Implementation of Conjugate Gradient Method for Estimating Inflation Rate in Malaysia
Main Article Content
Abstract
Optimization methods are valuable for making decisions and identifying the most suitable alternative based on a given objective function. One of the mathematical optimization methods is Conjugate Gradient (CG) method which is commonly used to solve large-scale unconstrained optimization systems with less storage space. Recently, various optimization methods have been studied and used in economics estimating. However, just a few studies have predicted inflation rate using modified CG method. Random initial points are tested on New Three-Terms (NTT) which are modified Rivaie-Mustafa-Ismail-Leong (RMIL+) and Umar Mustapha Waziri (UMW) CG method with ten optimization test functions suggested by Andrei using MATLAB. NOI and CPU time obtained are compared by performance ratio of Dolan and Moré. NTT CG method stands out as the best performance. Data set of year 2010 until 2022 from Department of Statistics Malaysia (DOSM) is transformed into optimization problems to be solved. Estimated results of Least Square Conjugate Gradient (LSCG) are based on NTT CG and LS both for linear and quadratic models. Relative errors for LSCG, Least Square (LS) and Trendline Method are calculated. Linear LS is shown as the most suitable to estimator in inflation rate in Malaysia as it yields the least relative error compatible with the linear LSCG and Trendline Method that produce similar relative error in estimating inflation rate in Malaysia.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All articles published in JIWE are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Readers are allowed to
- Share — copy and redistribute the material in any medium or format under the following conditions:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use;
- NonCommercial — You may not use the material for commercial purposes;
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
References
N. Zullpakkal, N. Aini, N. Ghani, N. Mohamed, N. Idalisa, and M. Rivaie, “Covid-19 data modelling using hybrid conjugate gradient method”, Journal of Information and Optimization Sciences, vol. 43, no. 4, pp. 837-853, 2022, doi:10.1080/02522667.2022.2060610.
E. K. P. Chong, and S. H. Zak, An Introduction to Optimization, 4th ed. Hoboken, NJ, USA: Wiley, 2013.
M. Elhamid, C. Yacine, and T. Bechouat, “Two improved nonlinear conjugate gradient methods with application in conditional model regression function”, Journal of Industrial and Management Optimization, vol. 21, no. 1, pp. 658-675, 2025, doi:10.3934/jimo.2024098.
I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization, 2nd ed. Philadelphia, PA, USA: SIAM, 2008.
Y. Dai, and Y. Yuan, “An efficient hybrid conjugate gradient method for unconstrained optimization”, Annals of Operations Research, vol. 103, no. 1-4, pp. 33-47, 2001. doi:10.1023/a:1012930416777.
E. Birgin, and J. Martinez, “A spectral conjugate gradient method for unconstrained optimization”, Applied Mathematics & Optimization, vol. 43, no. 2, pp. 117-128, 2001, doi:10.1007/s00245-001-0003-0.
M. Moller, “A scaled conjugate gradient algorithm for fast supervised learning”, Neural Networks, vol. 6, no. 4, pp. 525-533, 1993, doi:10.1016/s0893-6080(05)80056-5.
N. Andrei, “A new three-term conjugate gradient algorithm for unconstrained optimization”, Numerical Algorithms, vol. 68, no. 2, pp. 305-321, 2014, doi:10.1007/s11075-014-9845-9.
N. Shapiee, M. Rivaie, M. Mamat, and P. Ghazali, “A new family of conjugate gradient coefficient with application”, International Journal of Engineering & Technology, vol. 7, no. 3.28, pp. 36-43, 2018, doi:10.14419/ijet.v7i3.28.20962.
I. M. Sulaiman, and M. Mamat, “A new conjugate gradient method with descent properties and its application to regression analysis,” Journal of Numerical Analysis, Industrial Applications Mathematics, vol. 12, no. 1-2, pp. 25–39, 2020.
I. Sulaiman, N. Bakar, M. Mamat, B. Hassan, M. Malik, and A. Ahmed, “A new hybrid conjugate gradient algorithm for optimization models and its application to regression analysis”, Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 2, pp. 1100, 2021, doi:10.11591/ijeecs.v23.i2.pp1100-1109.
N. Pakkal, N. Shapiee, S. Husin, W. Khadijah, N. Salahudin, S. Zokriet et al., “The implementation of conjugate gradient methods for data fitting”, Data Analytics and Applied Mathematics (DAAM), pp. 23-29, 2023, doi:10.15282/daam.v4i1.9499.
I. Sulaiman, N. Idalisa, N. Zullpakkal, P. Kaelo, and N. Shapiee, “A descent three-term conjugate gradient direction for problems of unconstrained optimization with application”, International Journal of Computational Methods, vol. 22, no. 07, 2025, doi:10.1142/s0219876225500100.
H. Khudhur, and R. Mahmood, “Improved conjugate gradient algorithm for removing noise from images”, 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA), pp. 1-5, 2025, doi:10.1109/ichora65333.2025.11016997.
A. Ibrahim, B. Fathi, and M. Abdulrazzaq, “Improving three-term conjugate gradient methods for training artificial neural networks in accurate heart disease prediction”, Neural Computing and Applications, vol. 37, no. 16, pp. 10381-10405, 2025, doi:10.1007/s00521-025-11121-9.
R. Yunus, K. Kamfa, I. Sulaiman, and M. Mamat, “A novel three term conjugate gradient method for unconstrained optimization via shifted variable metric approach with application”, Studies in Systems, Decision and Control, pp. 581-596, 2022, doi:10.1007/978-3-031-04028-3_37.
A. Wanto, M. Zarlis, S. Sawaluddin, and D. Hartama, “Analysis of artificial neural network backpropagation using conjugate gradient Fletcher Reeves in the predicting process”, Journal of Physics: Conference Series, vol. 930, pp. 012018, 2017, doi:10.1088/1742-6596/930/1/012018.
Q. C. Shu, “Determinants of foreign direct investment in Malaysia,” Issues and Perspectives in Business and Social Sciences, no. 2, pp. 115–142, 2024, doi:10.33093/ipbss.2024.4.2.2.
H. Wasi, and M. Shiker, “Proposed CG method to solve unconstrained optimization problems”, Journal of Physics: Conference Series, vol. 1804, no. 1, pp. 012024, 2021, doi:10.1088/1742-6596/1804/1/012024.
I. Arzuka, M. Bakar, and W. Leong, “A scaled three-term conjugate gradient method for unconstrained optimization”, Journal of Inequalities and Applications, vol. 2016, no. 1, 2016, doi:10.1186/s13660-016-1239-1.
N. Andrei, “A simple three-term conjugate gradient algorithm for unconstrained optimization”, Journal of Computational and Applied Mathematics, vol. 241, pp. 19-29, 2013, doi:10.1016/j.cam.2012.10.002.
M. Simionescu, “Machine learning vs. econometric models to forecast inflation rate in Romania? The role of sentiment analysis”, Mathematics, vol. 13, no. 1, pp. 168, 2025, doi:10.3390/math13010168.
S. K. W. Su and S. V. Soon, “The impact of inflation on economic growth”, Issues and Perspectives in Business and Social Sciences, vol. 4, no. 2, pp. 187-201, 2024, doi:10.33093/ipbss.2024.4.2.6.
M. Jamil, X. Yang, and H. Zepernick, “Test functions for global optimization”, Swarm Intelligence and Bio-Inspired Computation, pp. 193-222, 2013, doi:10.1016/b978-0-12-405163-8.00008-9.
K. Hillstrom, “A simulation test approach to the evaluation of nonlinear optimization algorithms”, ACM Transactions on Mathematical Software, vol. 3, no. 4, pp. 305-315, 1977, doi:10.1145/355759.355760.
N. Gould, and J. Scott, "A note on performance profiles for benchmarking software”, ACM Transactions on Mathematical Software, vol. 43, no. 2, pp. 1-5, 2016, doi:10.1145/2950048.
E. Dolan, and J. More, “Benchmarking optimization software with performance profiles”, Mathematical Programming, vol. 91, no. 2, pp. 201-213, 2002, doi:10.1007/s101070100263.
B. Hassan, I. Moghrabi, A. Ibrahim, and H. Jabbar, “Improved conjugate gradient methods for unconstrained minimization problems and training recurrent neural network”, Engineering Reports, vol. 7, no. 2, 2025, doi:10.1002/eng2.70019.
D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 6th ed. Hoboken, NJ, USA: Wiley, 2021.
M. Zarandi, M. Zarinbal, A. Zarinbal, I. Turksen, and M. Izadi, “Using type-2 fuzzy function for diagnosing brain tumors based on image processing approach”, International Conference on Fuzzy Systems, 2010, doi:10.1109/fuzzy.2010.5584469.
J. Wolberg, Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments. New York, NY, USA: Springer, 2006.
Z. Dai, “Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties”, Applied Mathematics and Computation, vol. 276, pp. 297-300, 2016, doi:10.1016/j.amc.2015.11.085.
A. Umar, M. Mamat, I. Sulaiman, M. Waziri, and A. Mandara, “A new modification of conjugate gradient parameter with efficient line search for nonconvex function,” International Journal of Scientific & Technology Research, vol. 9, no. 3, pp. 6572–6575, 2020.
D. Omar, S. Shareef, and B. Fathi, “A new three -term conjugate gradient algorithm for solving minimization problems”, Science Journal of University of Zakho, vol. 11, no. 4, pp. 544-547, 2023, doi:10.25271/sjuoz.2023.11.4.1152.
W. Y. Wang, D. Gupta, and S. Potthoff, “On evaluating the impact of flexibility enhancing strategies on the performance of nurse schedules”, Health Policy, vol. 93, no. 2-3, pp. 188-200, 2009, doi:10.1016/j.healthpol.2009.07.003.
R. B. Yunus, A. R. El-Saeed, N. Zainuddin, and H. Daud, “A structured RMIL conjugate gradient-based strategy for nonlinear least squares with applications in image restoration problems”, AIMS Mathematics, vol. 10, no. 6, pp. 14893-14916, 2025, doi:10.3934/math.2025668.
K. D. Lawrence, R. K. Klimberg, and S. M. Lawrence, Fundamentals of Forecasting Using Excel. New York, NY, USA: Industrial Press, 2009.
N. Andrei, “An unconstrained optimization test functions collection,” Advanced Modeling and Optimization, vol. 10, no. 1, pp. 147–161, 2008.