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Abstract — Accurate estimation of signal-to-noise ratio (SNR) in Scanning Electron Microscopy (SEM) is crucial because it
evaluates the image quality. SEM images faced a challenge whereby Gaussian noise commonly appears in the images. Thus,
researchers have developed several methods to estimate the SNR value. With the introduction of deep learning, most of the
limitations in the classical methods can be addressed. This paper proposes a novel deep learning, CNN-based Calibration Map
Network (CalibNet) to estimate the SNR value from SEM images using a calibration map between classical SNR and
autocorrelation function SNR. The architecture consists of convolutional layers, rectified linear unit (ReLU) activations, max-
pooling layers, adaptive pooling, and a regression head to predict the SNR value correctly. The proposed model is trained, validated
and tested on two SEM images, the Biofilm SEM dataset (67 images) and the NFFA-EUROPE SEM dataset (961 images). Each
image was artificially corrupted with Gaussian noise variance ranging from 0.001 to 0.01 to simulate realistic SEM imaging
conditions. The proposed model was compared with Classical SNR, Autocorrelation Function (ACF), Nearest Neighbour (NN)-
ACEF, First-Order Linear Interpolation (LI)-ACF, and Quadratic-Sigmoid (Quarsig)-ACF methods. The results show that CalibNet
outperformed all the classical methods in terms of mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE) and R-squared (R?). Statistical analyses further confirmed that CalibNet predictions closely align with
the Classical SNR values. Future work includes exploring more advanced model architectures, alternative calibration techniques,
and real-time SNR estimation applications.
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1. INTRODUCTION

Scanning Electron Microscope (SEM) produces high-resolution images by scanning a surface with focused electrons
[1]. SEM imaging has shown its value in many sectors, including material science, biological research, and industrial
semiconductor chip manufacturing. SEM images can capture the nanoscale details invisible to the naked eye, proving
their value [2]. Chip production requires SEM imaging because it can help detect defective chips and examine
microscopic components [3]. In biological research, SEM offers precise visualisation of cellular structures [4]. It can
also help examine the material surface in a high-resolution visualisation.

The challenge that SEM imaging constantly faces is Gaussian noise in the images [5]. The Gaussian noise is white
noise produced by the microscope's internal parts during image capture [6]. A poor-quality SEM image has a higher
noise level because the noise corrupts the details [7]. The noises are everywhere in the images, and they overlap with
the signal of the image, so the image quality is getting lower and lower [8]. Moreover, it will also cause the image to
take longer to analyse, making it harder to interpret [9]. As the details of the image start to get smaller, there is nothing
meaningful in the image [10]. The SNR is introduced to estimate the image's signal level to overcome the gap [11].
The SNR uses the ratio of the signal and noise to estimate the quality of the images [12]. The SNR produces a lower
value if the noise value is higher than the signal noise. It will be vice versa if the noise value is lower than the signal
noise. A good image quality has a high SNR value and a low noise level, which shows that SNR is good at checking
the image quality. Therefore, many researchers have started using SNR to identify the image's noise level and improve
their quality. The SNR has improved many filters, and the image can be denoise without losing the details.

Many researchers conducted studies regarding the noise problems in SEM images. Their interest has led them to create
various filtering methods that help reduce noise. They have developed mathematical equations and foundational
theories to support their work. The filters, such as Gaussian smoothing, median filtering, and adaptive filtering, can
reduce the noise without damaging the details of the images. They are good at reducing noise, but they require an SNR
value to perform optimally. The filters can sometimes over-smooth the images without a known SNR value because
the details in the image are assumed to be the noise and removed. The filters without known SNR can greatly cause
the image to lose value and make it hard to interpret. This impact causes the researcher to develop even more enhanced
techniques to estimate the SNR to get a better, clearer SEM image and better noise reduction.

Classical approaches for estimating SNR values include patch-based estimation, Fourier-based analysis, wavelet-
based methods, and autocorrelation-based approaches [13]. These are statistical methods because they rely on
mathematical equations and manual calculations. When used on a large dataset, this usually leads to a longer
computation time. Patch-based estimation techniques are suitable for analysing details in small image regions [14].
Fourier-based analysis methods perform differently from patch-based estimation because they convert the image into
the frequency domain to estimate noise levels [15]. Wavelet-based methods require multiple scales of the image to
analyse the noise and split it from important details [16]. Moreover, the autocorrelation-based approach converts the
image into a centre-sliced one-dimensional (1d) autocorrelation to identify the peak value of the centre. It subtracts
this from the original image's peak value to obtain the SNR value. All these methods show their strength in SNR and
noise level estimation, but they often come with weaknesses. They need to manually configure their parameters and
select the appropriate image regions, which can lead to human error and reduce the reliability in estimating SNR. Deep
learning is introduced to address these manual configurations and the manual selection of image regions to improve
the accuracy and reliability of SNR estimation.

Recent advancements in deep learning have developed many applications for image processing, including noise
estimation and reduction. These applications show promising results in estimating the SNR values in SEM images
[17]. Deep learning techniques significantly differ from the classical methods because they only need a model, a
convolutional neural network (CNN) and a labelled dataset to perform the SNR estimation. They not only remove the
usage of mathematical equations, but they can also self-learn based on the provided datasets and labels. The CNN is
unique because of its ability to extract the image features automatically. Moreover, the existing deep learning methods
usually focus on the denoising of images, which does not require knowing the SNR values [18]. In this paper, a novel
deep learning model, Calibration Map Network (CalibNet), is explicitly designed to address this issue by estimating
SNR accurately in SEM images. CalibNet uses a calibration map derived from classical and autocorrelation-based
SNR methods to estimate SNR across a wide range of noise levels effectively. This method is unique because of the
combination of the calibration map with the deep learning method. This shows that it is possible to do and the first to
develop it.
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In light of this, the first objective of this paper is to develop CalibNet that can accurately estimate SNR values in SEM
images. The CalibNet is used for regression tasks because it only outputs a single estimation on a single image. These
images are corrupted with Gaussian noise at variance levels ranging from 0.001 to 0.01. Each image is also resized
into 256 x 256 pixels, so every image is standardised. The model is trained with a calibration map created using linear
regression. This is because linear regression can give a suitable parameter for CalibNet to train. The parameter
selection is based on the coefficient in classical and autocorrelation-based SNR calculations. This objective can
address the limitations of classical methods and provide a reliable SNR estimation in SEM images.

The second objective is to prove that the proposal model can outperform the other classical methods. The proof is to
evaluate the performance of the CalibNet by comparing it with other classical autocorrelation-based SNR estimation
methods. The baseline for this paper is the classical SNR, which only uses a single image to estimate its SNR. The
autocorrelation-based methods are the benchmark for the CalibNet because the training input of the CalibNet consists
of ACF SNR, which is used in the calibration map. This makes the benchmarking relevant in comparison with the
CalibNet.

The main research question is addressed based on below objective and contribution.

How accurate is the deep learning method that uses a calibration map as input for training to estimate the SNR value
in SEM images?

1.1 Paper Contributions

One of the contributions of this paper is developing a deep learning model to estimate the SNR value closest to the
classical SNR. This method can reduce the processing time and be reliable when estimating the SNR value compared
to the classical methods.

The second contribution that can be found in this paper is a comprehensive evaluation of CalibNet's performance. It
is compared with autocorrelation-based methods. A quantitative and statistical test has been performed to highlight
the performance of the CalibNet. Two datasets are used to evaluate their performance. This shows the robustness of
the CalibNet for automated and precise SNR estimation.

1.2 Paper Structure

The remainder of this paper is organised as follows. The Literature Review section reviews related work based on
noise level and SNR estimation in SEM images. The Methodology section explains the proposed methodology for
SNR estimation using CalibNet, providing a detailed explanation of the architecture and training procedures used to
develop the model. The section on Experimental Results, Analysis, and Discussion highlights significant experimental
outcomes, emphasising the advantages and limitations of the proposed paradigm. The section also examines the
impact of these discoveries relative to other autocorrelation-based techniques, such as NN, LI, and QSE. The
Conclusion summarises the whole paper and provides several suggestions for future work to expand this paper.

2. LITERATURE REVIEW

This section compares classical and deep learning techniques for calculating SNR and noise levels by reviewing
related work. While deep learning techniques use CNNs or other advanced models to carry out these estimates
automatically, classical approaches usually depend on mathematical equations to calculate noise and SNR values.

2.1 Classical Methods

Classical techniques use mathematical equations to calculate images' SNR and noise levels. A patch-based noise level
estimating technique capable of performing denoising the image blindly was presented by Liu et al. Their approach
calculates noise levels from a single noisy image and then applies denoising. Experimental results indicated superior
performance in accuracy and stability compared to other methods. [19] created a locally adaptive patch-based (LAPB)
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denoising method in the wavelet domain that efficiently lowers noise while maintaining picture features; their findings
indicate competitive performance compared to existing methods. [20] presented a new three-step fusion technique
consisting of pre-estimation, fusion, and final computation. Their solution outperformed techniques like BM3D, DDID,
MLP, and EPLL in peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and visual quality by merging
spatial and fractional Fourier domain findings from many denoising algorithms. [21] introduced three novel methods
to estimate noise standard deviation directly from wavelet components and compared them with mean absolute
deviation (MAD) methods. Their results indicated that these new methods provided more accurate noise-level
estimations than the MAD approach. Lew et al. introduced a novel single-image SNR estimation technique, Quarsig
SNR Estimation (QSE), which was designed explicitly for SEM images. This technique utilises the ACF to calculate
peak values for both original and noisy images. Experimental findings demonstrated that QSE approximated actual
SNR values, surpassing methods such as NN, LI, and their combination. [22] developed an SNR estimation method
for SEM images using the piecewise cubic Hermite interpolation (PCHI) model. As demonstrated by asses including
Cramer-Rao lower bound (CRLB), t-test, scatter plots, and Bland-Altman plots, their experimental comparisons
showed better performance over other methods, including adaptive slope nearest neighbourhood (ASNN), linear least
square regression (LLSR), and nonlinear least square regression (NLLSR). Table 1 shows the summary of the classical
SNR methods from previous work.

Table 1. Summary of Classical SNR Methods from Previous Works

Authors Method Name Approach Application Performance / Results
Patgh-bgsed Noise Patch-based Blind denoising Supf:r‘lor accuracy and
[23] Estimation estimation (single noisy image) stability; outperformed other
Algorithm & y imag methods
[19] Locally — Adaptive | Patch-based wavelet Image denoisin Eggz;a:ec%y irrfliu(e:ed d::lt(;llislzj
Patch-based (LAPB) | domain denoising & & P .. & ’
competitive results
. Fusion of spatial and High perfqrm ance (PSNRf
[20] Three-step  Fusion fractional Fourier | Image denoising SSIM, visual quality);
Method domains outperformed BM3D, DDID,
MLP, EPLL
Wavelet-based noise . I . More accurate and robust than
L Wavelet-based noise | Estimating noise . L
[21] estimation methods e e MAD:; better noise estimation
estimation standard deviation
(vs. MAD) accuracy
SNR estimation in Closest to actual SNR;
[24] QSE ACF SEM imaces outperformed NN, LI, and
& NN+LI methods
Piccewise Cubic Superior results (CRLB, t-test,
[22] Hermite Interpolation-based SNR estimation in | scatter plot, Bland-Altman);
. SNR estimation SEM images outperformed ASNN, LLSR,
Interpolation (PCHI) NLLSR

2.2. Deep Learning Methods

Deep learning methods use CNN or other advanced models to estimate the noise level automatically and SNR in
images. [25] proposed a two-step approach that uses a classifier, CNN, to detect the noise type and then denoise based
on the detected noise type using a denoising autoencoder (DAE). Their classifier classified various types of noise with
an accuracy of 98.2-100%, and the DAE model improved the PSNR and SSIM compared to other state-of-the-art
models. [24] integrated convolutional feature extraction with a combination of deep wavelet machine learning
classifiers in the related approach. Their model with support vector machine (SVM) archived 91.30% in accuracy and
outperformed other machine learning classifiers. [26] adopted an alternative strategy by converting the images into
histograms as training datasets. The dataset then feeds into the Gaussian-Noise Convolutional Neural Network (GN-
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CNN) to classify the noise levels. This approach successfully differentiated the noise variance ranging from
0.001, 0.002 and 0.003 in the images with the F1 score of 93.97% and testing accuracy of 93.8%, outperforming
other deep learning modes. [27] addressed single and mixed noise in images using dual-model architecture to
classify the noise types and denoising based on the classification result. The architecture surpassed the existing
methods by archiving high PSNR and SSIM values. [28] further expand the research with their Proposed System
Architecture (PSA) to detect and identify the noise type in the given images. It can identify five types of noise:
Gaussian noise, impulse noise, Poisson noise, and speckle noise. It had 99.25% accuracy in classifying the noise
types and outperforming other models. [29] presented customised CNN architecture to classify three types of
noise: Salt and pepper, Gaussian and Sinusoidal noise. Their proposed model achieved the highest accuracy in
classifying the noise type and outperformed other classical methods. Table 2 shows the summary of deep learning
based on recent studies.

Table 2. Summary of Deep Learning-based from Recent Studies

Authors | Method Approach Noise Types / Levels | Key Results
[11] CNN Classifier + Two-step (Noise Multiple noise types | 98.2—-100% classification
DAE detection + accuracy; highest PSNR and
Denoising) SSIM compared to state-of-
the-art methods
[12] CNN + Wavelet + | Two-step (Noise Multiple noise types | 91.30% accuracy (SVM),
ML Classifier detection + outperforming other
(SVM) Classification) classifiers
[13] GN-CNN Noise variance Gaussian noise F1 Score: 93.97%;
classification variance (0.001, Accuracy: 93.8%
using histogram- | 0.002, 0.003) (outperformed other
based CNN models)
[14] Two Deep Two-step Single and mixed Higher classification
Learning Models (Classification + noise types accuracy; superior PSNR
Denoising) and SSIM values
[15] Proposed System Deep learning- Gaussian, Impulse, 99.25% classification
Architecture (PSA) | based noise Poisson, Speckle accuracy; superior
detection and performance
classification
[16] Customised CNN CNN-based noise | Salt & Pepper, Highest classification
classification Gaussian, Sinusoidal | accuracy; outperformed
classical methods

2.3 Research Gap

Both classical and deep learning methods have shown their strength in estimating noise levels and SNR in images, but
these methods still have limitations. The classical methods use mathematical equations to compute the estimation and
require manual parameter tuning. Manually tuning parameters in classical methods is tedious and susceptible to human
error. While existing deep learning methods can estimate noise levels, classify noise types, and perform image
denoising automatically, they lack domain-specific calibration to estimate SNR.

This limitation restricts their accuracy and heavily depends on the provided datasets, which could lead to little
exploration in estimation SNR. The development of deep learning-based SNR estimation using calibration maps can
enhance SNR estimation in SEM imaging, making it more reliable for users and opening new avenues for exploration.
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3. RESEARCH METHODOLOGY

This section explains the details of the architecture used in CalibNet, allowing for a better understanding of
reproducing the CalibNet. This section also describes the method used to generate a calibration map. The calibration
map uses linear regression on the classical SNR and the ACF-based SNR to create the suitable parameter. Figure 1
shows the flowchart of the process in this paper.

3.1 CNN-based Calibration Map Network (CalibNet)

The CalibNet was developed to estimate the SNR value in SEM images. It uses the calibration map as the training
input. The architecture of the CalibNet consists of three convolutional layers with ReLU activation functions, two
max-pooling layers, an adaptive pooling layer, and a regression head. CalibNet uses grayscale, 256x256 pixel images
as its inputs. The first convolutional layer has one input channel and 16 output channels with a kernel size of 3 and
padding, followed by a ReLU and a max-pooling layer with a size of 2. The single input channel is to receive the input
as a grayscale image. The ReLU is used to introduce non-linearity to the model. Max-pooling is used to reduce the
spatial dimension. The second

convolution layer has the same configuration and structure, producing 32 output channels with 16 input channels. The
third convolution layer has the same configuration as the first and second ones, receiving 32 input channels and
producing 64 channels. The output is then passed to an adaptive pooling layer to fix the dimension into 4x4. Lastly,
the regression head consists of two linear layers and a ReLU activation function. The output features are then flattened
into a 1D tensor and passed to the first linear layer with an input of 1024 and an output of 64, followed by a ReLU,
then passed to the second linear layer with an input of 64 and an output of 1 so it will only produce one output to
estimate the SNR value.

All the convolution layers use a kernel size of 3 because it is commonly used in other deep learning models and can
capture local feature patterns while keeping computational resources manageable. The max pooling size is 2. Each
time the output from the convolution layer is passed to max pooling, the size of the feature map is reduced by two.
This forms hierarchical learning, as each feature map differs at each layer. The adaptive pooling layer can accept any
feature map size output from the convolutional layer. It only ensures the feature map is 4 x 4 before passing it to the
regression head. Figure 2 shows the architecture of the CalibNet.

3.2 Calibration-Map Learning: Bridging Classical ACF and CNNs

The calibration map is a linear regression-based mathematical model developed to accurately relate classical SNR
values to the corresponding ACF SNR values. Linear regression is based on both values to get the perfect fit line
optimal when training the model. The calibration map ensures that the predicted ACF SNR value closely aligns with
the classical SNR value. Moreover, it can also ensure the predicted value's accuracy and reliability. Both classical
SNR and ACF SNR values used for calibration were computed from the train set.

Classical SNR is a conventional definition of SNR based on pixel intensity information. It is commonly used in image
processing and communication fields. Equations (1) and (2) show the equation of the classical SNR.

2
SNRgssicai (dB) = 10 log, (%) )
SNR assica1 (AB) = 20 logso (%) )

where p is the mean pixel intensity, and o is the standard deviation of the noise image. (1) is commonly used for
power ratio, while (2) applies to amplitude ratio. Thus, (2) is used in this paper.
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SEM Dataset

|

Split the dataset into train,
validation and test set with
60:20:20 ratio

Corrupt the SEM Image with
Gaussain noise variance
ranging from 0.001 to 0.01

y

Train set

|
y v

Calculate the Calculate the autocorrelation
actual SNR function SNR (center slice 1D
(classical) ACF)

A 4
Fit linear regression calibration (ACF =
a * classical SNR + b) using TRAIN
SET ONLY

y
Use this fixed linear calibration
(a, b) to adjust labels on train,
validation, and test sets

Y

Train CalibNet using
calibrated train set

|

Evaluate the validation loss
during training using
validation set

Yy

Final evaluate on test set
using trained model

Figure 1. The Flowchart of the Process
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| Conv2D Layer (1,16), Kernel: ReLU Activation .
Input (1 x 256 x 256) > 3x3, Padding: 1 —> Function —» Max Pooling (2x2)
Conv2D Layer (16,32), Kernel: RelLU Activation .
—> K —_—> ) —_—
3x3, Padding: 1 Function LR ()
Conv2D Layer (32,64), Kernel: RelLU Activation Adaptive Average.
3x3, Padding: 1 Function Pooling (Output: 4x4)
Flattening | Linear Layer ReLU Activation ; Linear Layer Predicted SNR
(1024) 1 (1024 to 64) Function (1024 to 64) Output

Figure 2. The Architecture of the CalibNet

ACF SNR is based on the autocorrelation function to estimate the SNR value. The SEM image undergoes a Fast
Fourier Transform (FFT) and subsequently shifts to obtain a two-dimensional (2D) ACF. This 2D ACF is then center-
sliced to generate a one-dimensional (1D) ACF graph, which shows the peak value at lag 0. The total image signal
consists of the original signal and Gaussian noise shown in Equation (3).

Total Signal = signal + Gaussian noise 3)

Gaussian noise is additive noise and thus relevant for this analysis. The ACF SNR ratio requires only one pair of
images, the original and corresponding noise-image, to estimate the SNR ratio. The difference between their peak
values at lag zero is computed using Equation (4).

rNF(0,9)-p?

SNRratio = h (0,)- RNF(0,y)

4)

where hMF is the peak value from the autocorrelation of the noise-free image (original), u is the mean intensity of the
pixel of the original image and h (0, y) is the peak value from the autocorrelation of the noise-corrupted image. After
computed the SNR, 4, from (4), the value is converted to decibels (dB) using Equation (5).

SNRycp(dB) = 2010810(SNR;4ti0) Q)

After calculating both the classical and ACF SNR values, linear regression is performed to determine the calibration
parameters a and b. These parameters are used in Equation (6), which shows the calibration equation.

SNRygssicar = @ * SNRycp + b (6)

The accuracy of these calibration parameters is crucial, as incorrect values could compromise the reliability of the
entire calibration model. Algorithm 1 shows the CalibNet in estimating SNR value in SEM images.
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Algorithm 1: CNN-Based Calibration for SNR Estimation in SEM Images

Step Procedure
1 Initialization & Configuration
* Import required libraries (e.g., PyTorch, NumPy, Pandas).
+ Set up training configurations (batch size, epochs, learning rate, device).
2 Define Utility Functions
* Functions for saving model weights.
3 Dataset Loading & Splitting
* Load SEM images and corresponding SNR labels (ACF-based and classical) from Excel files.
* Split the dataset into training (60%), validation (20%), and test (20%) subsets.
4 Linear Regression Calibration
* Perform linear regression to establish a mapping from ACF-based SNR to classical SNR:
SNR_classical = a x SNR_acf + b
* Evaluate regression performance using coefficient of determination (R?).
5  Dataset Construction

* Create a custom dataset class to load SEM images and apply preprocessing (resize to 256x256,
grayscale conversion).

* Generate calibrated labels using the linear regression parameters (a and b).
6  Model Definition

* Define CNN architecture with convolutional layers, ReLU activations, pooling layers, and fully
connected layers for regression.

7  Training Setup

* Prepare data loaders for training and validation sets.

* Select an optimiser (e.g., AdamW) and define Mean Squared Error (MSE) as the loss function.
8  Training and Validation

* For each epoch:

- Train the model using the training set to update weights via backpropagation.

- Validate model performance on the validation set.

- Save the model checkpoint when validation loss improves.
9  Testing

* Load the best-performing model based on validation loss.

* Predict SNR values on the test dataset.
» Compute evaluation metrics: MAE, Mean Squared Error (MSE), RMSE, MAPE, and R? score.

10  Visualisation of Results

* Plot predictions vs. actual values, residual plots, histograms, and boxplots to analyse model
performance.
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No published SEM study has blended the classical pixel-intensity SNR (Equation (2)) with the ACF-based SNR
(Equation (5)) into a single target value before deep learning. This paper's training set fits with a linear calibration
map (Equation (6)). The resulting scalar serves as the ground-truth label for CalibNet, so the network predicts a single
image's SNR.

4. EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSIONS
4.1 Dataset

Two SEM datasets, namely the Biofilm SEM dataset [30] and the NFFA-EUROPE SEM dataset [31], were used to
train, validate and test the CalibNet.

The Biofilm SEM dataset is the first dataset captured from biofilms on indium tin oxide electrodes, stored in Tagged
Image File (TIF) format. It consists of 67 images. The NFFA-EUROPE SEM dataset is the second dataset used in this
paper. It consists of 961 biological SEM images stored in Joint Photographic Experts Group (JPG) format. The
selection of these datasets ensures sufficient diversity in image characteristics, noise distribution, and sample type,
enabling robust evaluation of CalibNet performance.

Both datasets did not specify the SEM equipment models used for image acquisition. However, given the clarity and
quality of the images provided, it can be assumed that they were captured under standard SEM operating conditions,
which are suitable for typical research applications involving minimal imaging artefacts and moderate noise levels.
Each image from both datasets was resized to 256 x 256 pixels to standardise the training, validation and testing
processes and ensure they are grayscale. After that, each image was corrupted with Gaussian noise variance ranging
from 0.001 to 0.01. Table 3 shows the number of images in each dataset before and after being corrupted with Gaussian
noise.

Table 3. Number of Images in Each Dataset Before and After Being Corrupted with Gaussian Noise

Dataset

Number of Images in Original
Dataset

Number of Images in Dataset
After Corrupted with Gaussian
noise variance

Biofilm SEM dataset [30]

67

670

NFFA-EUROPE SEM dataset [31]

961

9610

The noise levels were selected to simulate realistic conditions in SEM imaging. Noise levels higher than 0.01 were
not included because SEM images would become excessively corrupted and lose critical details. This makes the SEM
images less realistic and impractical for SNR estimation. Each dataset was then split into three subsets, such as training,
validation, and test set, with a ratio of 60:20:20 respectively. The seed used for randomisation in splitting the dataset
is 42, so the splitting can be reproduced. Table 4 shows the number of images from each dataset in the training,
validation, and test sets.

Table 4. Number of Images from Each Dataset in the Train, Validation, and Test Sets

Dataset Train Set Validation Set Test Set
Biofilm SEM dataset 404 134 134
NFFA-EUROPE SEM 5766 1922 1922
dataset

4.2 Model Setting

The deep learning model and classical methods used for comparison were coded in Python. The deep learning model
was developed using Pytorch. The training ran for 100 epochs at a learning rate of 0.001. The batch size is 32, and the
grayscale image size is 256 x 256 pixels. The loss function used in this paper was the mean squared error (MSE) loss
function, as it is commonly used in regression tasks. The optimiser chosen was Adaptive Moment Estimation with
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decoupled weight decay (AdamW) with the weight decay set to 0.00001. The training was performed on an RTX2080
Ti GPU with 11 GB of memory.

4.3 Method Used for Comparison

Five methods were used to compare with the CalibNet performances. These methods were chosen to show the
effectiveness and robustness of CalibNet in estimating the SNR value.

The Classical method is the conventional method that computes the SNR value shown in (2). The ACF method is an
autocorrelation-based method that computes the SNR value, as shown in (4). The Nearest Neighbor (NN) ACF method
is autocorrelation-based but takes the nearest point adjacent to lag zero. It uses (4) by replacing the h (0, y) to compute
the SNR ratio and the SNR value is calculated using (5).

The first-order linear interpolation (FOLI) ACF method is also autocorrelation-based but differs from the NN ACF
method. It estimates the peak value by combining the first two nearest points adjacent to the peak and replacing the
h (0,y) in (4) to compute the SNR ratio. After that, the SNR value is calculated using (5). The Quarsig ACF method
is one of the recent autocorrelation-based methods. It uses a combination of quadratic and sigmoid functions to
estimate the SNR ratio. The SNR value is computed using (5).

4.4 Results and Discussions

The performance of the proposed CalibNet was evaluated by comparing the five other methods (ACF, QSE, NN-ACF,
LI-ACF, and baseline Classical SNR). Table 5 compares Classical SNR, CalibNet, and four conventional methods on
selected test images in the Biofilm SEM dataset. The CalibNet predicted that the SNR value is nearest to the classical
SNR, clearly outperforming all the methods. The QSR showed the worst estimation SNR because all the SNR values
are negatives.

Table 5. Comparison of Classical SNR, CalibNet, and Four Conventional Methods on Selected Test Images in

Biofilm SEM Dataset

No. | Actual ACF SNR Classical SNR CalibNet QSE NN LI

(dB) (dB) (dB)(Proposed) (dB) (dB) (dB)
1 15.90 6.72 10.90 -26.91 8.21 23.55
2 -0.67 11.63 12.80 -32.95 -5.81 -0.57
3 -12.85 12.89 14.68 -31.36 -19.42 -17.33
4 -5.15 12.54 13.47 -24.92 -8.91 -6.81
5 4.80 16.87 11.96 -7.41 2.47 5.94
6 -9.84 12.05 13.86 -25.78 -12.55 -8.81
7 14.84 14.30 10.67 -25.75 0.07 11.03
8 5.21 9.65 11.70 -26.25 -0.76 6.19
9 -5.43 15.39 13.57 -21.37 -7.13 -3.97
10 | 5.68 14.30 12.08 -42.30 -3.82 3.02

Table 6 compares classical SNR, CalibNet, and four conventional methods on selected test images in the NFFA-
EUROPE SEM dataset. CalibNet shows its strength in estimating the SNR value closest to the classical SNR value,
and it outperforms all the methods. The QSE again shows weakness in estimating SNR by getting a negative SNR
value. This shows that QSE struggles under noise conditions.

225



Journal of Informatics and Web Engineering

Vol. 4 No.3 (October 2025)

Table 6. Comparison of Classical SNR, CalibNet, and Four Conventional Methods on Selected Test Images in
NFFA-EUROPE SEM Dataset

No. | Actual ACF SNR (dB) | Classical SNR (dB) | CalibNet (Proposed) | QSE (dB) | NN (dB) | LI (dB)
1 [-933 14.68 9.63 27.67 -14.03 | -8.58
2 | -38.39 5.93 8.86 -23.64 2338 | -22.87
3 | -421 13.71 9.40 29.34 -7.41 -4.02
4 |-1831 9.41 9.12 22.85 -16.28 | -15.26
5 | -42.04 8.99 9.14 3127 33.04 | -3241
6 |-20.39 10.75 9.24 42.52 23.95 | -20.48
7 1474 11.85 9.86 9.81 8.81 16.51
8 | -44.98 7.58 8.99 -28.59 3111 | -30.16
9 [2748 4.50 10.42 -0.73 18.25 29.36
10 |-6.95 6.07 9.48 21.38 9.20 -5.45

Table 7 shows the quantitative metrics of all the methods in the Biofilm SEM dataset. CalibNet has the lowest MAE,

RMSE, MAPE and the highest R? value among all the methods,

showing that CalibNet has the most accurate and

consistent SNR estimation. The QSE has the highest MAE, RMSE, MAPE and extremely low negative R? value. The
results show that QSE performed the worst in estimating SNR value.

Table 7. Quantitative Metrics of All the Methods in Biofilm SEM Dataset

Method MAE RMSE MAPE (%) R?
CalibNet 2.97 3.63 40.84 -0.03
QSE 32.53 34.39 358.80 92.74
NN 23.90 26.80 278.68 -56.29
LI 22.97 25.71 285.86 51.22
Actual ACF SNR | 24.60 28.19 302.56 -60.98

Table 8 shows the quantitative metrics of all the methods in the NFFA-EUROPE SEM dataset. CalibNet has the lowest
MAE, RMSE, MAPE and the highest R? value among all the methods, showing that CalibNet has the most accurate
and consistent SNR estimation. The QSE has the highest MAE, RMSE, MAPE and extremely low negative R? value.
The results show that QSE performed the worst in estimating SNR value.

Table 8. Quantitative Metrics of All the Methods in the NFFA-EUROPE SEM Dataset

Method MAE RMSE MAPE (%) R?
CalibNet 2.46 3.13 30.23 0.19
QSE 36.40 38.16 321.76 -122.05
NN 17.78 20.77 14321 -34.89
LI 15.34 18.41 131.86 -28.33
Actual ACF SNR | 14.54 17.37 125.51 24.01
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When comparing the performance of the CalibNet in two datasets, the second dataset showed improvement, with
lower MAE (2.46 vs 2.97), RMSE (3.13 vs 3.63), and MAPE (30.23% vs. 40.84%), and a better R? value (0.19 vs. -
0.03). The QSE method performed worse on the second dataset, with much higher metrics errors and a significantly
poorer R? (-122.05 vs. -92.74). This indicates that CalibNet is more stable and reliable when applied to different SEM
datasets.

Table 9 shows the results of paired t-tests comparing CalibNet to other conventional methods in the Biofilm SEM
dataset. CalibNet achieved the lowest errors compared to all other methods with p<0.01. The QSE has the highest
difference in performance compared to CalibNet. It has a mean difference of 29.42 dB lower error, followed by Actual
ACF SNR (21.63 dB), NN (20.91 dB), and LI (19.99 dB). These results show that CalibNet estimates the SNR values
more accurately.

Table 9. The Results of Paired T-Tests Comparing CalibNet to Other Conventional Methods in Biofilm SEM
Dataset

Method CalibNet | Method Mean t-statistic p-value Significance | N
MAE MAE Difference

QSE 3.11 32.53 -29.42 -28.45 6.35924E- (p<0.01) 120
55

NN 2.99 23.90 -20.91 -19.59 1.27967E- (p<0.01) 131
40

LI 2.99 22.97 -19.99 -19.70 5.44274E- (p<0.01) 132
41

Actual ACF 2.97 24.60 -21.63 -17.68 9.77543E- (p<0.01) 134

SNR 37

Table 10 shows the results of paired t-tests comparing CalibNet to other conventional methods in the NFFA-EUROPE
SEM dataset.

CalibNet achieved the lowest errors compared to all other methods with p<0.01, the same as the Biofilm dataset. The
QSE has the highest difference in performance compared to CalibNet, which is the same as the first dataset. It has a
mean difference of 33.94 dB lower error, the worst among other methods. These results show that CalibNet estimates
the SNR values more accurately.

Table 10. The Results of Paired T-Tests Comparing CalibNet to Other Conventional Methods In the NFFA-
EUROPE SEM Dataset

Method CalibNet Method Mean t-statistic p-value Significance | N
MAE MAE Difference

QSE 2.46 36.40 -33.94 -121.70 0 (p<0.01) 1725

NN 2.47 17.78 -15.31 -61.25 0 (p<0.01) 1904

LI 2.46 15.34 -12.88 -53.86 0 (p<0.01) 1863

Actual 2.46 14.54 -12.08 -53.36 0 (p<0.01) 1922

ACF SNR

Based on the overall results, CalibNet demonstrated strong performances and outperformed all the other methods.
These results suggest that the deep learning method can perform better than the classical methods by extracting the
image features. The classical techniques and statistical analysis result confirms this performance in estimating SNR
value. Deep learning addressed the gap between classical and deep learning by automatically calculating the SNR
value. However, this study is limited to a moderate noise variance range (0.001 to 0.01), chosen to simulate realistic
SEM conditions without compromising image integrity.
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5. CONCLUSION

In this paper, a deep learning model, CalibNet, was successfully developed for accurately estimating the SNR value
in SEM images. CalibNet outperformed all the classical autocorrelation-based methods. It had the lowest MAE, RMSE,
MAPE and highest R2. Moreover, the results also showed that the SNR value estimated by CalibNet is the closest to
the classical SNR. Statistical analysis confirmed the performance improvement (p<0.001) compared to all classical
methods. CalibNet can bring benefits with its high accuracy to real-world applications, including image quality
assessment and quantitative analyses in biological and materials science fields.

The paper still has room for improvement. Future work could explore other models, such as transformer-based
architectures, attention mechanisms, or hybrid CNN-RNN models, to better address SNR estimation tasks.
Additionally, the calibration map can be enhanced by applying advanced calibration techniques such as polynomial
regression, non-linear regression, or machine-learning-based calibration to achieve more accurate SNR estimations.
Furthermore, CalibNet could be extended for real-time applications, allowing immediate and practical estimation of
SNR values for SEM images.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for the suggestions to improve the paper.

FUNDING STATEMENT

The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS

Kai Liang Lew: Conceptualization, Data Curation, Methodology, Validation, Writing — Original Draft Preparation;
Kok Swee Sim: Project Administration, Supervision, Writing — Review & Editing;
Shing Chiang Tan: Writing — Review & Editing.

The datasets used in this study, including the original datasets and their modifications for SNR estimation tasks, have
been uploaded to Zenodo.

CONFLICT OF INTERESTS

No conflicts of interest were disclosed.

ETHICS STATEMENTS

Our publication ethics follow The Committee of Publication Ethics (COPE) guidelines. https://publicationethics.org/.

REFERENCES

[1] N.S.Kameland K. S. Sim, “Image signal-to-noise ratio and noise variance estimation using autoregressive model,” Scanning,
vol. 26, no. 6, pp. 277-281, Nov. 2004, doi: 10.1002/sca.4950260605.

i

[2] K.-C. Chang et al., “Integrating ultraviolet sensing and memory functions in gallium nitride-based optoelectronic devices,’
Nanoscale Horiz., vol. 9, no. 7, pp. 1166—1174, 2024, doi: 10.1039/D3NH00560G.

228



Journal of Informatics and Web Engineering Vol. 4 No.3 (October 2025)

(3]

[10]

(1]

[12]

[16]

[17]

(18]

[19]

G. Schinazi, E. J. Price, and D. A. Schiraldi, "Chapter 3 - Fire testing methods of bio-based flame-retardant polymeric
materials," in Bio-Based Flame-retardant Technology for Polymeric Materials, Y. Hu, H. Nabipour, and X. Wang, Eds.,
Elsevier, pp. 61-95, 2022, doi: 10.1016/B978-0-323-90771-2.00009-2.

H. S. Samuel and F. Makong Ekpan, “The use of scanning electron microscopy SEM for medical application: A mini review,”
Eurasian Journal of Science and Technology., no. Online First, May 2024, doi: 10.48309/ejst.2024.449519.1134.

E. Oho, N. Ichise, W. H. Martin, and K.-R. Peters, “Practical method for noise removal in scanning electron microscopy,”
Scanning, vol. 18, no. 1, pp. 50-54, Jan. 1996, doi: 10.1002/sca.1996.4950180108.

M. Prasad and D. Joy, “Is SEM noise Gaussian?,” Microscopy and Microanalysis, vol. 9, pp. 982-983, Aug. 2003, doi:
10.1017/S1431927603444917.

J. Chen, X. Jang, K. Goto, T. Takashi, and Y. Toyoda, “A flexible deep learning based approach for SEM image denoising,”
in Metrology, Inspection, and Process Control XXXVIII, M. J. Sendelbach and N. G. Schuch, Eds., San Jose, United States:
SPIE, pp. 127, Apr. 2024, doi: 10.1117/12.3011135.

D. Roldan, C. Redenbach, K. Schladitz, C. Kubel, and S. Schlabach, "Image quality evaluation for FIB-SEM images," Journal
of Microscopy, vol. 293, no. 2, pp. 98-117, Feb. 2024, doi: 10.1111/jmi.13254.

S. H. Shirazi, N. U. Haq, K. Hayat, S. Naz, and I. U. Haque, “Curvelet based offline analysis of SEM images,” PLoS ONE,
vol. 9, no. §, pp. €103942, Aug. 2014, doi: 10.1371/journal.pone.0103942.

1. B. Montenegro, K. Prikoszovich, S. Lee, K. Quiring, J. Zimmerman, and C. Kirchlechner, “Redundant cross-correlation for
drift correction in SEM nanoparticle imaging,” arXiv: arXiv:2410.23390, Oct. 30, 2024, doi: 10.48550/arXiv.2410.23390.

N. Marturi, S. Dembele, and N. Piat, "Scanning electron microscope image signal-to-noise ratio monitoring for micro-
nanomanipulation," Scanning, vol. 36, no. 4, pp. 419-429, Jul. 2014, doi: 10.1002/sca.21137.

A. Rodriguez-Sanchez, A. Thompson, L. Korner, N. Brierley, and R. Leach, "Review of the influence of noise in X-ray
computed tomography measurement uncertainty," Precision Engineering, vol. 66, pp. 382-391, Nov. 2020, doi:
10.1016/j.precisioneng.2020.08.004.

K. S. SIM, M. A. KIANI, M. E. NIA, and C. P. TSO, “Signal-to-noise ratio estimation on SEM images using cubic spline
interpolation with Savitzky-Golay smoothing,” Journal of Microscopy, vol. 253, no. 1, pp. 1-11, Jan. 2014, doi:
10.1111/jmi.12089.

A. E. llesanmi and T. O. llesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex &
Intelligent Systems, vol. 7, no. 5, pp. 2179-2198, Oct. 2021, doi: 10.1007/s40747-021-00428-4.

J. Heine, E. Fowler, and M. B. Schabath, “Fourier analysis of signal dependent noise images,” Scientific Reports, vol. 14, no.
1, pp. 30686, Dec. 2024, doi: 10.1038/341598-024-78299-1.

M. Taassori, “Enhanced wavelet-based medical image denoising with Bayesian-optimized bilateral filtering,” Sensors, vol.
24, no. 21, pp. 6849, Oct. 2024, doi: 10.3390/524216849.

A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex &
Intelligent Systems, vol. 7, no. 5, pp. 2179-2198, Oct. 2021, doi: 10.1007/s40747-021-00428-4.

S. S. M. M. Rahman, M. Salomon, and S. Dembele, "Towards scanning electron microscopy image denoising: a state-of-the-
art overview, benchmark, taxonomies, and future direction," Machine Vision and Applications, vol. 35, no. 4, pp. 87, Jul.
2024, doi: 10.1007/s00138-024-01573-9.

P. Jain and V. Tyagi, “LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising,” Information
Sciences, vol. 294, pp. 164—181, Feb. 2015, doi: 10.1016/j.ins.2014.09.060.

229



Journal of Informatics and Web Engineering Vol. 4 No.3 (October 2025)

[20] L. Chang, X. Feng, X. Li, and R. Zhang, “A fusion estimation method based on fractional Fourier transform,” Digital Signal
Processing, vol. 59, pp. 6675, Dec. 2016, doi: 10.1016/j.dsp.2016.07.016.

[21] A. De Stefano, P. R. White, and W. B. Collis, "Training methods for image noise level estimation on wavelet components,"
EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 16, pp. 405209, Dec. 2004, doi:
10.1155/S1110865704401218.

[22] K. S. Sim, Z. X. Yeap, F. Ting, and C. Tso, “The performance of adaptive tuning piecewise cubic hermite interpolation model
for signal-to-noise ratio estimation,” International Journal of Innovative Computing, Information and Control, vol. 14, pp.
1787-1804, Oct. 2018, doi: 10.24507/ijicic.14.05.1787.

[23] X. Liu, M. Tanaka, and M. Okutomi, “Single-image noise level estimation for blind denoising,” IEEE Transactions on Image
Processing, vol. 22, no. 12, pp. 5226-5237, Dec. 2013, doi: 10.1109/TIP.2013.2283400.

[24] K. L. Lew, K. S. Sim, and S. C. Tan, “Single image estimation techniques for SEM imaging system,” JOIV International
Journal on Informatics Visualization, vol. 9, no. 1, pp. 104, Jan. 2025, doi: 10.62527/j0iv.9.1.3505.

[25] W. Ahmed, S. Khan, A. Noor, and G. Mujtaba, “Deep learning-based noise type classification and removal for drone image
restoration,” Arabian Journal for Science and Engineering, vol. 49, no. 3, pp. 4287—4306, Mar. 2024, doi: 10.1007/s13369-
023-08376-6.

[26] K. S. Sim, C. C. Lim, S. C. Tan, and C. K. Toa, “Deep convolutional neural network for SEM image noise variance
classification,” Engineering Letters, vol. 31, no. 1, 2023.

[27] F. Liu, Q. Song, and G. Jin, “The classification and denoising of image noise based on deep neural networks,” Applied
Intelligence, vol. 50, no. 7, pp. 2194-2207, Jul. 2020, doi: 10.1007/s10489-019-01623-0.

[28] P. Pawar, B. Ainapure, M. Rashid, N. Ahmad, A. Alotaibi, and S. S. Alshamrani, “Deep learning approach for the detection
of noise type in ancient images,” Sustainability, vol. 14, no. 18, pp. 11786, Sep. 2022, doi: 10.3390/sul41811786.

[29] W. Ahmed, Z. H. Khand, S. Khan, G. Mujtaba, M. A. Khan, and A. Wagqas, “Multi-type image noise classification by using
deep learning,” International Journal of Computer Science and Network Security, vol. 24, no. 7, pp. 143—147, Jul. 2024, doi:
10.22937/1JCSNS.2024.24.7.17.

[30] B. N. Orcutt, “Scanning Electron Microscopy (SEM) photographs of biofilms on indium tin oxide electrodes from cathodic
poised potential experiments with subsurface crustal samples from CORK borehole observatories at North Pond on the Mid-
Atlantic Ridge during R/V A.” Biological and Chemical Oceanography Data Management Office (BCO-DMO)., Feb. 03,
2020, doi: 10.1575/1912/bco-dmo.780261.1.

[31] R. Aversa, M. H. Modarres, S. Cozzini, and R. Ciancio, “NFFA-EUROPE - 100% SEM dataset.” NFFA-EUROPE Project,
2018, doi: 10.23728/b2share.80df8606fcdb4b2bael656f0dc6db8ba.

BIOGRAPHIES OF AUTHORS

Kai Liang Lew received the B. Eng. (Hons) degree and M.Sc. in Engineering from Multimedia
University, Malacca, Malaysia in 2019 and 2022, respectively. He is currently pursuing a Ph.D.
degree in engineering at Multimedia University. His research interests include rehabilitation,
deep learning, and signal processing. He can be contacted at email: sksbg2022@gmail.com.

230



Journal of Informatics and Web Engineering Vol. 4 No.3 (October 2025)

Kok Swee Sim is a Professor at Multimedia University, Malaysia, collaborates extensively
with local and international institutions and hospitals. He holds over 18 patents and 70
copyrights, and is a fellow of the Institution of Engineers, Malaysia (IEM) and the Institution
of Engineering and Technology (IET). His numerous accolades include the Japan Society for
the Promotion of Science (JSPS) Fellowship (2018), Top Research Scientists Malaysia (TRSM)
(2014), multiple Korean Innovation and Special Awards, and several TM Kristal and WSIS
Prizes. He can be contacted at email: kssim@mmu.edu.my.

Shing Chiang Tan earned his B.Tech. (Hons.) and M.Sc. (Eng.) from Universiti Sains
Malaysia in 1999 and 2002, and his Ph.D. from Multimedia University (MMU), Malaysia, in
2008. He's currently a professor at MMU's Faculty of Information Science and Technology,
Malaysia. His research focuses on computational intelligence, deep learning, data
classification, condition monitoring, fault detection, stroke rehabilitation, and biomedical
applications. He was awarded the Matsumae International Foundation Fellowship, Japan, in
2010. He can be contacted at email: sctan@mmu.edu.my.

231



