Localization Techniques Overview Towards 6G Communication

Main Article Content

Nawaid Hasan
Azlan Abd Aziz
Azwan Mahmud
Nur Asyiqin binte Hamzah
Noor Ziela Abd Rahman

Abstract

Worldwide Researchers and scientist have started the investigation of the sixth generation (6G) while the fifth generation (5G) cellular system is being deployed. Under this main investigation the main aim of 6G is to provide intelligent and ubiquitous wireless connectivity with Terabits per second (Tbps) data rates.  Accurate location information of the mobile devices is very much useful to accomplish these aims with the improvements of various parameters of wireless communication. The development in communication technology often creates new opportunities to improve the localization efficiency as demonstrated by the expected centimetre-level localization accuracy in 6G. While there are comprehensive literatures separately on wireless localization or communications, the 6G study is still in its inception. This article is therefore intended to provide an overview of localization techniques towards 6G wireless networks. Finally, some interesting future localization technique research directions are highlighted.

Article Details

How to Cite
Hasan, N., Azlan Abd Aziz, Azwan Mahmud, Nur Asyiqin binte Hamzah, & Noor Ziela Abd Rahman. (2022). Localization Techniques Overview Towards 6G Communication. Journal of Informatics and Web Engineering, 1(1), 35–47. https://doi.org/10.33093/jiwe.2022.1.1.4
Section
Regular issue

References

Z. Xiao and Y. Zeng, “An Overview on Integrated Localization and Communication Towards 6G,” arXiv, pp. 1–35, 2020.

Y. Chen, P. Zhu, G. He, X. Yan, H. Baligh, and J. Wu, “From connected people, connected things, to connected intelligence,” 2nd 6G Wirel. Summit 2020 Gain Edge 6G Era, 6G SUMMIT 2020, 2020, doi: 10.1109/6GSUMMIT49458.2020.9083770.

L. Zhang, Y. C. Liang, and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1–14, 2019, doi: 10.23919/JCC.2019.08.001.

G Flagship, 6G Flagship, Key Drivers and Research challenges for Ubiquitous wireless Intelligence., no. September. 2019.

E. C. Strinati, S. Barbarossa, J. L. Gonzalez-jimenez, D. Ktenas, and N. Cassiau, “6G:THE NEXT FRONTIER,” no. SEPTEMBER, pp. 42–50, 2019.

K. Drivers et al., “6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies,” no. September, 2019.

M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless networks: Quality-of-service model and learning-based resource management,” arXiv, vol. 66, no. 11, pp. 5621–5635, 2017.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A Speculative Study on 6G,” IEEE Wirel. Commun., vol. 27, no. 4, pp. 118–125, 2020, doi: 10.1109/MWC.001.1900488.

D. Dardari, P. Closas, and P. M. Djuric, “Indoor tracking: Theory, methods, and technologies,” IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1263–1278, 2015, doi: 10.1109/TVT.2015.2403868.

C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione, “A survey of enabling technologies for network localization, tracking, and navigation,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3607–3644, 2018, doi: 10.1109/COMST.2018.2855063.

A. Yassin et al., “Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 1327–1346, 2017, doi: 10.1109/COMST.2016.2632427.

C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46–59, 1998, doi: 10.1109/35.667413.

F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 41–53, 2005, doi: 10.1109/MSP.2005.1458284.

R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch, “Location-aware communications for 5G networks: How location information can improve scalability, latency, and robustness of 5G,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 102–112, 2014, doi: 10.1109/MSP.2014.2332611.

M. Wax and T. Kailath, “Decentralized Processing in Sensor Arrays,” IEEE Trans. Acoust., vol. 33, no. 5, pp. 1123–1129, 1985, doi: 10.1109/TASSP.1985.1164706.

A. J. Weiss, “Direct position determination of narrowband radio transmitters,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process.-Proc., vol. 2, no. 5, pp. 513–516, 2004, doi: 10.1109/icassp.2004.1326241.

O. Bialer, D. Raphaeli, and A. J. Weiss, “Maximum-likelihood direct position estimation in dense multipath,” IEEE Trans. Veh. Technol., vol. 62, no. 5, pp. 2069–2079, 2013, doi: 10.1109/TVT.2012.2236895.

Y. Wang and K. C. Ho, “An Asymptotically Efficient Estimator in Closed-Form for 3-D AOA Localization Using a Sensor Network,” IEEE Trans. Wirel. Commun., vol. 14, no. 12, pp. 6524–6535, 2015, doi: 10.1109/TWC.2015.2456057.

M. Christie, M. Landin-Olsson, G. Sundkvist, G. Dahlquist, A. Lernmark, and S. Bakkeskov, “Antibodies to a Mr-64000 islet cell protein in Swedish children with newly diagnosed Type 1 (insulin-dependent) diabetes,” Diabetologia, vol. 31, no. 8, pp. 597–602, 1988, doi: 10.1007/BF00264766.

S. He and S. H. G. Chan, “Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 466–490, 2016, doi: 10.1109/COMST.2015.2464084.

M. Li and Y. Liu, “Rendered path,” p. 51, 2007, doi: 10.1145/1287853.1287861.

T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-Free Localization Schemes for Large Scale Sensor Networks,” Proc. Annu. Int. Conf. Mob. Comput. Networking, MOBICOM, pp. 81–95, 2003, doi: 10.1145/938985.938995.

P. Brida, J. Duha, and M. Krasnovsky, “On the accuracy of weighted proximity based localization in wireless sensor networks,” IFIP Int. Fed. Inf. Process., vol. 245, pp. 423–432, 2007, doi: 10.1007/978-0-387-74159-8_42.

J. A. Del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, “Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G,” IEEE Commun. Surv. Tutorials, vol. 20, no. 2, pp. 1124–1148, 2018, doi: 10.1109/COMST.2017.2785181.

J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Commun., vol. 20, no. 9, pp. 1677–1683, 2002, doi: 10.1109/JSAC.2002.805060.

B. Denis, J. Keignart, and N. Daniele, “Impact of NLOS propagation upon ranging precision in UWB systems,” 2003 IEEE Conf. Ultra Wideband Syst. Technol. UWBST 2003 - Conf. Proc., pp. 379–383, 2003, doi: 10.1109/UWBST.2003.1267868.

F. Gunnarsson, F. Lindsten, and N. Carlsson, “Particle filtering for network-based positioning terrestrial radio networks,” IET Conf. Publ., vol. 2014, no. 629 CP, 2014, doi: 10.1049/cp.2014.0523.

ITU-R, “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond,” Itu-R M.2083-0, vol. 0, p. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M, 2015.

R. Keating, M. Saily, J. Hulkkonen, and J. Karjalainen, “Overview of positioning in 5G new radio,” Proc. Int. Symp. Wirel. Commun. Syst., vol. 2019-Augus, pp. 320–324, 2019, doi: 10.1109/ISWCS.2019.8877160.

Y. Liu, X. Shi, S. He, and Z. Shi, “Prospective Positioning Architecture and Technologies in 5G Networks,” IEEE Netw., vol. 31, no. 6, pp. 115–121, 2017, doi: 10.1109/MNET.2017.1700066.

Q. Zhao and L. Jin, “Rain attenuation in millimeter wave ranges,” ISAPE 2006 - 2006 7th Int. Symp. Antennas, Propag. EM Theory, Proc., pp. 609–612, 2006, doi: 10.1109/isape.2006.353538.

F. Wen, H. Wymeersch, B. Peng, W. P. Tay, H. C. So, and D. Yang, “A survey on 5G massive MIMO localization,” Digit. Signal Process. A Rev. J., vol. 94, pp. 21–28, 2019, doi: 10.1016/j.dsp.2019.05.005.

H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson, “5G mmwave positioning for vehicular networks,” IEEE Wirel. Commun., vol. 24, no. 6, pp. 80–86, 2017, doi: 10.1109/MWC.2017.1600374.

F. Boccardi, R. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, 2014, doi: 10.1109/MCOM.2014.6736746.

K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-Jaroodi, “A survey of load balancing in Cloud Computing: Challenges and algorithms,” Proc.-IEEE 2nd Symp. Netw. Cloud Comput. Appl. NCCA 2012, pp. 137–142, 2012, doi: 10.1109/NCCA.2012.29.

Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the Sky: A Tutorial on UAV Communications for 5G and beyond,” Proc. IEEE, vol. 107, no. 12, pp. 2327–2375, 2019, doi: 10.1109/JPROC.2019.2952892.

Y. Liu and Y. Shen, “UAV-Aided high-accuracy relative localization of ground vehicles,” IEEE Int. Conf. Commun., vol. 2018-May, pp. 1–5, 2018, doi: 10.1109/ICC.2018.8422460.

Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, challenges, and promising technologies,” IEEE Wirel. Commun., vol. 26, no. 1, pp. 120–127, 2019, doi: 10.1109/MWC.2018.1800023.

X. Lin et al., “The Sky is Not the Limit: LTE for Unmanned Aerial Vehicles,” IEEE Commun. Mag., vol. 56, no. 4, pp. 204–210, 2018, doi: 10.1109/MCOM.2018.1700643.

Z. Zhang et al., “6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, 2019, doi: 10.1109/MVT.2019.2921208.

H. Yao, L. Wang, X. Wang, Z. Lu, and Y. Liu, “The Space-Terrestrial Integrated Network: An Overview,” IEEE Commun. Mag., vol. 56, no. 9, pp. 178–185, 2018, doi: 10.1109/MCOM.2018.1700038.

Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, 2016, doi: 10.1109/MCOM.2016.7470933.