Analytical Investigation of Nonlinear Dynamics of Soliton Transmission in Discrete System under Self-Induced Regime
Main Article Content
Abstract
This study investigates the soliton propagation in a one-dimensional discrete system characterized by the Discrete Nonlinear Schrödinger Equation (DNLSE). The DNLSE is a fundamental model in wave phenomena, encompassing a broad spectrum of physical systems ranging from optics to fluid dynamics. The analytical study employs the variational approximation (VA) method to thoroughly examine the process and essential parameters governing soliton evolutions, such as width, center-of-mass position, and linear and quadratic phase-front corrections are determined and graphically interpreted. The results show that an increase in linear phase-front correction corresponds to an increase in both the soliton’s initial velocity and propagation distance.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
E. N. Tsoy and B. A. Umarov, “Introduction to Nonlinear Discrete Systems: Theory and Modelling,” Europ. J. Phys., vol. 39, no. 5, pp. 055803, 2018.
M. Kimura, Y. Matsushita and T. Hikihara, “Parametric Resonance of Intrinsic Localized Modes in Coupled Cantilever Arrays,” Phys. Lett. A, vol. 380, no. 36, pp. 2823–2827, 2016.
A. Boudjemâa and K. M. Elhadj, “Discrete Quantum Droplets in One-Dimensional Binary Bose–Einstein Condensates,” Chaos, Solit. & Fract., vol. 176, pp. 114133, 2023.
J. Kruse and R. Fleischmann, “Self-localization of Bose–Einstein Condensates in Optical Lattices,” J. Phys. B: Atomic, Molecu. and Optic. Phys., vol. 50, no. 5, pp. 055002, 2017.
S. B. Yamgoué, G. R. Deffo, E. Tala-Tebue and F. B. Pelap, “Exact Solitary Wave Solutions of A Nonlinear Schrödinger Equation Model with Saturable-Like Nonlinearities Governing Modulated Waves in A Discrete Electrical Lattice,” Chine. Phys. B, vol. 27, no. 12, pp. 126303, 2018.
D. Chevizovich, D. Michieletto, A. Mvogo, F. Zakiryanov and S. Zdravkovic, “A Review on Nonlinear DNA Physics,” R. Soc. Open Sci., vol. 7, no. 11, pp. 200774, 2020.
W. Qi, Z. H. Li, J. T. Cai, G. Q. Li and H. F. Li, “Modulational Instability and Localized Breather in Discrete Schrödinger Equation with Helicoidal Hopping and A Power-Law Nonlinearity,” Phys. Lett. A - General, Atomic and Solid State Phys., vol. 382, no. 27, pp. 1778–1786, 2018.
P. G. Kevrekidis, “The Discrete Nonlinear Schrodinger Equation,” vol. 232. Springer Sci. & Busin. Media, 2009.
O. V. Rudenko and O. A. Sapozhnikov, “Self-action Effects for Wave Beams Containing Shock Fronts,” Physics-Uspekhi, vol. 47, no. 9, pp. 907–922, 2004.
A. A. Balakin, A. G. Litvak, V. A. Mironov and S. A. Skobelev, “Self-action of A Wave Field in One-Dimensional System of Weakly Coupled Active Optical Waveguides,” Quant. Electron., vol. 48, no. 8, pp. 720–727, 2018.
A. A. Balakin, A. G. Litvak, V. A. Mironov and S. A. Skobelev, “Collapse of The Wave Field in A One-Dimensional System of Weakly Coupled Light Guides,” Phys. Rev. A - Atomic, Molecul., and Optic. Phys., vol. 94, no. 6, pp. 063806, 2016.
C. Chong, “Modeling Optical Technologies with Continuous and Discrete Nonlinear Schrödinger Equations,” Doctoral Dissertation, Universität Karlsruhe, 2009.
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev and Y. Silberberg, “Discrete Solitons in Optics,” Phys. Rep., vol.463, no. 1–3, pp. 1–126, 2008.
D. Anderson, “Variational Approach to Nonlinear Pulse Propagation in Optical Fibers,” Phys. Rev. A - Atomic, Molecul., and Optic. Phys., vol. 27, no. 6, pp. 3135, 1983.
A. G. Litvak, V. A. Mironov, S. A. Skobelev and L. A. Smirnov, “Peculiarities of The Self-Action of Inclined Wave Beams Incident on A Discrete System of Optical Fibers,” J. Exp. and Theo. Phys., vol. 126, no. 1, pp. 21–34, 2018.
H. Sakaguchi and M. Tamura, “Scattering and Trapping of Nonlinear Schrödinger Solitons in External Potentials,” J. Phys. Soc. Japan, vol. 73, no. 3, pp. 503–506, 2004.
S. M. Al-Marzoug, S. M. Al-Amoudi, U. Al Khawaja, H. Bahlouli and B. B. Baizakov, “Scattering of A Matter-Wave Single Soliton and A Two-Soliton Molecule by An Attractive Potential,” Phys. Rev. E - Statist., Nonlinear, and Soft Matt. Phys., vol. 83, no. 2, pp. 026603, 2011.
B. A. Umarov, A. Messikh, N. Regaa and B. B. Baizakov, “Variational Analysis of Soliton Scattering by External Potentials,” J. Phys.: Conf. Series, vol. 435, no. 1, pp. 012024, 2013.
M. A. M. Din, B. Umarov, N. A. B. Aklan, M. S. A. Hadi and N. H. Ismail, “Scattering of The Vector Soliton in Coupled Nonlinear Schrödinger Equation with Gaussian Potential,” Malays. J. Fund. and Appl. Sci., vol. 16, no. 5, pp. 500–504, 2020.
S. D. Hansen, N. Nygaard and K. Mølmer, “Scattering of Matter Wave Solitons on Localized Potentials,” Appl. Sci., vol. 11, no. 5, pp. 2295, 2021.
N. A. B. Aklan, N. F. I. M. Husairi, A. S. Samiun and B. Umarov, “Dynamics of Two-Soliton Molecule with Impurities,” Menemui Matematik (Discover. Math.), vol. 45, no. 1, pp. 112–123, 2023.
S. Lazar, H. Huang and E. Wissner, “Pacemaker and ICD Troubleshooting,” Interpreting Cardiac Electrograms: From Skin to Endocardium, pp. 77, 2017.