boosting the performance of periocular 

biometrics. In [Error! Reference source not found.], the concept of conditional multimodal biometrics comprising 

a shared-parameter deep neural network alongside a specially designed loss function was proposed for periocular 

and face images. In said work, the matching of intra-modal and multimodal was thoroughly studied. In the case of 

the former, intra-modal matching refers to the matching between similar biometric modalities, e.g., periocular vs. 

periocular, or face vs. face, while the latter refers to the fused matching between several biometric modalities, e.g., 

fused periocular and face vs. fused periocular and face. 

In this paper, we take a step further upon improving the conditional multimodal biometrics by proposing the notion 

of Conditional Deployable Biometrics (CDB), whereby we not only study the intra-modal matching and multimodal 

matching of periocular and face, but we also include the non-trivial study of cross-modal matching. Our proposed 

CDB regimen enables flexible deployment for biometric recognition systems, accepting either modality that are 

trained during the enrollment phase (i.e., feature extraction and storage) and the query phase (i.e., feature extraction 

and perform matching for authentication). Figure 1 illustrates the enrollment and query phases after the training with 

several biometric modalities are done. Particularly, suppose that periocular and face are trained, the input biometrics 

during the enrollment and query phases can be consisted of either face, periocular, or a combination of both 

modalities. 

 

Figure 1. Training, Enrollment, And Query Phases Of CDB 

 

In this paper, we realize the CDB by proposing the CDB-Net, a deep neural network that comprises a CNN 

architecture and a specifically designed loss function that enables matching of periocular and face modalities that are 

deployable in multiple settings. The architecture of the CDB-Net is built upon the lightweight MobileFaceNet Error! 

Reference source not found.] architecture, whereby we modify the network by appending a CDB block designed 

specifically for periocular and face to further boost its performance. In addition, our proposed CDB loss enables 

cross-modal matching between periocular and face, in which though the former is a subset image of the latter, there 

lies a modality gap between both due to the different image sizes and the different salient areas. 

In summary, our contribution is as the following: 

1. We propose the CDB notion, whereby we enable flexible deployment of biometric authentication 

systems in different settings. 

2. We realize the CDB regimen by proposing the CDB-Net, a deep neural network consisting of a 

Convolutional Neural Network architecture and the CDB loss, specifically tailored for periocular and 

face. 

3. The CDB-Net is benchmarked on five in-the-wild datasets, in which these datasets are obtained in an 

unconstrained environment regardless of the angle, pose, or lighting, deemed to be more challenging 

than datasets that are obtained in a controlled setting. We demonstrate the effectiveness of the CDB-

Net on these datasets by identification and verification matching protocols. 

This paper is organized as follows. Section 2 presents the latest literature reviews on periocular and face biometrics, 

while also studying the concept of conditional multimodal biometrics and several works related to cross-modal 
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matching. Section 3 then presents the research methodology of our work, introducing in detail the CDB-Net 

architecture and loss functions. Section 4 then demonstrates the benchmarking of the CDB-Net via experiments 

conducted, leading to the conclusion of our research in Section 5. 

 

2. LITERATURE REVIEW  

2.1 Face and Periocular Biometrics 

Face recognition has become an essential part of biometrics recognition ever since the advent of the Yale Face 

Database [Error! Reference source not found.] due to its non-cooperative nature and its ease of performing 

authentication through biometric systems. Though it is well studied, the performance of face biometrics has been 

underwhelming due to its large intra-class variations [Error! Reference source not found.]. With the introduction 

of deep neural networks such as the Convolutional Neural Network Error! Reference source not found.] alongside 

angular margin losses such as the ArcFace [Error! Reference source not found.] and CosFace Error! Reference 

source not found.], the research on face recognition was significantly improved geared towards its accuracy 

improvement, particularly for then-challenging in-the-wild datasets such as the Labelled Faces in the Wild (LFW) 

[Error! Reference source not found.]. In particular, the LFW was used as a standard benchmark due to the dataset 

being obtained from an unconstrained environment, whereby there are no restrictions in pose, angles, or lighting 

settings. As of current state-of-the-art works, the LFW dataset has managed to reach a plateau in performance, 

leading to variants of it such as the Cross-Pose LFW (CPLFW) [Error! Reference source not found.] to be used as 

a more challenging benchmark.  

Periocular recognition on the other hand, has also garnered early attention with the advent of machine learning 

techniques. To be specific, early works on periocular recognition involve hand-crafted techniques such as the Local 

Binary Pattern (LBP) Error! Reference source not found.] to extract its features and perform matching. However, 

due to a lack of representation power in periocular compared with face, its performance similarly has also been 

underwhelming, even moreso than face. As a result, periocular biometrics is typically paired with other biometric 

modalities such as face [Error! Reference source not found.], or iris [Error! Reference source not found.]. In 

[Error! Reference source not found.], the proposed MDLN relies on the LBP extracted left and right periocular 

images to boost its performance. However, the accuracy performance was benchmarked on a dataset obtained in a 

controlled environment. It is not until [Error! Reference source not found.] that in-the-wild periocular dataset 

obtained a good performance using a knowledge distillation technique, distilling knowledge from the face teacher 

network to the periocular student network.  

Though our work benchmarks the CDB-Net on intra-modal matching of face and periocular recognition, we place an 

equal emphasis also on matching in the multimodal and cross-modal settings. For a thorough survey on face and 

periocular advancements, we refer the readers to the survey paper in [Error! Reference source not found.], [Error! 

Reference source not found.].  

 

2.2 Conditional Multimodal Biometrics and Cross-Modal Matching 

In Error! Reference source not found.], the Conditional Multimodal Biometrics (CMB) notion was proposed to 

boost the performance of periocular via leveraging its learning with face, such that a shared parameter network 

accepting both inputs is able to perform mutual learning of both modalities. This leads to the performance boost of 

both modalities, in which the benchmark was carried out on in-the-wild datasets, outperforming the knowledge 

distillation technique in Error! Reference source not found.]. Though that is the case, the study on cross-modal 

matching between periocular and face was not well studied.  

[Error! Reference source not found.] then studies the cross-modal matching between periocular and face 

biometrics, in which that it is deemed non-trivial given the image size discrepancy that exists between both images. 

In particular, the HA-ViT, a variant of the Vision Transformer (ViT) [Error! Reference source not found.] was 

proposed with the concept of the multi-head self-attention [Error! Reference source not found.] such that cross-

modal matching between both modalities was enabled. This was further backed up with the introduction of the Cross 

Face-Periocular Contrastive (CFPC) Loss, that leverages intra-modal and inter-modal negatives in a manner similar 

to label smoothing regularization [Error! Reference source not found.], which further boosts the cross-modal 
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matching between both modalities. However, the effect of cross-modal matching on intra-modal matching was not 

well studied. 

In this work, we place an equal emphasis on intra-modal, multimodal, and cross-modal matching, thus fulfilling the 

CDB notion via the design of the CDB-Net. To be precise, the CDB-Net built upon a modified upgrade of the 

MobileFaceNet Error! Reference source not found.] with a CDB block accepting both periocular and face 

modalities as inputs, alongside the CDB loss were designed specifically to achieve this goal. 

 

3. RESEARCH METHODOLOGY 

3.1 Overview 

Figure 2 illustrates the overview of the CDB-Net. In particular, the CDB-Net architecture is used as a feature 

extractor 𝑓(∙) for images 𝑥∗ , whereby ∗= {𝑓, 𝑝} , representing face and periocular images respectively. eliciting 

modality-specific feature embeddings 𝑣∗ = 𝑓(𝑥∗; 𝜙) ∈ ℝ𝑑 such that 𝑑 is the dimension of the feature embedding. 

Here, we set 𝑑 =  1024. These feature embeddings are appended with a Softmax predictor to elicit modality-

specific losses 𝐿∗ and the CDB loss 𝐿𝑐𝑑𝑏. 

 

Figure 2. Overview Of CDB-Net 

3.2 Network Architecture 

Built upon the MobileFaceNet Error! Reference source not found.] architecture, we append the CDB block after 

the 6th layer, after the 4th bottleneck layer. In precise, the CDB block consists of two modules, whereby the first half 

is made up of a channel-wise multi head self-attention, while the second half is made up of the gated feed-forward 

network. Mathematically, given 𝑄 = 𝐶𝑑
𝑄𝐶𝑝

𝑄𝑥, 𝐾 = 𝐶𝑑
𝐾𝐶𝑝

𝐾𝑥, 𝑉 = 𝐶𝑑
𝑉𝐶𝑝

𝑉𝑥  whereby 𝐶𝑑
(⋅)

 and 𝐶𝑝
(⋅)

represent the 1 × 1 

depth-wise convolution and 3 × 3 point-wise convolution respectively, we first describe the channel-wise multi 

head self-attention as follows: 

𝑥 = 𝐶𝑝 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) + 𝑥 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑉 ⋅ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾 ⋅ 𝑄/α) 

Here, α is a learnable scaling parameter. Then, the gated feed-forward network is described as the following: 

𝑥 = 𝐶𝑝
0 𝐺𝑎𝑡𝑖𝑛𝑔(𝑥) + 𝑥 

𝐺𝑎𝑡𝑖𝑛𝑔(𝑥) = ϕ (𝐶𝑑
1𝐶𝑝

1(𝑥)) ⊙ (𝐶𝑑
2𝐶𝑝

2(𝑥)) 
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where ⊙ represents element-wise multiplication while ϕ represents the GeLU gating function. 

3.3 Loss Functions 

Given a set of a set of 𝑁  face (𝑓 ) and periocular (𝑝) images with shared identity labels {(𝑥𝑖
∗, 𝑦𝑖)} where 𝑖 =

{1, … , 𝑁}, 𝑥𝑖
∗ = {∗ |𝑓, 𝑝} and 𝐶  identities, the Softmax predictors can be computed as 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑇𝑣∗) and 𝑣∗ =

𝑓(𝑥∗) ∈ ℝ𝑑 where 𝑊𝑇 ∈ ℝ𝐶×𝑑 is the prototype weight matrix for face or periocular images. We use CosFace Error! 

Reference source not found.] as the Softmax predictors. 

 

3.3.1 Angular Margin Loss (CosFace) 

Given a batch of 𝐵  samples 𝑥𝑖
∗  with their corresponding identity labels 𝑦𝑖 , the margin-based angular loss 𝐿∗  is 

defined as follows: 

𝐿∗ =
1

𝐵
∑ −𝑙𝑜𝑔

𝑖=1

𝑒
𝑠(cos(𝜃𝑦𝑖,𝑖

)−𝑚)

𝑒
𝑠(cos(𝜃𝑦𝑖,𝑖

)−𝑚
+ ∑ 𝑒𝑠 𝑐𝑜𝑠𝜃𝑖𝑖

 

3.3.2 CDB Loss 

The CDB loss, 𝐿𝑐𝑑𝑏 is computed as the following, whereby 𝑣∗𝑖 represents feature embedding of identity 𝑖, such that  

𝑣∗𝑖
+   and  𝑣∗𝑖

−  represent the positive and negative samples respectively. 

𝐿𝑐𝑑𝑏 = −
1

𝐵
∑ 𝑙𝑜𝑔

𝐵

𝑖=1

𝑒(
𝑣∗𝑖𝑣∗𝑖

+

𝜏
)

𝑒(
𝑣∗𝑖𝑣∗𝑖

+

𝜏
) + ∑ 𝑒(

𝑣∗𝑖𝑣∗𝑖
−

𝜏
)

𝑦𝑖
−≠𝑦𝑖

 

Here, we set 𝜏 as the temperature hyperparameter, in which we set a value of 0.07. 

3.3.3 Total Losses 

Given the angular margin loss and the CDB loss functions, the total loss 𝐿 is calculated as follows. 

𝐿 =  𝐿𝑝 + 𝐿𝑓 + 𝐿𝑐𝑑𝑏 

3.4 Inferencing 

After training is completed, the two Softmax predictors are discarded. For deployment - comprising enrollment and 

query as shown in Figure 2—only the backbone network is used to extract the feature embedding 𝑣∗ = 𝑓(𝑥∗) ∈ ℝ𝑑 

whereby ∗ =  { 𝑓, 𝑝, 𝑝𝑓 } corresponds to the face (𝑓), periocular (𝑝) or both (𝑓𝑝) modalities, depending on the 

desired CDB configuration. This is applicable to images that are unseen to the model during training, thereby 

fulfilling the open-set setting during matching. 

 

4. RESULTS AND DISCUSSIONS  

4.1 Experimental Setup 

The generalizability of the CDB-Net is evaluated using the rank-1 identification rate (IR) for identification tasks and 

the equal error rate (EER) for verification tasks, considering three different configurations: (1) intra-modal matching 

(periocular vs. periocular, and face vs. face), eliciting two rank-1 IR and EER values each, (2) multimodal matching 

(concatenated periocular and face vs. concatenated periocular and face), eliciting one rank-1 IR and EER value each, 

and (3) cross-modal matching (periocular vs. face, and face vs. periocular), eliciting two rank-1 IR values with a 

single EER value. 
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In the case of identification, each testing set is probed against the gallery, whereby we calculate the average rank-1 

IR values obtained. In addition, we also include the Cumulative Matching Characteristic (CMC) Curve for rank-1 to 

rank-10 as a plot, as shown in Figures 3-5. As for verification, we sample 4 random images for each identity label 

from the gallery, such that a total of 12 (= 4 × (4 - 1)) positive pairs and 16 (= 4 × 4) negative pairs are elicited. 

Additionally, we include the Receiver Operating Characteristic (ROC) Curve as a plot, similarly as shown in Figure 

3 to Figure 5. We proceed to describe the dataset distribution in the next section. 

4.1.1 Dataset 

In this section, we provide the dataset distribution for both our training and testing datasets. Our training set 

comprises face and periocular images sampled from the VGGFace [Error! Reference source not found.] and 

Ethnic [Error! Reference source not found.] datasets. In total, the training set includes 1,054 identities with 

166,737 samples for each modality (periocular and face). To conduct more comprehensive experiments, we evaluate 

the CDB-Net on five testing datasets: Ethnic [Error! Reference source not found.], Pubfig [Error! Reference 

source not found.], FaceScrub [Error! Reference source not found.], IMDb Wiki [Error! Reference source not 

found.], and AR [Error! Reference source not found.]. It is important to note that these testing datasets are 

entirely separate from the training set, meaning there are no overlapping identities between the training and testing 

datasets.  

 

The testing datasets are collected from the wild, which feature diverse lighting conditions, poses, and angles, except 

for the AR dataset, which is included because it contains additional challenging factors, such as occlusions. Ethnic 

covers various ethnicities, providing a robust benchmark for generalization. Pubfig is simpler compared to IMDb 

Wiki, while FaceScrub serves as a widely used intermediate dataset, more challenging than Pubfig but less so than 

IMDb Wiki. Although AR is not an in-the-wild dataset, it introduces challenges such as occlusion and blurring. 

Table 1 provides a summary of the data distribution across the training and testing sets. 

 
Table 1. Distribution Summary Of Testing Data 

 Ethnic Pubfig FaceScrub IMDb Wiki AR 

# identities 328 200 530 2,129 100 

# gallery 1,645 9,221 31,066 40,241 700 

# probe 1 24,171 6,138 21,518 17,658 2,800 

# probe 2 - 6,101 27,292 15,252 1,400 

# probe 3 - - - 16,273 3,500 

# probe 4 - - - - 600 

We apply aggressive data augmentations in our experiments for training CDB-Net. These include random in-plane 

rotation from -10 to 10 degrees, random scaling with a factor ranging from 1.0 to 1.2, and random horizontal 

flipping.  

The datasets used for testing offer a broad range of conditions, including different demographics and environmental 

factors, which challenge the model’s generalization capabilities. This diversity in testing data helps to thoroughly 

evaluate the robustness of CDB-Net across real-world scenarios. 

4.1.2 Experiment and Hyperparameters 

During the training, the CDB-Net built upon the MobileFaceNet was loaded with pre-trained MobileFaceNet Error! 

Reference source not found.] weights that was trained on VGGFace2 [Error! Reference source not found.] 

images with a dimension of 1024. For the first 6 epochs, which we term as “pre-epochs”, we freeze all the layers of 

MobileFaceNet with the exception of the CDB block. This allows the CDB block to attune itself to the architecture 

of the pre-trained weights, whereby the remaining 34 epochs (40 epochs in total) trains the whole network. Table 2 

summarizes the hyperparameters used in the experiments. 



Journal of Informatics and Web Engineering                   Vol. 3 No. 3 (October 2024) 

308 
 

Table 2. Hyperparameters Used For Training 

Settings Hyperparameters 

Batch Size 24 

Dropout 0.1 

# Epochs 6 pre-epochs + 34 epochs 

Learning Rate 0.001 

Weight Decay 1e-5 

Learning Rate Scheduler [6, 18, 30] 

Angular Margin (𝑠, 𝑚) (64.0, 0.35) 

Temperature τ 0.07 

4.2 Experimental Results 

Following the experimental setup described in Section 4.1, we tabulate a summary of our experimental results in 

Table 3. In particular, we run these experiments on 3 different settings, namely the baselines, multitask learning 

(MTL) [Error! Reference source not found.], and the CDB-Net. In the case of the baselines, we run two modality-

specific periocular and face networks, then perform the matching for these baseline networks. On the other hand, the 

MTL comprises a shared parameter network that accepts both periocular and face images, though we exclude the 

𝐿𝑐𝑑𝑏 loss function. Lastly, the CDB-Net configuration includes a shared-parameter network alongside 𝐿𝑐𝑑𝑏. 

Table 3. Experimental Results Of CDB-Net With Baselines Averaged On Testing Datasets (Ethnic, Pubfic, 

FaceScrub, IMDb Wiki, AR) 

 Intra-Modal Multimodal Cross-Modal 

 Peri Face Peri + Face Peri + Face Peri G. Face G. 
Peri-

Face 

 
Rank-

1 IR 

(%) 

EER 

(%) 

Rank

-1 IR 

(%) 

EER 

(%) 
Rank-1 IR 

(%) 
EER (%) 

Rank-1 

IR (%) 
Rank-1 

IR (%) 
EER 

(%) 

Baselines 90.38 12.71 97.48 3.93 97.49 5.73 2.35 2.66 41.00 

MTL 89.90 10.75 97.28 3.87 96.96 4.82 69.85 65.74 14.44 

CDB-Net 90.50 10.01 97.35 3.86 97.13 4.56 84.84 82.03 10.75 

 

In Table 3, notice that though the baselines have a relatively good performance in both intra-modal and multimodal 

matching settings, the performance for cross-modal matching shows a drastic decrease. This further justifies that 

both periocular and face are of different modalities, in which a considerable result would be elicited suppose that 

both are of the same modalities, sharing similar weights. On the other hand, the MTL exhibits a decent performance 

for periocular and face in terms of cross-modal matching, though it is outperformed by the baseline networks in 

intra-modal and multimodal matching. We credit this to the shared-parameter network that accepts both inputs, that 

embodies the concept of the conditional deployable biometrics (CDB), in which though the performance of cross-

modal matching has increased significantly by roughly 60% in terms of rank-1 IR and 30% in terms of EER, there 

still lies room for improvement in the other matching settings. Therefore, the introduction of 𝐿𝑐𝑑𝑏  as in the CDB-Net 

demonstrates the best improvement in terms of cross-modal matching, while minimizing the performance loss for 

face. In addition, the performance of periocular outperforms the baseline network. We attribute this to the CDB 

notion, whereby the face modality is able to guide the learning process of periocular, boosting its performance 
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significantly. We illustrate the CMC and ROC curves for intra-modal, multimodal, and cross-modal matching in 

Figures 3, 4, and 5 respectively. 

In Figure 3, notice that the periocular performance for CDB-Net outperforms greatly the MTL and baseline 

networks. Though it can be said that the performance of face is negligibly lower, we treat this as a necessary trade-

off for performance balance. This case is similar in Figure 4 that illustrates the multimodal matching setting, 

whereby it is shown that the CDB-Net has a slight performance degrade in comparison with the baseline network. It 

is believed that in order to significantly improve the performance of periocular, there needs to be a slight decrease in 

the performance of face. Considering that the multimodal setting considers both modalities, we attribute this slight 

performance degrade to the face modality. With reference to Table 3, though there is a performance degrade of 0.3% 

in terms of rank-1 IR, the performance improvement of 1.1% in terms of EER was able to make up for its 

degradation. 

 

Figure 3. Cumulative Matching Characteristic (CMC) And Receiver Operating Characteristic (ROC) Curves For 

Intra-Modal Matching Averaged On Testing Datasets (Ethnic, Pubfic, FaceScrub, IMDb Wiki, AR) 
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Figure 4. Cumulative Matching Characteristic (CMC) And Receiver Operating Characteristic (ROC) Curves For 

Multimodal Matching Averaged On Testing Datasets (Ethnic, Pubfic, FaceScrub, IMDb Wiki, AR) 

 

Lastly, Figure 5 shows the cross-modal matching performances. As expected, it can be seen that the CDB-Net 

performs the best compared to the MTL and baseline settings. This exhibits a balanced performance of intra-modal, 

multimodal, and cross-modal matching of the CDB-Net compared to the other networks, thus fulfilling the CDB 

notion. In particular, enabling cross-modal matching allows a flexible face and periocular deployment in which 

either modalities can be enrolled and queried be it in a single modality or multiple modality case, similar to a 

combination of the work in Error! Reference source not found.] and [Error! Reference source not found.]. 

 

Figure 5. Cumulative Matching Characteristic (CMC) And Receiver Operating Characteristic (ROC) Curves For 

Cross-Modal Matching Averaged On Testing Datasets (Ethnic, Pubfic, FaceScrub, IMDb Wiki, AR) 

 

5. CONCLUSION  

In this paper, we presented the notion of the Conditional Deployable Biometrics (CDB), whereby we achieve a 

balanced performance for intra-modal, multimodal, and cross-modal matching settings. The notion of the CDB 

enables a deployable biometric authentication system that is flexible, in which matching authentication can be 

carried out regardless of the biometric modality. In particular, we realize the CDB regimen via the CDB-Net, a deep 

neural network that is designed for periocular and face modalities. Through our benchmark on five in-the-wild 

datasets that are deemed to be challenging, we demonstrate the effectiveness of the CDB-Net in realizing the CDB 

notion, whereby we observe a drastic performance improvement of the CDB-Net in comparison with the baseline 

networks. Some possible extensions to our work in the future may include consideration of other biometric 

modalities such as iris and fingerprint for a seamless biometric authentication system that is non-repudiable. 
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