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Abstract - Muscle fatigue, a key concern in sports science, rehabilitation, and occupational health, influences performance, injury 

risk, and provides insights into muscle functionality and endurance. Surface electromyography (sEMG) has emerged as a vital tool 

for non-invasively tracking muscle electrical activity and gauging health. As its application for muscle fatigue assessment grows, 

identifying the most accurate analytical methods is essential. Current sEMG analyses employ both linear and nonlinear metrics to 

measure fatigue onset and progression, yet research is ongoing to determine which method is most effective in the context of 

dynamic contractions. The study was aimed to evaluate the efficacy of established linear and nonlinear methods in measuring 

muscle fatigue caused by dynamic contractions through surface electromyography (sEMG) signals. A group of twelve healthy 

individuals completed biceps curls at a consistent pace of one repetition per four seconds, which constituted 75% of their 10-

repetition maximum. Concurrently, sEMG signals were captured from the biceps brachii muscle at 1000 Hz. To assess the sEMG 

signals during the initial, middle, and final sets of 10 repetitions, three linear metrics—mean frequency, median frequency, and 

spectral moment ratio (SMR)—along with two nonlinear approaches, namely sample entropy and detrended fluctuation analysis 

(DFA), were utilized. The study's outcomes indicated notable shifts in the SMR values and the two DFA-derived scaling exponents 

across the exercise sets. These results indicated that SMR, sample entropy, and DFA are effective in gauging muscle fatigue, with 

sample entropy and DFA demonstrating heightened sensitivity to the fatigue levels when compared to the linear metrics. 
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1. INTRODUCTION 

Stroke, a cerebrovascular disease resulting from interrupted or reduced blood supply to the brain, affects 

approximately 2.5% of the population [1]. In many countries, stroke stands as a leading cause of death and disability 
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[2]. Nearly one-third of stroke survivors contend with persistent disabilities, primarily characterized by motor 

impairments [2]. Consequently, the rehabilitation of motor functions holds immense significance for stroke survivors. 

The potential for recovering lost motor functions hinges on the brain's neuroplasticity [2]. Existing evidence supports 

the idea that intensive, task-specific training can significantly enhance motor function recovery among stroke patients 

[3]. Nevertheless, some patients may struggle to engage in such intensive training due to muscle fatigue. In these 

instances, patients may require assistance from a therapist or a robotic system, with an aid tailored to their specific 

physical condition. Therefore, it becomes essential to detect the onset and extent of muscle fatigue during 

rehabilitation exercises. 

 

2. LITERATURE REVIEW 

Muscle fatigue, defined as the muscle's diminished ability to sustain force generation or reduced capacity to generate 

force following exercise [4, 5], can be assessed using various methods. One particularly useful approach is surface 

electromyography (sEMG), which allows for real-time, noninvasive detection of muscle fatigue. Studies have 

confirmed that sEMG signals can reveal signs of muscle fatigue, often preceding its actual onset [4]. Presently, there 

are roughly two categories of methods for analyzing sEMG signals to assess muscle fatigue, i.e., linear methods and 

nonlinear methods [6]. 

The most commonly used linear measures in this context are mean frequency (MNF) and median frequency (MDF). 

The rationale is that muscle fatigue leads to a shift in sEMG signal power from high to low frequencies, which results 

in decreased MNF and MDF and increased spectral moment ratio (SMR) [4]. However, different techniques for 

estimating the power spectral density can lead to different results of frequency-domain indices. Corvini and Conforto 

[7] found that autoregressive model outperformed the Welch method in estimating mean and median frequency during 

severe muscle fatigue. Furthermore, it was found that for the Welch method, the parameters such as window size, 

weighting, and overlap influence the estimation of the power spectral density and that a combination of a smaller time 

window and a larger overlap would lead to a better result [8]. Since sEMG signals are generally nonstationary, 

especially for those from dynamic contraction of muscles, advanced signal processing methods such as time-frequency 

analysis are essential for the extraction of muscle fatigue indices. Hari et al. [9] analyzed sEMG signals from the 

biceps brachii (BB) muscle during dynamic contractions based on synchrosqueezed wavelet transform. They found 

that the proposed approach is capable of characterizing nonstationary changes in sEMG signals. Additionally, several 

recent studies have proposed to use topological and geometric features of sEMG signals to assess muscle fatigue and 

showed promising results [10, 11]. 

Conversely, owing to the inherent nonlinearity of myoelectric activity, nonlinear methods have been introduced to 

capture the intricate patterns of sEMG signals. Numerous studies have consistently demonstrated that a reduction in 

the complexity of sEMG signals corresponds with muscle fatigue [4]. Moreover, it appears that certain nonlinear 

measures exhibit greater sensitivity to muscle fatigue when compared to traditional linear measures [4, 12]. Murillo-

Escobar et al. [13] utilized a nonlinear measure called permutation entropy to characterize sEMG signals during 

dynamic contractions and showed that this measure could distinguish different fatigue states more effectively than the 

classic features such as MDF. Overall, these studies suggest that nonlinear methods may provide more accurate and 

sensitive detection of muscle fatigue during dynamic contractions compared to linear methods. 

Among a variety of nonlinear methods, sample entropy (
sE ) [14] and detrended fluctuation analysis (DFA) [15]are 

most commonly used ones. 
sE  quantifies the complexity, i.e., regularity degree, of a time series and the time series 

can be very short [14]. Several studies showed that a decrease in 
sE  of sEMG signals is associated with muscle fatigue 

[12, 16]. DFA is used to quantify the self-similar property of time series [15]. It was found that an increase in DFA 

coefficient is associated with muscle fatigue [17]. However, the relevant studies mainly involved isometric 

contractions. Kahl and Hofmann [6] compared the performances of several linear and nonlinear methods to quantify 

muscle fatigue during isometric contractions. They reported that SMR showed a slightly better performance than the 

others. Hernandez and Camic [17] showed that 
sE  and scaling exponent yielded by DFA are influenced by muscle 

fatigue as well as contraction type. It is still unclear which measures are sensitive and robust for detecting muscle 

fatigue during dynamic contractions. 
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The present study aims to identify which measures are more suitable for assessing muscle fatigue in the case of 

dynamic contractions. We compared the performances of several commonly used linear and nonlinear methods. We 

hypothesized that 
sE  and DFA coefficient would be able to characterize alterations of myoelectric activity induced 

by muscle fatigue. We also hypothesized that nonlinear measures would be more sensitive to muscle fatigue compared 

to linear measures. 

 

3. RESEARCH METHODOLOGY  

3.1 Participants 

This study involved twelve healthy young adults, comprising an equal number of males and females with an average 

age of 27.54 years (±6.35) and a mean body mass index of 22.32 (±2.61) kg/m2. To ensure the participants' safety, 

those with a history of cardiovascular, pulmonary, or neuromuscular disorders, as well as those who had previously 

experienced negative reactions to exercise, were not included. The institutional review board granted approval for this 

research, and written consent was secured from each participant before his/her involvement. 

 

3.2 Research Procedures  

To construct a dataset for the comparative analysis of sEMG-based methods in detecting muscle fatigue, each 

participant was instructed to perform biceps curls while the sEMG signal from the BB were meticulously recorded. 

The experimental protocol comprised two consecutive visits, as depicted in Figure 1. During the initial visit, the 

primary objective was to establish the ten-repetition maximum (10RM) for each participant. 

 

Figure 1. Experimental Procedures Of This Study- 10RM: Ten-repetition Maximum 

 

In this regard, the subjects were seated on a bench and initiated their biceps curls without any added resistance, 

essentially serving as a warm-up exercise, which lasted for a duration of 5 minutes. To minimize any potential 

influences from daily physical activities, all subjects were specifically directed to employ their non-dominant arm for 

this purpose. Subsequently, the subjects were granted a 3-minute rest period. Following this interval, the subjects 

commenced their biceps curls, employing dumbbells of varying weights [18]. 

The initial weight for each subject was chosen based on the sbuject’s estimation. Then, the subject tried to determine 

an appropriate weight according to the number of repetitions he/her was able to complete. If the number of repetitions 

exceeded 10, the weight would be increased. Conversely, if the number of repetitions was less than 10, the weight 

would be decreased. The ultimate weight that enabled the subject to perform precisely 10 repetitions was determined 

as his/her 10RM. 

During the second visit, the subject first underwent a warmup for 5 minutes and rested for 3 minutes. Then, the suject 

did biceps curls at a consistent pace of one repetition per four seconds using 75% of 10RM [19, 20]. After completing 

every session of exercise, including 10 repetitions, the subject rested for 30 seconds and then repeated this process 

until task failure. During the whole process, sEMG signal from the BB was recorded at 1000 Hz using a differential 

amplifier through a bipolar electrode configuration (BIOPAC Systems, Inc., Santa Barbara, CA, USA). Figure 2 shows 

a typical sEMG signal from a subject. 
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3.3  Data Analysis 

To compare the performances of 
sE , DFA coefficient, and the commonly used linear measures for characterizing 

muscle fatigue, we focused on the first, second, and last sessions of exercise. Accordingly, for each sEMG signal 

epoch corresponding to a session of exercise, after being filtered by a 4th order Butterworth band pass filter (20-450 

Hz), it was divided into 10 segments, each of which corresponded to a repetition of exercise. The linear measures, 
sE , 

and DFA coefficients were computed for all signal segments and averaged. The relative changes of these measures 

for the second and last signal epochs with respective to that for the first signal epoch were defined in the same manner. 

For example, the relative change of 
sE  for the second epoch was defined as 

,2 ,1 ,1100% ( ) /s s sE E E − , where 
,1sE  and 

,2sE  are the entropy values for the first and second signal epochs, respectively. 

 

Figure 2. A Typical sEMG Signal From The BB Of A Subject When Performing Exercise 

 

3.3.1 Linear Methods 

Three linear measures, including MNF, MDF, and SMR, were computed. Given a sEMG signal segment, suppose that 

the power spectrum is divided into n  frequency bins, MNF is defined as 

                                                                         1 1

/
n n

j j j

j j

MNF f p p
= =

=  ,                                                                      
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where 
jf  and 

jp  are the frequency and power at the j th frequency bin, respectively. MDF is defined as the 

frequency 
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SMR is defined as 
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In this study, the parameter k =5 was used [6]. 
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3.3.2 Sample Entropy (
sE ) 

sE is frequently used to quantify the complexity, i.e., regularity degree, of a time series [14]. It yields a smaller (larger) 

value for a more regular (irregular) time series. In this study, we adopted a modified algorithm [21] to compute 
sE . 

Given a time series { ( )}, 1,...,x i i N= , its sequences of length m  are defined as 

                                                    { ( ), ..., ( )}m

i x i x i k= +x , 1 1,k m  −
 
1 ,i N m  −                                           (4) 

where   is an integer. The similarity between two sequences m

ix  and m

jx
 
is quantified by the distance between them, 

defined as 

( , ) max{| ( ) ( ) |,...,| ( ( 1) ) ( ( 1) ) |}m m

i jd x i x j x i m x j m = − + − − + −x x ,  

1 ,i j N m  − , | | .i j −                                                                (5) 

If ( , )m m

i jd rx x , where r  is a predefined threshold, the two sequences are considered to be similar to each other. 

Suppose that given a sequence m

ix , there are 
in  sequences m

jx  satisfying | |i j −  , and 
in

 
of them satisfy 

( , )m m

i jd rx x . Hence, ( ) /m

i i ip r n n=
 
represents the probability that a sequence m

jx , | |i j −  , is similar to the given 

sequence m

ix ; and 
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represents the probability that any two sequences, m

ix  and m

jx , 

| |i j −  , are similar to each other. Likewise, 1( )mp r+

 
represents the probability that any two sequences of length 

1m+ , 1m

i

+
x  and 1m

j

+
x , | |i j −  , are similar to each other. In this way, 

msE is estimated by 

                                                                     
1( )
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( )

m
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E m r N
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+
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The influences of three parameters, m , r , and N , on 
sE  have been tested and discussed extensively in previous 

studies [14, 21]. Briefly, 
sE  almost does not depend on N  and shows relative consistency when m  or r  changes in 

a wide range. In the present study, m =2, r =0.25×SD (standard deviation of the signal) were adopted according to 

previous studies [14]. As for the parameter  , an approach to determine it involves computing the auto mutual 

information function of the signal and determining the first minimum of the function [21]. Using this approach, we 

obtained  =2 for most of the sEMG signals. Thus, we adopted  =2. A typical example is shown in Figure 3. Figure 

3(A) and 3(C) show the illustration of the determination of  on a sEMG signal segment corresponding to one 

repetition of the first session (
1s ) of exercise and its mutual information function ( )MI  , while Figure 3(B) and 3(D) 

show the illustration of the determination of  on a sEMG signal segment corresponding to one repetition of the second 

session (
2s ) of exercise and its ( )MI  . In both cases, the first minimum of ( )MI   is located at  =2. 

 

3.3.3 Detrended Fluctuation Analysis (DFA) 

DFA is a method to assess self-similar property of a time series [15]. Given a time series { ( )}, 1,...,x i i N= , the first 

step is to divided the integrated series { ( )}y i  into M  non-overlapping boxes of size n . Then, the trend of { ( )}y i

within each box, denoted as { ( )}ny j , is extracted by fitting a regression line to { ( )}y i . A fluctuation function is 

therefore defined as 

2

1

1
( ) [ ( ) ( )]

M n

n

j

F n y j y j
M n



=

= −

 .                                                          (7) 

When ( )F n  is plotted against varying box size n  on a log-log scale, if ( )F n
 
changes linearly with n , the slope  , 

called scaling exponent, indicates the presence of self-similar behaviors of the signal. Specifically, white noise, pink 
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noise, and brown noise yield  =0.5, 1, and 1.5, respecttively. In this study, however, we found that all sEMG signals 

yield two distinct scaling regions (Figure 4). One scaling region is roughly n <9, and another is roughly n >16. This 

means that a single scaling exponent is incapable of characterizing the dynamics of the sEMG signals. Such a 

phenomenon was also observed in previous studies on heart rate variability [22] and skin blood flow oscillations [23]. 

Thus, we extracted two scaling exponents, denoted as DFA
1  and DFA

2 , respectively. 

 

 

Figure 3. Illustration of the determination of  . (A),(C) Correspond to one repetition of the first session (
1s ); 

(B),(D) Correspond to one repetition of the second session (
2s )  

 

Figure 4. Examples Of DFA Of sEMG Signal Epochs Corresponding To The First, Second, And Last Sessions 

 

3.3.4 Statistical Analysis 

The differences in all measures, i.e., MNF, MDF, SMR, 
sE , DFA

1 , and DFA
2 , of the sEMG signal epochs 

between the first, second, and last sessions were examined using one-way ANOVA with paired t-tests. For each 

measure, the distribution of the obtained values was tested using Shapiro–Wilk test. All tests were implemented using 

the SPSS software (Version 26, USA). 

 

4. RESULTS AND DISCUSSION  

4.1 Results 

Figure 5 shows the statistical results of three linear measures and their relative changes. SMR for the sEMG signal 

epochs during the last session of exercise was significantly larger than that during the first and second sessions of 
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exercise (Figure 5E). For MNF and MDF, no significant change was observed (Figures 5A-D).  Figure 5(A) and 5(B) 

show the statistical results of MNF of the sEMG signal epochs corresponding to the first, second, and last sessions of 

exercise, Figure 5(C) and 5(D) statistical results of MDF of the same signal epochs, while Figure 5(E) and 5(F) show 

the statistical results of SMR of the same signal epochs. The results are presented as mean±standard error. The symbol 

* indicates p<0.05. 

Figure 6 shows the statistical results of 
sE  and its relative change. 

sE  for the sEMG signal epochs during the second 

and last sessions of exercise was significantly lower compared to the first session, whereas it did not show significant 

difference between the second and last sessions. Figure 6(A) shows 
sE  of the sEMG signal epoachs corresponding to 

the first, second, and last sessions of exercise, while Figure 6(B) shows the relative change of 
sE  during the second 

and last sessions. The results are presented as mean±standard error. The symbol ** indicates p<0.01. 

 

Figure 5. Statistical Results Of Three Linear Measures And Their Relative Changes 

 

Figure 6. Statistical Results of 
sE  And Its Relative Change 

 

Figure 7 shows the results of DFA
1  and DFA

2  and their relative changes. DFA
1  significantly increased from 

the first session to second session and from the second session to last session. DFA
2  significantly increased from 

the second session to last session but did not show significant difference between the first and second sessions. Figure 

7. Figure 7(A) and 7(C) shows the DFA
1  

and DFA
2  

of the sEMG signal epochs corresponding to the first, second, 

and last sessions of exercise, Figure 7(B) shows the relative change of DFA
1 while Figure 7(D) shows the relative 

change of DFA
2 . The results are presented as mean±standard error. The symbols * and ** indicate p<0.05 and 

p<0.01, respectively. 
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Figure 7. Statistical Results Of DFA
1  And DFA

2 , And Their Relative Changes 

4.2 Discussion 

This study was aimed to compare linear and noninear methods to analyze sEMG signals for assessing muscle fatigue 

caused by dynamic contractions. Base on the assumption that compared to the first session of exercise, the BB was 

somewhat fatigued during the second session and highly fatigued during the last session, our results showed that SMR, 

sE , and DFA
1  are suitable for assessing muscle fatigue. Furthermore, 

sE  and DFA
1  showed more sensitivity to 

alterations of sEMG signals caused by muscle fatigue. 

In this study, the rationale for using 
sE  and DFA coefficients to reveal alterations of myoelectric activity were as 

folllows. First, it is considered that the generation of sEMG is a nonlinear process [24] because sEMG signals exhibit 

nonlinear behaviors. There is evidence that the nonlinear properties of sEMG undergo changes during muscle 

activation [25]. Typically, muscle fatigue leads to reduced complexity of the sEMG signal [26]. Hence, nonlinear 

methods may reveal certain features that cannot be captured by linear methods. Second, most nonlinear methods do 

not work well enough on short time series. In this study, however, the sEMG signal segments are very short. Given 

the exercise tempo of one repetition per four seconds, a signal segment corresponding to one repetition of exercise 

typically lasted 4 s. This requires that the employed nonlinear measures could be applied to short series. Fortunately, 

it has been demonstrated that 
sE  is almost independent on record length [14]. 

Our results indicated that with the progress of exercise-induced muscle fatigue, SMR, 
sE , DFA

1  and DFA 2  of 

the sEMG signal underwent significant changes (Figures 5, 6, 7) but MNF and MDF did not. According to the 

literature, a decrease in MNF and MDF of sEMG signals indicates a shift in energy from high to low frequencies [4]. 

Such a shift is largely attributed to fatigue-induced decreases in conduction velocity of action potentials in the muscle 

fibres [27]. SMR has been shown to be an improved spectral index and can yield better results compared to MNF [6]. 

Our results also showed that SMR is more sensitive for detecting muscle fatigue compared to MNF and MDF (Figure 

5). 

The significant decreases in 
sE  from the first session to second and last sessions (Figure 6) indicate that the sEMG 

signal became more regular. It has been revealed that when central fatigue occurs, the pattern of recruiting motor units 

tend to be more synchronized [4]. Hence, the significant decreases in 
sE  indicated the occurrence of muscle fatigue. 

Our results also indicated that DFA
1  

significantly increased from the first session of exercise to the second session 

and from the second session to the last session, while DFA
2  significantly increased from the second session to the 

last session (Figure 7). According to the literature, when   exceeds 1, a higher value of   (closer to 1.5) indicates 

a lower degree of complexity [17]. Thus, the results of DFA
1  and DFA

2  were roughly consistent with those of 

sE  and SMR. However, it should be noticed that 
sE  and DFA

1  seem to be more sensitive to alterations of 
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myoelectric activity induced by muscle fatigue. Such discrepancies were likely due to that these measures characterize 

different features of myoelectric activity. On one hand, muscle fatigue makes the recruitment of motor units more 

synchronized, manifesting as more regular oscillations in the sEMG signal. On the other hand, muscle fatigue results 

in a shift in signal power from high to low frequencies [4]. 

 

Since sample entropy and spectral measures characterize distinctly different features of sEMG signals, they could be 

used complementarily for assessing muscle fatigue. Because sample entropy shows robustness in the case of short 

time series [4], it could be employed in situations where muscle fatigue assessment needs to be completed as quickly 

as possible. Such situations may be frequently encountered in practical applications such as developing exercise 

training programs to enhance athletes' competitive performance or for rehabilitation purpose. On the other hand, our 

findings may be applicable to other muscle groups, because it was reported that fatigue status of the vastus lateralis 

induced by concentric, eccentric, and isometric knee-extensor contractions leaded to a decrease in sample entropy of 

the sEMG signals [17]. 

This study had two limitations. First, only 12 participants were recruited. This was unfavourable for obtaining a 

reliable conclusion from the statistical analyses. However, our main purpose was to verify whether nonlinear methods 

are suitable for assessing muscle fatigue caused by dynamic contractions. Our results showed that sample entropy and 

DFA coefficients are more sensitive to muscle fatigue compared to linear indices. Second, the involvement of only 

healthy participants differed from the motivation of this study, i.e., to detect the onset and extent of muscle fatigue 

during rehabilitation exercises. Nevertheless, since post-stroke patients are expected to be more prone to muscle 

fatigue during exercises, the findings of this study could be applicable to post-stroke population. Future studies may 

involve more healthy participants and post-stroke patients. Further more, our future studies may utilize deep learning 

methods [28, 29] to detect muscle fatigue in post-stroke patients. 

 

5. CONCLUSION 

The findings of this study indicate that 
sE  and DFA of sEMG signals are able to reveal alterations in myoelectric 

activities caused by muscle fatigue. Therefore, these methods can be utilized to assess muscle fatigue caused by 

dynamic contractions. Furthermore, 
sE  and DFA

1  are more sensitive than the commonly used linear measures in 

detecting muscle fatigue. These findings suggest that nonlinear measures could capture detailed features of sEMG 

signals that cannot be revealed by the traditional linear measures. This implies that nonlinear methods are a necessary 

supplement to linear methods for studying myoelectric activities using sEMG signals. However, most nonlinear 

methods require long time series to ensure their reliability. Hence, there is a need to develop nonlinear indices that 

can be meaningfully applied to short time series. 
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